
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

26

Application based File System (ABFS)

Krishna Modi
B. Tech. (comp.) 3

rd
 Year

Mukesh Patel School of Technology Management &
Engineering

JVPD Scheme Bhaktivedanta swami Marg
Vile Parle (w), Mumbai- 400 056

Prof. Prashasti Kanikar
Assistant Professor

Mukesh Patel School of Technology Management &
Engineering

JVPD Scheme Bhaktivedanta swami Marg
Vile Parle (w), Mumbai- 400 056

ABSTRACT

A file system is designed to store the data into the storage

device efficiently and without any data loss. Every data stored

on the storage device is used by some or the other application.

When an application is opened, 90% probability is that the

user will open a file which is supported by that application.

But the files in the storage devices are not stored in a sorted

manner. They are generally stored on the first come first serve

basis. We have paid special attention and made efforts to

design a file system which stores the data in a sorted manner

so that while accessing the data in the file system, the disk

header has to make least possible movement thus reducing the

seek time and giving an optimal response time. Software is

responsible to make the hardware perform its work efficiently.

This has influenced the design of ABFS which stands for

Application Based File System.

General Terms

File System, File storage method, Data Management, Sorted

Storage Mechanism.

Keywords

Application Based File System, File System, Sorted File

System, Journaling, Reduced Seek Time.

1. INTRODUCTION
In ABFS, the data is sorted according to the application which

uses that data. Every data is accessed by some application. In

ABFS, every application has its own database of files. Every

file in ABFS is referred as an item, and a folder is referred as

group. A group is a collection of items organized as separate

entity by the user or system to refer items with specific

similarity by a common entity. Every application data table

maintains a record of the items and the groups. These items

are highly classified according to their applications. Whenever

an application is opened, the files supported by that

application are only accessed, which are actually stored

together in ABFS. This actually helps in reducing the time to

search for data, hence reducing the seek time of the disk.

The ABFS is highly comfortable for operating systems meant

for personal computers. An operating system needs to have a

complete different architecture to implement ABFS because

the complete design of ABFS is a new revolution in the

history of file systems.

2. RELATED WORKS
Microsoft designed its file system popularly known as File

Allocation Table (FAT) in 1980[1]. This file system had a

very basic design with all the data entries stored in a simple

tabular format. FAT was initially designed for Floppy disks

which later went in use for Windows operating system up till

Windows 98. It is still highly preferred and recommended file

system for flash drives and other small portable storage

devices.

FAT32 is the latest version of FAT file system introduced in

1996 which supported up to 2 Terabyte of maximum volume

size. It provides no sorted storage or any security measures

against data loss. In this paper, we have revamped the design

of FAT with more features and better architecture maintaining

the same tabular format for recording entries of data items

stored in the storage device.

3. PROPOSED DESIGN
Every application installed in ABFS has its own Application

Data Table (ADT). This ADT contains all the entries of the

items and groups stored by that application in the system.

Hence, every item is stored and recorded in a sorted manner.

ABFS makes it easy for the operating system to uninstall an

application from the system. When an application is

uninstalled, all the data related to that application can be

easily calculated and removed from the system for complete

removal of the application. This removes the redundant or

useless data storage in the storage device. Some applications

are inbuilt by the operating system and they cannot be

uninstalled. This secures the data or items stored in that

application data table from getting deleted even accidently.

For every Application Data Table (ADT), its application is

referred as native application and other applications are

referred as external applications, and their ADT as External

Application Data Table. The items in the ADT have limited

access; they can access items only under their level. The

Application Based File System has no limitation for memory

addressing. It can address huge amount of memory locations

and clusters because of its ‘Repeat and conquer’ approach.

According to it, the ABFS can have an item of maximum size

128TB. It can address a volume of maximum size 12.5PB

which is sufficient for any file system present currently [2].

The efficient storage technique removes the redundant data

from the storage device and uses the storage space efficiently

and wisely. As data of same format as stored together, the

head seek time is minimum. Whenever an application is

opened, the operating system reads the location of that

application’s ADT and informs the head to start reading for

data from the specified location. The disk read/write head

starts reading the data from where the Native ADT for that

application is stored. Hence the response time on accessing

any file in the file system is very less and optimal as

compared to any other file system. This is supposed to be the

only file system which stores the data in a sorted manner

without much rewriting, shifting the data from one memory

location to another, or using defragmenters.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

27

The Application Based File System also allows the

applications to add their flags as per their needs. Every

application can use set four flags in its own data items for its

own use. The parameters or settings stored and needed by the

application can be stored in the file system itself, applications

do not need to create any file to store these data and encrypt

them.

4. FEATURES (Proposed)

4.1 Sparse Files
Sparse files are files which contain sparse data sets, which are

files with segments stored at different file offsets with no

actual storage space used for the space between segments.

When a file is read back, the file system driver returns zeros

for any data that does not actually exist, so the file may appear

to be mostly filled with zeros. For instance, Database

applications sometimes use sparse files. Because of this, we

have implemented support for efficient storage of sparse files

by allowing an application to specify regions of empty (zero)

data. An application that reads a sparse file reads it in the

normal manner with the file system calculating what data

should be returned based upon the file offset. As with

compressed files, the actual sizes of sparse files are not taken

into account when determining quota limits.

4.2 Quotas
In ABFS, the files are sorted according to the applications

using them and their formats/extensions. A rough idea can be

easily drawn from the ADT how much memory to be saved

for a specific application. Hence, a Quota is maintained for

every application to separate every data of different

applications from each other. This maintains the uniformity in

the stored data. A quota is an imaginary amount of memory

allocated for an application, though an application can exceed

its quota limits without any complexity or special

permissions.

4.3 Single Instance Storage
When there are several groups that have different, but similar,

items, some of these items may have identical content. Single

instance storage allows identical items to be merged to one

item and create references to that merged item. SIS consists of

a file system filter that manages copies, modification and

merges to items; and a user space service that searches for

items that are identical and need merging. SIS was mainly

designed for remote installation servers as these may have

multiple installation images that contain many identical files

[3]; SIS allows these to be consolidated; changes to one copy

of an item will leave others unaltered. This is similar to copy-

on-write, which is a technique by which memory copying is

not really done until one copy is modified.

4.4 Atomicity
ABFS is a Journaling File System. It maintains a record of all

the changes to be in the journal before actually committing

them to the main file system. This helps in achieving

atomicity for the File System operations. If any copy, paste,

modification updating or new file creation process is

executed; the journal table keeps track of the changes, and

then applies them on the main File System. If the process was

successful, only then is the change made in the main File

System, otherwise not. The "all or nothing" rule of atomicity

is followed by the ABFS. For the journaling, a journal table is

maintained by the file system. On every bunch of successful

executions, the journal table is checked for the changes made

and updates them to the main file system. The journaling file

system was basically developed by IBM Developers [4]. It is

utilized to achieve atomicity in Application Based File

System.

4.5 No Journaling Mode
Journaling maintains the integrity of the file system by

keeping a log of the currently ongoing disk changes.

However, it is known to have a small overhead [5]. Some

people with special requirements and workloads can run

without a journal and its integrity advantages. In ABFS the

journaling feature can be disabled, which provides a small

performance improvement.

4.6 Access Level Limitations
In Application Based File System, a tree structure is formed.

Index is the source node, having the several applications as its

children nodes. Every application has its items and groups as

children nodes; every group has its own children nodes having

items or subgroups in them. Every node has a limitation that it

can access only other nodes at level same as of itself which

are under the same parent node. Under this condition, every

item in an ADT won’t be able to access any other item in

EADT of any External Application. This is known as access

level limitation. Every item has access to a limited number of

items in the file system. If the operating system is affected by

virus, it won’t be able to affect much of the files in the file

system unless it is in the system files or has gained abrupt

access permissions. Access Level Limitations add up to the

security feature of the file system. There is no chance that the

virus enters the system files because they cannot be accessed

by even the administrator.

4.7 Restricted System Files
The system files in the Application Based File System are

restricted to be accessed by even the administrator. Only the

root user can read the system files, still he cannot

modify/update them or write a new file in the system files.

The system files comprises of all the files of the operating

system. The operating system files are not useful for the user.

They are just used by the system. It is not efficient to display

the system files to the users. User should be able to access

only the data which is useful. No system data should be

viewed by the users. For better user experience and security,

the system files are restricted for user access. System files are

not visible for any user except the root user. This is also

useful for security against viruses. A virus in the system files

can access any file in the file system as the system files and

folders have complete permission for all items in the file

system.

4.8 External Application Access
Every application can have its own data table. Some

applications may require access to the EADT of External

Applications. For example, let the operating system provide a

music player application called as Music Box. Let there be a

third party application called VLC media player. This

application needs access to all media files which are under the

ADT of its native application. This is possible in ABFS. If the

any of the data type used by both the application is same, then

the items of that data type or extension can be access by the

External Application from the ADT of the Native Application.

But the External Application can just access the EADT. To

modify, update or write in it, the External Application needs

to have permission for it.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

28

4.9 Sorted Storage
The items in the ADT of applications are stored at one place.

Every ADT of application is stored at a distance from every

other ADT of another application because of using the quotas.

Every ADT has its own space and items of same

format/extension are stored nearby. Hence, when an

application starts, all the items needed by the application are

available at one place and the disk head doesn’t have to seek

to different locations for accessing the items. As a result, the

data is accessed easily and at a faster speed. The Sorted

Storage technique is achieved by the ABFS in a very simple

manner and carried out smoothly.

4.10 Repeat and Conquer Approach
The Application Based File System has crossed the limitations

faced by other file systems in an extra ordinary way. The

ABFS can have an item of maximum 128TB in size. This File

System can address 12.5PB of memory locations in a storage

device. 1PB is equal to 1024TB of memory. This is all

possible because of the ‘Repeat and conquer’ approach of the

ABFS. In this approach, ABFS repeats itself and covers the

entire storage space. If every cluster is equal to 64 sectors and

every sector is equal to 512bytes of memory [6], then with an

address of 32-bit, the memory that can be addressed is 128TB

((2^32)*64*512). After every 128TB of memory, the ABFS

file system index table is repeated and the next memory

location is counted from 0 again. To address this file system,

an object oriented approach is used. Every memory location

can be addressed via its file system index table. There can be

100 index tables, starting from 00 to 99. To access location 3

from 2nd index table, we would write the memory location as:

02->#00000000000000000000000000000010. The index

table is the main table which contains all the systems files,

user records, application records and table locations and

journal table. This is the main file system table and is repeated

to address the large amount of memory locations.

5. PARAMETERS

5.1 Flags

5.1.1 Read only

If this flag is set for any item or group, then that item or group

can be just read by any external application. No external

application can modify/update such items or groups even if

they have special permissions. For native applications, this

items or groups are completely accessible, and can be

modified in their native application.

5.1.2 Read-write Protection

If this flag is set for any item or group, that item or group is

neither readable nor writable by any external application even

on any special permission. Only native application can read

and write such items or groups.

5.1.3 Hidden

Any item with hidden flag set is not visible to any external as

well as native application. This flag can be unset only by the

native application, not the external application.

5.1.4 Administrator only

If this flag is set, the item is not allowed to be read or written

by any of the application, let it be external or native. Only

administrator or anyone with administrative privilege or

permission can access that item. This flag can be unset only

by administrator via the native application only.

5.1.5 Item

If the data stored in the Application Data Table is an item,

then this flag is set.

5.1.6 Group

If the data stored in the Application Data Table is a group,

then this flag is set.

5.1.7 Stable

If an item is modified / updated and is saved then this flag is

set. If the modification in the item is not saved then this flag is

unset.

5.1.8 State

If an item is currently in use by some application then this flag

is set, otherwise it is unset. It is necessary for achieving

Integrity of data items.

Table 1. Flags

R O R/W H A O Item Group

Stable State A B A B A B A B

The Applications have rights to add more flags to the data

items. Four flags are reserved for applications for their use in

every item. This gives the applications more control over the

data they have access. The application developers can use this

flags more efficiently than using more memory space for

writing a new item to maintain a record of properties of these

data items.

5.2 Time Stamp
Two time stamps are stored for every item in the ADT. The

date and time of creation and last access is saved for every

item and group.

5.3 Item Name
The maximum number of characters that can be used for

naming an item is 64. As observed, mostly up to 10 characters

are widely used for naming any file. Giving more amount of

memory to store name of items seems useless and inefficient

use of memory. So, 64 characters are allocated for names of

each item and 3 characters are allotted for the extension of the

item.

6. DISK STRUCTURE
The Application Based File System contains an Index table.

This table consists of all the system files, user records,

application names and table locations, journal table. The

Index table is the main data entry table which contains all the

system files. The system files are the operating system files

and records.

This system files are followed by the user records. In this, all

the user details and records are maintained including access

permissions, user id, etc. Then the application details are

entered in the Index table. In the application details, the name

of application and the location of Application Data Table are

stored. To uninstall an application, the system has to just

delete the entry of an application from this table. The memory

allocated for the application automatically gets rewritten when

a new application is installed.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

29

After the Application details comes the last but not the least,

Journal table in the Index table. This gives the location to the

Journal table in the memory location. The Journal table is

used to store the details of all the operations that are being

committed on the file system. If the operation is complete, the

journal records it and attempts to make changes in the main

file system. If it is successful, then the journal record is

completed and de-allocated for new record. This table is used

to achieve atomicity in file system operations. The Index table

looks like below table:

Table 2. Index Table

System files #00.....110

User records #00.....131

Application 1 #00.....632

Application 2 #00.....733

Application n #23.....234

Journal Table #45.....342

The Application Data Table has the details of all the items

used and stored by that application. Every ADT is secured.

There are basic details about every ADT, such as Application

name, User access, Data Types, EADT and Write permitted.

Here, Application name is the name of the application whose

ADT is referred. User access contains the user id of all the

users who are permitted to access the ADT on special

conditions. Data types are the extensions that are used and

acknowledged by the application. This data type entry is

useful to access the ADT of external applications. If the data

type of another ADT matches the data type of one ADT, then

that application can access the items of EADT of that specific

data type. The write permitted parameter contains names of all

the applications which are permitted to read and write into the

ADT of this application. These are the basic structure details

of every ADT. The ADT contains entries of all items in it and

the groups of items in it. Every address in the ABFS is of 32-

bit length giving 2^32 addresses available for addressing the

volume.

7. COMPARISON
As per our aim, we have made our best attempt to design a file

system which is sufficient and efficient for the computers of

this era and is better than other file systems currently used.

ABFS can allocate a file of maximum size 128TB whereas for

Ext4, NTFS and FAT it is just 16TB, 16TB and 4GB

respectively. The implementation of ABFS is easy as

compared to NTFS and Ext4. NTFS sorts the data according

to their sizes whereas in ABFS, the data is sorted according to

its size as well as according to its type and format. ABFS is

supposedly the only file system which can reduce the effects

of virus because of its secured structure which is not possible

in any other file system known up till now. It is a Journaling

file system but it also provides the No Journaling mode like in

Ext4 [7]. ABFS uses a new type of data storage structure

which we call as Application Data Tables. This structural

design of ABFS makes it more strong and resilient against any

attack still keeping it simple enough for the programmers and

developers simple enough to understand and implement.

All these features of ABFS compared with the other file

systems can be clearly seen in the following table.

Table 3. Comparison Table

Property FAT NTFS EXT4 ABFS

Maximum File

size
4 GB 16 TB 16 TB 128 TB

Implementation
Very

Simple
Simple Complicated Simple

Sorted Storage No Yes No
Highly

Sorted

Virus Protection No No No Yes

Journaling No Yes Yes Yes

No Journaling

Mode
No No Yes Yes

Reduced Seek

time
No Yes No Yes

Storage

Structure
Table

Sorted

Table
Tree

Application

Table

8. CONCLUSION AND FUTURE

SCOPE
The Application Based File system overcomes the basic

limitations faced by various file systems. It has no limitation

to maximum memory volume. ABFS gives better security

features with access levels and permission based control over

the file system. It provides a great solution for the problems of

virus and worms by limiting the access to just its group. No

redundant data is stored in the storage drive and the stored

data is automatically sorted. Lesser seek time for disk head

and increased response time for optimal results is another

advantage of ABFS. This file system is scalable and fault

tolerant. It is robust in nature. A file cannot be reached by an

application can be reached via another application using the

EADT access permission for same data types. No unwanted

data is displayed to the user. The system files are safely stored

in the system section of the index table.

High efficiency of data storage and retrieval is accompanied

in this file system. It achieves atomicity for each of its file

operations. Separate access permission for different users can

be easily granted. The applications have greater control over

the data stored in the file system.

This file system is highly effective for operating systems of all

kinds. All mobile operating systems, tablet computer

operating systems and laptop, desktop operating systems can

implement this file system. This file system is not useful for

external storage drives.

Hence, we have successfully designed a file system to

overcome the drawbacks of currently used file systems and

implement all the security features, efficient techniques of

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

30

data storage. We look forward to better future of this file

system for using it in the highly efficient operating systems.

The design of ABFS can be modified to suit several

situations, platforms and environments. It can be suitably

modified to work in all possible environments. There is yet

much development to be made in the design to make ABFS

suitable for networking. In the next phase of research, we

would implement the design of ABFS with more

improvements and advancements.

9. ACKNOWLEDGMENTS
We thank Prof. Sudeep Thepde for his guidance and help all

over the project for detailed study of file systems. His interest

towards the subject and good understanding capabilities

helped us to be more devoted to the subject and complete this

paper. We sincerely thank Dr. D J Shah for his supervision

and constant motivation to write this paper in more versatile

manner.

10. REFERENCES
[1] "Microsoft Extensible Firmware Initiative FAT32 File

System Specification, FAT: General Overview of On-

Disk Format". Microsoft. 2000-12-06.

[2] Silberschatz, Abraham; Galvin, Peter Baer; Gagne, Greg

(2004). "Storage Management". Operating System

Concepts (7th Ed.).

[3] "Single Instance Storage in Windows 2000". Microsoft

Research and Balder Technology Group. August 2000.

[4] "Model-Based Failure Analysis of Journaling File

Systems", Vijayan Prabhakaran, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau

[5] Jones, M Tim (2008-06-04), Anatomy of Linux

journaling file systems, IBM Developer Works, retrieved

2009-04-13

[6] Silberschatz, Galvin, Gagne. Operating System

Concepts, Sixth Edition. John Wiley & Sons, Inc.

[7] "The new ext4 filesystem: current status and future

plans", Avantika Mathur, Mingming Cao, Suparna

Bhattacharya, June 27th–30th, 2007, Ottawa, Ontario,

Canada

