
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

21

Comparative Analysis of Fault Tolerance Techniques in

Grid Environment

R.K.Bawa
Associate Professor

Punjabi University Patiala

Ramandeep Singh
Assistant Professor

Lovely Professional University
Jalandhar

ABSTRACT
Grid being a collection of heterogeneous resources connected

through network, to execute complex jobs with high

processing power requirements, is more vulnerable to faults.

Faults may affect the performance and QoS of Grid. Faults are

dealt with either avoiding them or recovering them by either

re-execution or by resuming the execution from the point of

failure by using the checkpoints. The various fault tolerance

techniques use resource management, job scheduling services

combined with checkpointing scheme. Different techniques

targets different kind of faults and have their respective

advantages and limitations. In this paper we have analyzed

various faults, fault tolerance approaches and techniques.

Finally different techniques have been evaluated based on

resource utilization, redundancy, execution time and

checkpointing overhead.

General Terms

Fault Tolerance, Resource management, Job Scheduling,

Checkpointing, Replication.

1. INTRODUCTION
Grid is a collection of heterogeneous resources in the form of

hardware e.g. CPU, memory, devices and software e.g. some

specific software applications owned by specific

organizations. All these resources are scattered geographically

and are connected via different types of networks. These

resources are used to execute those jobs in a distributed

environment which need a huge amount of computational

power. So Grid is actually an implementation of the

supercomputing concept in a distributed environment. The

various areas of application of Grid Computing are complex

scientific experiments, advanced modeling scenarios,

astronomical research, wide variety of simulations and

complex scientific & business modeling scenarios. Because a

large amount of resources are available on Grid so we assume

that the average response time will decrease and the overall

performance of the system will increase.

2. GRID FAULTS
“Grid is vulnerable to faults”

Being the collection of different types of resources,

heterogeneous platforms and different types of networks

chances of encountering a fault are very high as compared to

any other parallel execution [5] environment. Another reason

for the occurrence of faults in Grid environment is that the

jobs executed on Grid are very large means huge amount of

processing power and resources are required to execute these

jobs, few jobs e.g. scientific experiments may even take

weeks to execute. So more the time a job consumes while

executing, more are the chances of encountering a fault during

its execution. The lack of [2] centralized control in Grid is

also a reason for the faults. Broadly the faults in Grid

environment can be divided in the following categories [2]:

2.1 Hardware Faults
Hardware failures take place due to faulty hardware

components such as CPU, memory and faulty storage devices.

Hardware faults are very difficult to recover because the

solution is either the troubleshooting or the replacement of the

faulty part.

2.2 Application and OS faults:
Application and operating system faults are faced due to

exceptions or errors on the node which may be a result of any

DoS (Denial of Service attacks), viruses etc.

2.3 Network or Configuration Faults
The network faults may lead to a node failure due to loss of

connection, packet loss or the corruption of the data during

the transmission from one node to the other and it may lead to

the faulty or inconsistent results so it can affect the quality of

service requirement of the user.

2.4 Middleware Faults
Middleware is the interface between the user and the

resources on Grid and performs all the major tasks like

resource management, resource allocation, job scheduling and

fault tolerance etc. Any exceptions in the working of the

middleware may lead to faults in Grid.

2.5 Transient Faults
Transient faults are the faults which disappear itself

eventually without any significant intervention. Transient

faults are less severe but hard to diagnose and handle. It is

caused by temporary malfunction of some system component.
Some environmental interference also causes transient fault or

faults.

2.6 Timing and Interaction Faults
The jobs which require high amount of interaction between

different nodes while executing are affected by these kinds of

faults. The delay in messages may cause timeout situations

hence interrupting the execution.

According to the survey conducted among Grid users that

what kind and extent of faults they are encountering in the

usage of Grid [1]. The results are shown in figure 1. Any of

these faults may affect the execution of a job in either

delaying the completion of the job, totally failing the

execution of the job or not meeting the required QOS (quality

of service) requirements of the user. These kinds of faults

make Grid less reliable for executing the jobs with high QOS

requirements. Dealing with [1] these complex failure

scenarios is challenging. Detecting that something is wrong is

not so difficult (in general, symptoms are quickly identified),

but difficulties arise to identify the root cause of the problem,

i.e., to diagnose a failure in a very complex and heterogeneous

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

22

environment such as a computational Grid. In case of any

failure there are chances that the transparency provided by the

middleware will be compromised and the user will have to dig

deep into the middleware, operating system of the network

this is not an easy task for a human being.

0

20

40

60

80

Percentage of Faults

Configuration 75%

Middleware 48%

Application 43%

Hardware 34%

Figure 1.1: Types and Frequency of Faults in Grid

This is a major limitation of Grid. I.e. why fault tolerance is

the major area of research in the field of Grid computing now

days.

3. GRID FAULT TOLERANCE

TECHNIQUES
Fault tolerance techniques deal with faults which are

encountered in Grid. A particular fault tolerance technique

will have a particular area of application based on its design

and implementation. Because [6] Grid is a complex structure

and that is what makes it vulnerable to different kinds of

faults. There can be a situation in which more than one faults

can take place at the same time or one fault may lead to a

series of faults. Handling such a situation requires a

systematic approach and improved algorithms. The various

fault tolerance techniques used in Grid follow two basic

approaches:

(a) Prevention and Resistance
“Prevention is better than cure”

These techniques prevent the faults and resist any situation in

which it may have to face faults. These techniques use

protective measures while scheduling and executing the job to

avoid faults. The performance of Grid may be affected by the

overhead being caused by preventive measures.

(b) Detection and Recovery
These techniques are based on the concept of detecting faults

and recovering from the situation. The recovery may be in the

form of re-starting the job or resuming the execution of the

job from the point of failure.

R. Buyya [2] has divided the fault tolerance techniques in two

sub-parts i.e. Task Level and Work-Flow Level.

(I) Task Level (TL)

Task-level [2] techniques mask the effects of the execution

failure of tasks in the workflow. TL fault tolerance techniques

have the following sub-types:

(a) Retry technique is the simplest failure recovery technique,

as it simply tries to execute the same task on the same

resource again after failure.

(b)Alternate resource technique [2] submits failed task to

another resource which is available.

(c)Checkpoint/Restart technique moves failed tasks

transparently to other resources, so that the task can continue

its execution from the point of failure.

(d) Replication technique runs the same task simultaneously

on different Grid resources to ensure task execution provided

that at least one of the replicas does not fail to execute the job.

 (II) Work Flow Level (WFL) or Service level
Workflow-level [2] techniques manipulate the workflow

structure such as execution flow to deal with erroneous

conditions. Workflow level fault tolerance techniques have

the following sub-types:

(a)Alternate task technique executes another implementation

of a certain task if the previous one failed.

(b) Redundancy technique executes multiple alternative tasks

simultaneously.

(c) User-defined exception handling allows the users to

specify a special treatment for a certain failure of a task in

workflow.

(d) Rescue workflow technique developed in Condor

DAGMan system ignores the failed tasks and continues to

execute the remainder of the workflow until no more forward

progress can be made.

The FT techniques which are designed and implemented in a

Grid environment can be based on any of the approaches

discussed in TL and WFL. To improve the efficiency and

robustness of the system more than one approach can be

combined. The other issues which need to be considered while

designing any FT technique are as follows:

(a) Scalability is important because the resource structure in

GE (Grid Environment) is dynamic means resources are

removed and added into Grid from time to time.

(b) Performance is the basic motivation. The fault tolerance

technique should perform in both the conditions i.e. faulty and

fault free. The prevention and detection measures should not

affect the performance beyond an acceptable loss.

(c) Robustness is the capability to withstand the faults and

perform even in a condition with more than one type of faults

or a series of faults.

(d) Transparency and Compatibility is necessary because

different users should be able to use it irrespective of their

location and the resources or configuration. (As for as the

minimum requirements for use are satisfied)

(e) Consistency and Integrity should be maintained while not

compromising with the performance and efficiency of Grid.

According to the survey conducted by Raissa [1] among all

the FT techniques used 57% of it are Application Dependent

including the monitoring systems such as GMA [11] and

ReGS 12, 29% are based on checkpointing based and

14% based on some other techniques.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

23

4. FT TECHNIQUES –ANALYSIS &

DESIGN
The FT techniques mainly use two basic approaches which

are replication and checkpointing. Other than using these two

basic approaches individually, these may also be combined

with any other technique based on the QoS service

requirements.

4.1 Resource Management for Fault Tolerance
The resource management is process of keeping track of the

information about the resources so that it may be used for

supporting the other services e.g. job scheduling and fault

tolerance. In a GE the no. of available resources may vary

from time to time due any reasons like any fault or may be the

resource is has been withdrawn from Grid by the owner. The

information about a resource is stored in the form of various

parameters which describe a resource and may vary from one

resource management technique to another e.g.

 Type of Resource

 Performance

 Cost for Using the Resource

 Reliability

The FT techniques which are based on the resource

management are mainly concerned about the reliability factor

of the resource. The reliability of a resource is defined by its

capability to resist faults and completing the job within the

time and also providing the required QoS. So based in the

number of successful and unsuccessful execution performed

by a resource in past the reliability of a resource can be

calculated and also the probability of the occurrence of a fault.

This information is very important because it can be used

while deciding that which resources will be used for executing

the job. The user may select the resources with more

reliability and better performance based on the QoS

requirement. The more reliable resources can be used for

executing the jobs in real time. But the reliability and

performance will come at a price which would obviously be

higher than the resources with less reliability and

performance. The GIS (Grid Information Services) has access

to information about the resources. Many techniques have

been designed for fault tolerance using resource management.

One of these techniques is proposed by [3] which is based on

RFOH i.e. Resource Fault Occurrence History. This technique

keeps a track of the faults which have been encountered by a

particular resource and the total number of jobs submitted that

resource. This information is stored in the form of a table

FOHT (Fault Occurrence History Table).

The one limitation of this technique is that it is not designed to

deal with the situation when more than one user will try to

select the same resource for the execution of their jobs. This

approach can be refined by embedding load balancing to

prevent more reliable resources from getting overloaded. A

technique has been suggested by [9] which uses the GIS to

support the user with the decision making process of selecting

the resources for the execution of the job. This information

service can provide the result of the complex queries

submitted by the user from different perspectives.

4.2 Job Scheduling for Fault Tolerance
The job scheduling is a process of selecting the resources for

the execution of the job based on the user requirement and

then to start the execution of the job. The FT techniques based

on the scheduling uses different type of schedulers which can

meet the required QoS requirements of the user. The basic FT

approaches based on scheduling use the following methods.

 Replication or Redundancy

 Over Provisioning of Resources.

The replication is a process of running more than one replicas

of the same job. The process of replication assumes [10] that

any resource may face any type of faults so more than

required number of resources should be used for executing the

job. So that in case if few resources are not able to execute

their job we would still be able to get the results from the

other nodes or resources. Hence the job may not have to face

any delay for its completion. But there is one disadvantage of

this technique that it leads [13] to low resource utilization

because the resources are being used for performing a

redundant work and the cost for the execution of the job will

also increase. But the jobs which require a high QoS or real

time applications may use this approach.

Replication is very effective in executing those kinds of jobs

which require a high amount of interaction and message

passing between nodes executing the job. Because if these

nodes are not able to interact with each other due to any fault

then the execution cannot be completed and it may be delayed

or rescheduled due to timeout and it can lead to a chain

reaction as shown in the figure 2 below.

 Figure 2: Time out Faults

Replication based FT technique has been suggested in [4].

Grid resources which are compatible to their FT service,

register themselves with a UDDI repository. The co-

ordination services contact one or more UDDI registries in

order to determine the location and number of compatible

resources available. The fault tolerance service on nodes is

capable of receiving jobs, executing them, performing

checksum operations on them, and sending the jobs back. The

job is submitted and the FT service at each node generates the

checksum of the calculated result and broadcast the checksum

to the coordination service(s). The correct result is the result

sent by more than half of the nodes. After this a node with

correct checksum is selected and is requested for the complete

result. Other than low resource utilization the limitation of

this technique is that it uses the polling for deciding the

correct result and for poling it have to wait for certain number

of outputs form different nodes which adds to the total

execution time of the job. The other limitation is the network

traffic which is caused by the events like registry, job

submission by multicast, polling. The replication approach is

more effective if sufficient numbers of reliable resources are

available to perform replication.

Over provisioning of resources is another method which is

used for fault tolerance. More than the required number of

resources are assigned to a job before starting the execution of

the although not all the resources are used but kept as a

reserve in case if any of the nodes executing the job encounter

any fault. In case of the fault any resource from the allocated

resources will be used to reschedule the failed part of the job.

The advantage of this approach is that it provide better

availability of the resources but on the other hand other jobs

may have to wait for starting the execution due to lack of

available resources so over provisioning of resources also

leads to low resource utilization.

 S2 S1 S3

 Time out Time out Fail

S1

1
S2 S3

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

24

4.3 Combined Approach of Job Scheduling and

Checkpointing for Fault Tolerance
Combined approaches use all the advantages of individual

techniques and provide a better environment for dealing with

the faults. The problem with the scheduling FT techniques is

the absence of the recovery and resuming mechanisms which

can resume the execution of the job from the failed stage. So

the time and resources used to execute the job before the point

of failure will not be useless. The execution of the job can be

resumed using the checkpoints which are computed and stored

while the job is being executed. The checkpointing approach

is very effective while executing the jobs with a long

execution time e.g. scientific experiments and simulations

which may last for days, weeks or even months. So to recover

the processed part of such jobs is very beneficial from the

resource utilization and execution time point of view. The two

most widely used checkpointing techniques in Grid are:

4.3.1 Application Level Checkpointing
In this technique the checkpointing functionality is inserted in

the application code so that application should be able to store

and manage checkpoints itself. CPPC (Com Piler for Portable

Checkpointing) [4] is an application level checkpointing tool

focused on inserting checkpointing code into long running

message passing applications. It consists of a runtime library

containing checkpoint support routines, together with a

compiler that automates the use of the library. CPPC provides

all the features which are key issues for fault tolerance support

on large scale heterogeneous systems such as Grid. It uses

portable code and protocols, and generates portable

checkpoint files while avoiding traditional solutions which

have some scalability overhead.

4.3.2 System Level Checkpointing
This checkpointing is done at the level of the system

executing the job. The system level checkpoints save the

entire state of the system as well as the job). It requires more

data for saving the state than application checkpoints; this

means system can checkpoint any application at an arbitrary

point in its execution and allows programmers to be more

productive. System initiated checkpointing is better to save

the kernel level information and runtime policy whereas

application initiated provides more efficient and portable

checkpointing. Together [5] checkpointing are job replication

techniques can be used to achieve a more fault tolerant

environment than any of these individually. Replication will

run duplicate jobs and checkpointing will be used to store the

intermediate results. It will be an overhead to run duplicate

jobs and to manage their checkpoints but this cost can be bear

in case of high QoS requirements of the user. Yulan and

Yanhang [5] have implemented the same technique and found

out that it provides better results.

Checkpoint algorithms [8] may be classified into three broad

categories: (a) synchronous, (b) asynchronous and (c) quasi-

synchronous. In asynchronous check pointing each process

takes checkpoints independently. If all the processes take

checkpoints at the same time instant, the set of checkpoints

would be consistent. Since globally synchronized clocks are

very difficult to implement, processes may take checkpoints

within an interval. In synchronous check pointing process

synchronize through message passing interface before taking

checkpoints.

The efficiency and performance of any checkpointing FT

technique will be based on the following factors:

 Frequency of checkpoints effect the performance by

either increasing or decreasing the checkpointing

overhead because resources and time is consumed to

calculate the checkpoints and to store on the storage

media.

 Availability of the checkpoints effect the resuming time

of a failed process because it takes time to locate and

transfer the checkpoint data from the storage (which can

be a server or any node) to the node which is going to

execute the job after rescheduling the job. Another issue

with the storage of the checkpoints is that whether to

keep all the checkpoint data on a single node or more

than one as suggested by [5]. Considering the possibility

of the failure of the single node on which checkpoint data

is residing the checkpoints can be replicated on more

than one node to increase the availability and to avoid

any kind faults or errors which may be caused while

transmitting the data from one node to another.

 Checkpoint Size if a central site is being used to store the

checkpoints then the size of a single checkpoint can be a

problem because the storage space requirement will also

increase with that [8]. To deal with this issue the

checkpoint data can be compressed before storing or

transferring over the network and the older checkpoints

should be removed from the system when a latest

checkpoint has been generated.

To frequency and number of replicas of checkpoints can be

decided [5], according to QoS requirements or according to

the reliability of the resources which are going to be used for

the execution of the job, at the scheduling time of the job. But

the frequency of checkpoints is difficult to decide at the

scheduling level because different jobs may have different

stages of checkpoints so we cannot decide a fix frequency and

time of checkpoints for all the jobs. Every FT technique

which is designed or existing at present have a particular area

of application but there exists no technique which have

answer to all type of faults and problems of Grid.

These are the few existing fault tolerance techniques which

are being used at present to deal with the faults:

RFOH: A New Fault Tolerant Job Scheduler in Grid

Computing [3]

This technique is based on managing the resources to keep a

track of their failures. The resources with high rate of failure

are avoided while selecting the resources for executing the

job. They have also used the checkpointing to recover a job

after failure.

Fault Tolerance within a Grid Environment [4]

This technique is based on the replication. It assumes that

Grid is a collection of huge number of resources so to achieve

the required QoS more than required number of resources can

be used. They have proposed the method of voting to select

the correct output out of at least more than half outputs and

reduce the execution time of the job.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.1, March 2012

25

Achieving Fault Tolerance on Grids with the CPPC

Framework and GridWay Metascheduler [7]

This paper provides a complete and totally transparent

solution for the execution of fault-tolerant sequential and

parallel applications on Grids, CPPC are used together with

GridWay. The resulting architecture, called CPPC-GW, will

be in charge of submitting, monitoring, and automatically

restarting the execution in case of failure as well as of

generating, managing, and replicating checkpoint files.

A Fault Tolerance Optimal Neighbor Load Balancing

Algorithm for Grid Environment [8]

This technique is based on improving the fault tolerance of

Grid by using load balancing strategies along with the

checkpointing to migrate a task from one node to another and

resuming its execution from the point of failure. The goal of

this technique is to provide FT but also better resource

utilization.

5. COMPARISON
The above mentioned techniques have been compared on the

basis of resource utilization, checkpointing overhead caused

by the particular technique, processing cost which will be

based on the number and type of resources being used, and

load balancing functionality, replication and the total

execution time. The result is shown in table 1. The existence

or value of one parameter will affect the other dependent

parameter values e.g. replication may decrease the execution

time but it will increase the execution cost and decrease the

resource utilization due to the redundancy.

6. CONCLUSION
This paper provides the study of Grid faults, approaches and

techniques which are used for fault tolerance. The techniques

have been analyzed and compared based on different factors.

The fault tolerance services in Grid make Grid more reliable

and provide a better execution environment in terms of

execution time and QoS. The checkpointing approach can be

used to resume the execution of a failed job. The frequency

and availability of checkpoints plays a major role in the

efficiency of a fault tolerance technique. Replication

techniques can be used to execute the jobs with high QoS

requirements but it decreases the resource utilization but the

total execution time is reduced. Another important

functionality which all these techniques except one [8] are

missing is the capability to deal with high priority task means

preemption of the jobs and load balancing because this will

help to use Grid resources in more efficient way.

Table 1: Comparison of Fault Tolerance Techniques

Techniques

Parameters

 RFOH

[3]

FT in Grid

[4]

FT with

CPPC

[7]

FT with

LB

[8]

Resource

Utilization
HIGH LOW HIGH HIGH

Replication NA HIGH NA NA

Checkpointing

Overhead
LOW NA HIGH AVG

Execution

Time
AVG HIGH AVG LOW

Load

Balancing
NA NA NA YES

Processing

Cost
AVG HIGH AVG LOW

7. REFERENCES
[1] Raissa Medeiros, Walfredo Cirne, Faults in Grids: Why

are they so bad and What can be done about it?”,

Proceedings of the Fourth International Workshop on

Grid Computing 2003.

[2] Jia Yu , Rajkumar Buyya, “A Taxonomy of Workflow

Management Systems for Grid Computing “. Department

of CS and SE university of Melbourne, Australia.

[3] Leili Mohammad Khanli, Maryam Etminan Far, Amir

Masoud Rahmani, “RFOH: A New Fault Tolerant Job

Scheduler in Grid Computing” IEEE Second

International Conference on Computer Engineering and

Applications P 422-425 2010.

[4] Paul Townend, Jie Xu, “Fault Tolerance within a Grid

Environment” IEEE Second International Conference on

Computer Engineering and Applications 2009.

Department of Computer Science University of Durham.

[5] Yulan Yin, Yanhong Zhao, Fengna Dai, “Fault Tolerance

Scheduling in Economic Grids”. IEEE P 2252-2256

2011.

[6] Jesus Montes, Alberto Sanchez, Maria S. Perez

“Improving Grid fault tolerance by means of global

behavior modeling”, Ninth International Symposium on

Parallel and Distributed Computing P 101- 108 2010.

[7] Ivan Cores, Gabriel Rodrıguez, Maria J.Mart ın and

Patricia Gonzalez, “Achieving Fault Tolerance on Grids

with the CPPC Framework and GridWay

Metascheduler”.22nd International Symposium on

Computer Architecture and High Performance

Computing P 119 -126 2010.

[8] Jasma Balasangameshwara, Nedunchezhian Raju, “A

Fault Tolerance Optimal Neighbor Load Balancing

Algorithm for Grid Environment”, International IEEE

Conference on Computational Intelligence and

Communication Systems P 428 – 433 2010.

[9] Francisco Brasileiro, Lauro Beltrao Costa, Alisson

Andrade, Walfredo Cirne “A large scale fault-tolerant

Grid information service” MGC 06 November 27, 2006

Melbourne, Australia.

[10] Yongjian Wang, Zhongzhi Luan, Depei, DDGrid: A Grid

Computing Environment with Massive Concurrency and

Fault-tolerance Support. Proceedings of the IEEE

Seventh International Conference on Grid and

Cooperative Computing P 5-14 2008.

[11] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R.

Wolski, and M. Swany. A Grid Monitoring Architecture.

Working Document, January 2002.

[12] Y. Aridor, D. Lorenz, B. Rochwerger, B. Horn, and H.

Salem, “Reporting Grid Services (ReGS) Specification.”,

IBM Haifa Research Lab, January 2003.

[13] Congfeng Jiang, Cheng Wang, Xiaohu Liu, “Adaptive

Replication Based Security Aware and Fault Tolerant

Job Scheduling for Grids” Eighth ACIS International

conference on Artificial Intelligence and Parallel

distributed Computing IEEE 2009.

