
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

35

Managing Intrusion Detection as a Service in Cloud

Networks

Hatem Hamad

The Islamic University of Gaza
Gaza, Palestine

Mahmoud Al-Hoby
The Islamic University of Gaza

Gaza, Palestine

ABSTRACT

Cloud computing is frequently being utilized to eliminate the

need to local information resources. In this paper, we address

the problem of intrusion detection in cloud environments and

the possibility of allowing intrusion detection to be provided

to clients as a service. The paper describes the Cloud Intrusion

Detection Service (CIDS), which is intended to function as an

intrusion detection web service to be provided for cloud

clients in a service-based manner. CIDS utilizes the “Snort”

open source intrusion detection system. The operating logic

and user access webpages were developed using J2EE. We

implemented a proof-of-concept prototype to evaluate the

performance. CIDS was proved to be very friendly to resource

allocation. Additionally, CIDS gave better attack detection

rates and attack detection times than other solutions. These

improvements can be beneficial to both cloud providers and

cloud subscribers alike.

General Terms

Cloud Computing, Intrusion Detection Management

Keywords

Cloud Computing; CRE; Intrusion Detection; SaaS

1. INTRODUCTION
Cloud computing is a large-scale distributed computing

paradigm that is driven by economies of scale, in which a pool

of abstracted, virtualized, dynamically-scalable, managed

computing power, storage, platforms, and services are

delivered on demand to external customers over the Internet

[1]. The cloud computing paradigm is usually linked to SaaS

or Software as a Service model [2]. This service model works

by providing applications for end users on service-based

manner. A recent addition to cloud services was security-

related services, in what is termed as Security-as-a-Service

[3]. Different systems have been made available to end user to

provide the security products for users in a service-based

manner. This included many product services and types like

Remote Vulnerability Scanning [4], Web root’s Email and

web Security SaaS [5], and Panda’s Managed Office

Protection [6].

In this paper, we design and implement a security-related

cloud service. More specifically, we design the Cloud

Intrusion Detection Service (CIDS). CIDS is intended to be

used as a service-based intrusion detection system for which

cloud clients can subscribe with. The remaining of this paper

is as follows. In section 2, we define the main problem of this

paper. In section 3, we describe some of the currently

published papers that are specific to cloud intrusion detection

solutions. Later in section 4, we introduce the CIDS. This is

where we describe our approach to the solution. After that and

in section 5, we test and evaluate the different performance

measures for this system. We conclude in section 6.

2. PROBLEM DEFINITION
Intrusion detection systems are commonly used by network

administrators to monitor the traffic being exchanged between

different network segments. And by replacing the traditional

local server-based network environments with cloud-based

network infrastructure, system administrators will need to

purchase additional services from the cloud provider so that

they can deploy their own network intrusion detection

systems. This paper discusses the effective design of an

intrusion detection system that can be integrated with the

available services in cloud networks. The main idea is to

provide intrusion detection as a service for the cloud users.

This in turn will enable the clients to choose the protection

settings they wish to utilize using a simple and easy-to-use

web interfaces.

Currently, multiple research activities were introduced to

address the issue of intrusion detection within cloud

computing environments. These activities can be classified as

those to detect intrusions against the cloud itself. And those

that to detect attacks that target individual machines inside the

cloud. Our study is on the latter type of the two. More

specifically, it will cover the service-based or subscription-

based intrusion detection. Which is a field that did not

received as much attention as the classical intrusion detection

activities.

The required intrusion detection framework has some desired

criteria, where these are needed to comply with the traditional

SaaS service models. These include the ability of users to

subscribe or unsubscribe from the service, change

subscription requirements (i.e. protection requirements), pay

for size and complexity of subscription database, and to be an

easy to use service.

3. CURRENT STATUS
Multiple research activities were introduced to address the

issue of intrusion detection within cloud computing

environments. Dastjerdi et. al. [7] implemented applied agent-

based IDS as a security solution for the cloud. The model they

proposed was an enhancement of the DIDMA [8]. The system

is mainly designed to protect the networks’ resources and

cannot be customized as a service. Bakshi et. al. [9] proposed

another cloud intrusion detection solution. The main concern

was to protect the cloud from DDoS attacks. The model uses

an installed intrusion detection system on the virtual switch

and when a DDoS attack is detected. Despite being reported

as effective, the model helps to protect the cloud itself, not the

cloud clients who in turn don’t have any kind of authority

over the intrusion detection system being used. Another recent

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

36

and significant contribution to this field is the work of

Mazzariello et. al. [10] where they proposed a model for

detecting DoS attacks against Session Initiation Protocol

(SIP). The model is limited to detecting SIP flooding attacks

and falls largely with the category of intrusion detection

systems designed to protect the cloud itself.

Lo et. al. [11] proposed a framework that is mainly designed

to create cloud networks that are immune against the

Distributed Denial of Service (DDoS) attacks [12]. The

utilized IDS implementation was the Open Source Snort IDS

and the framework itself is designed as a Distributed Intrusion

Detection System (DIDS) [13] [14]. The proposed framework

supports the idea of cooperative defense by the IDS sensors in

the cloud network. Within the framework, an IDS sensor is

deployed in each network region. Any sensor will send out the

alert to the other sensors while they are suffering from a

severe attack defined in its block table. Each sensor exchanges

its alerts and has a judgment criterion to evaluate the

trustworthiness of these alerts. After evaluation, the new

blocking rule is added into the block table if the alerts are

regarded as a new kind of attack.

Roschke et. al. [15] have proposed an intrusion detection

framework based on the VM-based IDS [16]. In their work,

they have developed a general framework for intrusion

detection. It consisted of separate IDS sensors for each virtual

host. The IDS sensors can be of different vendors. To enable

the collection and correlations of alerts from the different IDS

implementations, an Event Gatherer was made to work as a

medium to standardize the output from the different sensors as

well as realize the logical communication. The cloud user can

have access to both the applications and the IDS sensors. The

users can access the sensors, configure, modify rule sets, and

modify detection thresholds. Additionally, users can review

the alerts generated when attacks that target their virtual hosts

or services are spotted. The framework also includes the IDS

Management module which is responsible for orchestrating

the message passing and alert transfer among the different

IDS sensors and the main storage unit whether it was a file

system, a network database, or a shared folder. This approach

of separating the IDS from the protected hosts is of great

advantage. But it is criticized for requiring the large

consumption of computing resources since every virtual

application, platform, or host needs a separate VM-Based

IDS.

4. CLOUD INTRUSION DETECTION

SERVICE
The proposed framework builds upon the fact that intrusion

detection systems utilize very fast and very efficient search

algorithms [17]. So by increasing the complexity of the

signature database definitions, we will be able to customize

the behavior of the intrusion detection system in such a way

that it acts as a cloud-capable intrusion detection system.

The proposed system is therefore nicknamed Cloud Rule

Engine (CRE) and is capable of receiving the subscriptions

requests from the cloud users and translates these requests

into a standardized signature database that can then be

deployed and utilized as the Cloud Intrusion Detection

Service (CIDS). This process will convert standard intrusion

detection system into a fully capable system of handling the

cloud variations. Figure1 summarizes this process.

Figure2 displays the Use-Case diagram of the CIDS Web

Service. As the model shows, the main actors in the CIDS

Web Service are the clients and administrators. The CIDS

clients need first to login before they can call the different

functions available. For example, a client might view the

categories currently supported which in turn calls a special

function that view the number of signatures in the selected

category. The client then may like to subscribe in the selected

category based upon the description available and the number

of attack signatures definitions within it.

To do so, the client can subscribe to category. Later the client

may wish to view the attacks detected on his own protected

resources. The client may not like to activate the selected

package, so he can unsubscribe from the category or even

remove his subscription totally.

Internal CIDS structure

Users’ cloud resources

CIDS Web Interface
User

(1)

Subscribe to CIDS

Subscribe to categories

Unsubscribe

Confirm requests
(2)

Write Changes

(3)

Read/Write

 signatures database

Figure 1 – IDS Service within the Cloud

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

37

On the other hand, the administrators will also need to login

before using or managing the CIDS. He can view the current

subscribers or view the categories. The administrator may

have defined a new protection package, he can add the

category to the system or even remove the category if it gives

inaccurate results or is not popular among clients. The

administrator may also view alerts by a certain user (i.e.

client) or even view the alert summary for all clients. The

administrator can also remove the users’ subscription himself

for whatever reasons

Client Administrator

Login

viewCategories

SubscribeToCategory

UnSubscribeFromCategory

viewAlertsByUser

RemoveSubscription

viewNumberOfSignatures

RemoveCategory

AddCategory

viewSubscribers

viewAlertsSummary

«uses»

Figure 2 – CIDS Use-Cases

4.1 Cloud’s Rules Engine
The most critical and important part of the service-oriented

intrusion detection system for cloud networks. As mentioned

earlier, CRE works on different layers with varying

complexities. These Layers are the User Layer, The System

Layer, and the Database Layer. The User Layer includes the

interface that will enable the cloud subscribers to define the

subscription and protection requirements. The user in this case

can include both the cloud’s clients and administrators alike.

The common thing is that they can easily access the

configurations, the subscription details, and the security

monitoring and alerting system. This layer sends the different

requests to the other layers in order to convert them to actual

IDS runtime-configurations. The second layer is the System

Layer. This layer will be the driver for the IDS service and

can understand both the alerting mechanism and the signature

syntax. It can do the actual translations to IDS signature

database and also provides the required Application

Programming Interface (API) for accessing the alerts

database. The third layer is relatively relaxed layer. The

Database Layer’s task is to track the subscribers’ settings and

to enable fast access to their settings for any later updates

either to the network segment or to the subscription details.

Figure 3 depicts these layers and their interactions within the

system. The CIDS API provides different functions and

operations as part of the proposed CIDS framework. These

operations are displayed in table 1.

Table 1 – CIDS OPERATIONS

Type Operation Target User

Category

AddCategory Administrators

RemoveCategory Administrators

ResetToDefaultSettings Administrators

viewNumberOfSignatures
Administrators,

Subscribers

Subscription

ViewSubscripers Administrators

AddSubscription
Administrators,

Subscribers

RemoveSubscription
Administrators,

Subscribers

SubscribeToCategory Subscribers

UnSubscribeFromCategory Subscribers

Alerting viewAlertSummary Administrators

 viewAlertsByUser
Administrators,

Subscribers

As the figure illustrates, if the user's request is related to his

subscription details, the request is forwarded to the database

layer. And if the requests are related to the IDS operations

then the requests are forwarded to the system layer.

Additionally, the communication between the system layer

and the database layer is needed so that the user's preferences

that exist in the database layer can be translated into runtime-

configurations that are effective at the system layer.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

38

User

Cloud IDS Subscription DB

System Layer Database Layer

User Layer

Update Protection
Review Alerts

Update subscriptions

Convert requests to
Runtime configurations

Dispatch protection
requests

Dispatch subscriptions
requests

User Requests

Figure 3 – CIDS Layers and Interactions

5. Implementation and Results
As a proof of concept implementation, The CIDS was

implemented using the Java 2 Enterprise Edition (J2EE) [18].

The entities in the UML model were translated to Java-based

classes. The web interface was created using Java Server

Pages (JSP) [19] technology on Ubuntu [20] Linux

distribution. For subscription, we used a simple signatures

database with approximately 500 signature definitions.

The CIDS system model was successfully implemented and

tested. The final implementation contained two simple web

folders for cloud administrators and cloud subscribers. The

implemented interfaces for both types of users were made as a

proof-of-concept only while the real implementation may

include more complex interfaces. However, this was not the

main concern of this paper, which focuses more on providing

general framework for cloud-capable service-based intrusion

detection system.

Table 2 reviews some of the currently published researches on

integrating intrusion detection systems with cloud computing

networks. As stated in the table, the CRE have enough

advantages –based on the initial design requirements– that the

other cloud IDS solutions doesn’t have.

Table 2 – Cloud IDS Comparison

System CIDS Roschke Lo

Service-Based Yes Yes No

Customized Subscription Yes Yes (N.A)

Client-Oriented Yes Yes No

General Protection Yes Yes No

Fully Parallelizable Yes No Yes

Separated IDS Yes No Yes

Due to the unique requirements that are set before designing

and implementing the CRE component of the Cloud Intrusion

Detection System (CIDS), the results obtained in this section

are the results of two testing scenarios. The first Scenario

works by comparing the performance of shared-Profile

scheme in CIDS with the basic single-client scenario to

determine the overhead of using CIDS over traditional

implementation. The second scenario compares the CIDS with

the case of using separate profiles for each client. For the two

scenarios, the parameters that are obtained for comparison are

total memory consumption, attack detection rates, and time

required to process each attack packet.

5.1 First Scenario
This scenario aims at measuring CIDS overhead. It consists of

using CIDS to protect 50 networks and using simple snort to

protect a single network. The rules vary from using 200

signatures to 1000.

Figure 4 displays the results for the attack detection rates for

the two cases. CIDS was able to detect a very high rate of

attacks that was targeting either of 50 networks. The rate is

slightly less than the one obtained by protecting a single

network. This is an expected behavior since we use the same

number of signatures and because the search algorithms that

are usually utilized are very efficient in terms of the

complexity of the patterns in question.

Figure 4 – Attack detection rates

Figure 5 displays another relatively good result for CIDS. The

overhead required to detect a single attack that targets either

of 50 networks is only 3 milliseconds more that the time

required for detecting a single attack against a single network

Figure 5 – Average Packet Analysis Time

The result in this case is due to the fact that pattern matching

is very efficient and that for the two cases we use the same

number of signatures.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

39

Figure 6 – Memory consumption rates

Next, we test for memory consumption rates for the two cases

in scenario 1. The CIDS consumes very little extra memory

compared to the single use case. This is because all

subscribers share the same resources except for the content of

each signature. The CIDS framework poses very small

overhead over the traditional implementations for single-

network protection. This is advantageous since very small

overhead is realized when can include the protection to more

networks.

5.2 Second Scenario
This scenario aims at measuring CIDS advantage in saving

the utilization of computing resources. The scenario consists

of comparing memory consumption for the case of CIDS with

the case of using separate profiles for each subscriber. This is

similar to allocating separate IDS for each subscriber. In this

scenario we vary the number of subscribers from 100 to 500

subscribers.

Figure7 displays the comparison in memory consumption

rates for the two cases. The figure illustrates clear advantage

of using CIDS. Cloud providers who designate separate IDS

processes or Virtual IDS Hosts experience tremendous

overhead.

Figure 7 - Memory consumption rates

CIDS gets advantage since the same process can be used to

analyze the entire traffic. This is where the advantage appears.

Using separate IDS requires larger resource allocation for

both the ID process and the data while the CIDS utilize a

single ID process.

Next we compare the attack detection rates. Figure 8 displays

the results for this parameter. The CIDS framework can detect

attacks better than the separate profile architecture. This is

also due to the fact that the IDS process consumes fewer

resources and requires fewer signatures to match against.

Figure8 – Attack detection rates

The utilization of larger resources causes more buffer

utilization for matching against larger number of signatures.

This in turn causes some of the packets to be dropped before

they can even be processed, which causes the CIDS to

outperform in detection rates.

Figure 9 – Average packet analysis time

Finally, we test for the average packet analysis time. These

results are displayed in Figure 9. As earlier explained, this

metric measures the speed of the IDS Architecture in

detecting attacks. As proved in the results, the shared scheme

of the CIDS framework performs better than the separate

scheme of other implementations. This is due to the fact that

the IDS process has smaller number of signatures to match the

traffic against, which leads to faster full analysis of the

network packets and hence faster detection speed.

6. Conclusion
In this paper, we have designed and implemented the Cloud

Intrusion Detection Service (CIDS) which has been proved to

be a very effective solution to the problem of providing

intrusion detection as a service in cloud environments. The

system which consisted of three separate layers (User Layer,

System Layer, and Database Layer), aims to be a scalable

intrusion detection framework that can be deployed by cloud

providers to enable clients to subscribe with the intrusion

detection in a service-based manner. The system is a

reengineering of the existing intrusion detection system

(snort) but can be implemented with other systems if required.

The model outperforms currently used solutions for service-

based IDS but at the same time provides minimal overhead to

the case of traditional IDS deployment for single network

protection.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

40

7. References
[1] I. Foster, Yong Zhao, I. Raicu, and S. Lu, "Cloud

Comuting and Grid Computing 360-Degree Compared,"

in Grid Computing Environments Workshop, Austin,

Texas, 2008, pp. 1 - 10.

[2] F. Liu, W. Guo, Z. Q. Zhao, and W. Chou, "SaaS

Integration for Software Cloud," in IEEE 3rd

International Conference on Cloud Computing, Miami,

FL, 2010, p. 402.

[3] McAfee Security. Security as a Service. [Online].

http://www.mcafee.com/us/small/security_insights/securi

ty_as_a_service.html

[4] HackerTarget.com. (2008, April) Security from the

Cloud: Remote Vulnerability Scanning. Whitepaper.

[5] K. Balakrishnan, S. Roy, and M. Holt. (2009, April)

Email and Web Security SaaS. Whitepaper.

[6] Panda Security. (2009) Switching from Anti-Virus to

Security as a Service (SaaS). Whitepaper.

[7] A. V. Dastjerdi, K. Abu Bakar, and S. Tabatabaei,

"Distributed Intrusion Detection in Clouds Using Mobile

Agents," in Third International Conference on Advanced

Engineering Computing and Applications in Sciences,

2009, pp. 175-180.

[8] P.Kannadiga and M.Zulkernine, "Distributed Intrusion

Detection System Using Mobile Agents," in Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, 2005.

[9] A. Bakshi and Yogesh B, "Securing cloud from DDOS

Attacks using Intrusion Detection System in Virtual

Machine," in Second International Conference on

Communication Software and Networks, Singapore,

2010, pp. 260-264.

[10] C. Mazzariello, R. Bifulco, and R. Canonico,

"Integrating a Network IDS into an Open Source Cloud

Computing Environment," in Sixth International

Conference on Information Assurance and Security,

Atlanta, 2010, pp. 265-270.

[11] Ch. Lo, Ch. Huang, and J. Ku, "A Cooperative Intrusion

Detection System Framework for Cloud Computing

Networks," in 39th International Conference on Parallel

Processing Workshops, 2010, pp. 280-284.

[12] Wikipedia. Denial-of-service attack. [Online].

http://en.wikipedia.org/wiki/Denial-of-service_attack

[13] D.J. Ragsdale, C.A. Carver, Jr. J.W. Humphries, and

U.W. Pooch, "Adaptation Techniques for Intrusion

Detection and Intrusion Response Systems," Computer

Networks, vol. 4, pp. 2344-2349.

[14] E. H. Spafford and D. Zamboni, "Intrusion Detection

Using Autonomous Agent," Computer Networks, vol.

34, no. 4, pp. 547-570, 2000.

[15] S. Roschke, F. Cheng, and Ch. Meinel, "Intrusion

Detection in the Cloud," in Eighth IEEE International

Conference on Dependable, Autonomic, and Secure

Computing, 2009, pp. 729-734.

[16] M. Laureano, C. Maziero, and E. Jamhour, "Protecting

Hostbased Intrusion Detectors through Virtual

Machines," International Journal of Computer and

Telecommunications Networking, vol. 51, no. 5, pp.

1275-1283, April 2007.

[17] Y. Weinsberg, S. Tzur-David, D. Dolev, and T. Anker,

"High performance string matching algorithm for a

network intrusion prevention system (NIPS)," in High

Performance Switching and Routing, Poznan, 2006, p. 7

pp.

[18] Oracle America. Oracle Corp. [Online].

http://www.oracle.com/technetwork/java/javaee/overvie

w/index.html

[19] Sun Microsystems. Sun Developer Network (SDN)).

[Online]. http://java.sun.com/products/jsp/

[20] Canonical Ltd. Ubuntu Linux. [Online].

http://www.ubuntu.com/

