
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.9, February 2012

30

Design of Dynamic Component Reuse and

Reusability Metrics Library for Reusable Software

Components in Context Level

V. Subedha

Research Scholar
Sathyabama University

Chennai, India

S. Sridhar
PhD, Research Supervisor

Sathyabama University
Chennai, India

ABSTRACT

Reusability is about building a library of frequently used

components based on the functional requirements of the

reuser. A well organized component reuse library is the key

for successful reusability in terms of economics benefits.

Reusability metrics is a set of guidelines to help reuser to

judge the quality of the component that is to be reused.

Reusability metric library is an essential ingredient of a

successful reuse in context level. In this paper, we outline

architecture for reusability driven methodology in context

level and we also design dynamic libraries for qualitative

analysis of the components. These libraries have to be

designed for reusing efficient and quality reusable software

components. Our approach for identifying and qualifying of

reusable software components is based on functional coverage

report, extraction time and reuse frequency of the component.

In this paper we describe some case studies to validate our

experimental approach. This architecture will be a base to

develop efficient searchable, reuser-friendly, useful and well

organized dynamic libraries. Component reuse percentage is

measured by the percentage of qualified components for

reuse. So, the proposed architecture and the dynamics libraries

can be used to improve the productivity and quality of

reusability.

Keywords

Reusable Software Components, Reusability, Reuse Metrics,

Extraction Time, Component Identification, Component

Qualification, Reuse libraries.

1. INTRODUCTION
Reuser in practice adopting many reuse approaches including

reuse in product lines, design pattern templates, reference

architectures, context independent components addresses

reuse in different ways and have also demonstrated benefits

[1]. Reusability of software components is a challenge in any

environment. The reusability of high quality software

components at an affordable cost and within in a limited time

scale is always desired by reuser [2].

A great deal of research over the past several years has been

devoted to the development of methodologies to create

reusable software components and component libraries, where

there is an additional cost involved to create a reusable

component from scratch. That additional cost could be

avoided by identifying and extracting reusable components

from the already existing environment. But the issue of how

to identify good reusable components from existing systems

has remained relatively unexplored [3].

Reuse libraries are the critical element of successful reuse

program. So reuser has to put more effort to develop and

maintain reuse libraries. Also in order to measure reuse

success, the library must collect and analyze considerable

data. Effective classification schemes are necessary to assist

the reuser in locating and comparing library components for

reusability. There is different reuser for whom a component

reuse library is necessary and each reuser have somewhat

different component reuse library based on their different

requirements. So the libraries are designed in a dynamic

manner according to the reuser requirements.

The aim of Software Metrics is to predict the quality of

software products. To ensure the quality of component we use

four primitive metrics and classify them according to their

quality. Then the qualified software components are stored in

the component reuse library for potential reuse. The

architecture which we proposed will help the reuser to

identify, extract and qualify reusable components. In our

libraries we adopt combination of metrics for classifying the

components into two parts.

The remainder of the paper is organized as follows : The next

section discusses the related work and existing solutions in

reusable software components. Section 3 briefly explains the

architecture of reusability in context level. Section 4 presents

the cases study using the proposed dynamic approach and

comparative analysis. The last section concludes the paper

and outlines the future work.

2. RELATED WORK
In recent years, there has been an increasing awareness of

reusability of the software components. In this scenario, a

critical issue is to identify, extract and qualify reusable

components. Therefore, finding a method to retrieve the

reusable components from existing environment represents an

important activity. In this section, we explain briefly about

existing metrics and models for qualifying the components for

reusability.

In [4], they presented a historical review of the reuse

concepts, and ontology based on reuse definitions and its

relation with quality assurance processes. Clarity and formal

specification of concepts play a key role in the inclusion of

reuse in the software development process, and in the

subsequent development of a corporate strategy. The

Systematic Reuse Approach uses a library for storage, control,

distribution and management of reusable software elements.

The most common proposed approach was to define metrics

to assess the reusability. In [5], a coupling and cohesion

metrics suite is presented to evaluate object-oriented software.

These metrics may be applied to assess reusability.

In [6], they proposed combined metrics to measure coupling

and cohesion to rank the reusability of the components.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.9, February 2012

31

Metrics are applied to three types of component to generate

the results. An assessment framework for reusability and

reusability attribute model for aspect oriented product line

components are proposed in [7].

Classification of the reusability of software components using

Support Vector Machine is presented in [8]. Also the

identification of reusable software modules in Procedure

Oriented System is based on software metrics like

Cyclometric complexity, Volume, Regularity, Coupling and

Reuse frequency.

In [9] they proposed the framework for evaluating reusability

of procedure oriented system using software metrics. The

proposed metrics for this framework are Cyclometric

complexity, Volume, Regularity, Coupling and Reuse

frequency.

The contribution of metrics to the overall objective of the

software quality is very well understood and recognized. But

how these metrics are collected and determining the

reusability degree of a software component is still in the

research stage. So, in this paper we collected the metrics like

functional coverage report, extraction time and reuse

frequency and based on the decision tree classifier the

software components is classified into two parts : Qualified

and Not Qualified for reusability.

3. ARCHITECTURE FOR

REUSABILITY IN CONTEXT LEVEL
In this section we first explain the phases involved in

Reusability of Software components based on the Functional

behavior in context level.

The reuse process can be divided into three phases

 Component Identification

 Component Extraction

 Component Qualification

Fig. 1 shows the segments of the architecture for reusability in

context level

Fig 1 : Architecture for reusability in context Level

3.1 Component identifier

The component identifier supports the reuser to identify the

candidate components based on the functional request queries.

This system stores the reusable candidates in the dynamic

reuse components library for processing in the remaining

phase. Indicators are used to identify the candidate

components based on keywords and coverage driven

functional verification method. Initially the component reuse

library will contain components with functional specification

as keywords. The indicator has two segments

 Indexing by Domains: To identify the components for

reusing the earliest and easiest method is indexing. The

reuser must formulate a keyword that matches the

functional requirements. The component identifier itself

compares with the indexes and returns the components

that match the Domain name.

 Coverage driven functional verification: Using the

functional specification the reuser generates, executes

and associates with component a set of test cases and

functional coverage report of the component is collected.

Three commonly used measures of coverage driven

functional verification are statement coverage, branch

coverage and logical path coverage. We use the

statement coverage and branch coverage to identify the

candidate component reuse. In [10] Fenton considers that

normally a developer will insist on 100% statement

coverage and high branch coverage of around 85%. So,

we identify the component to be reused if the coverage

report contains 100% statement coverage and 85%

branch coverage. The main important advantages of

coverage driven functional verification in reuse is to

identify the faulty component whose faulty behavior

matches the functional request of the reuser and this

component is also added to the component reuse library

dynamically. Since we are reusing the faulty components

the reusability level of the environment is improved

which yields to high potential benefits.

After identify the components in the environment the

component are added to the dynamic component reuse library

with the functionality and also component reuse metrics

library is created with the following attributes, distance of the

components from the current reuser, percentage of statement

coverage, branch coverage and reuse frequency of the

component. The component reuse library is centrally

controlled and managed and it is updated dynamically when

the component is identified for every reuser. But the

component reuse metrics library is created separately and

dynamically for each reuser and deleted after the task is

completed

3.2 Component extractor

After identifying the components for reuse the component

extractor find outs an optimal path for component extraction

and extraction time of each component which behaves as a

qualifier in qualification phase.

Optimal path : In this segment we get the optimal path just by

travelling to the nearest components from the current reuser

position. This optimal path helps us to calculate the extraction

time for each and every component. To find out the optimal

path and extraction time we use a method called Minimum

Extraction Time First (METF).

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.9, February 2012

32

Extraction time : The first component in the optimal path will

have the minimum extraction time and extraction time of the

component is used as a qualifier in qualification phase in

terms of speed. After calculating this attribute is added to the

dynamic reuse metrics library.

3.3 Component qualifier

The resuer associates each reusable component identified with

set of attributes for qualification in dynamic reuse metrics

library. The identified components are analyzed more

carefully in the context of functional coverage report,

minimum extraction time and reuse frequency to classify the

components into two parts: Qualified and Not Qualified. The

qualified set will yields the high quality and high potential

reuse components. We call this process as “Qualification”.

The component qualifier has three segments

Functional coverage report : The functional coverage report

consists of statement coverage and branch coverage. The cut-

offs for qualifying the component based on statement

coverage is 100% and the for branch coverage it is divided

into three level 85-90% as LOW, 90-95% as MEDIUM and

greater than 95% as HIGH.

Reuse Frequency : The reuse frequency is an indirect measure

of the functional usefulness of a component. We measure the

functional usefulness that frequently used system is a good

candidate for reuse in context level in similar domain. Hence

we choose the metrics reuse frequency as a qualifier for

classifying the components. Reuse frequency of each

component can be calculated using the equation (1).

n

i

Sin
n

Cn

1

)(
1

)(
 = Frequency Reuse (1)

where n(C) is total number of reference to the Component,

n(Si) is total number of reference for each Standard

Components in the existing environment & n is the total

number of component in the existing environment

Minimum Extraction time : The components having the

extraction time less than the average extraction time is

qualified for reuse. The reason for choosing the extraction

time as metrics is to speed up the process of reuse.

Component Reuse percentage measures how much

components are qualified for reused from identified set and it

is given as in equation (2)

%100*
)()(

)(
 = Percentage Reuse

NQnQn

Qn

 (2)

where n(Q) is the number of components qualified for reuse

and n(NQ) is the number of components not qualified for

reuse.

4. CASE STUDY AND ANALYSIS
In this section we describe experiments with proposed

architecture for identifying and qualifying the components

with our own test cases. Also the performance of dynamically

created libraries is compared with some existing component

reuse libraries in the literature. Some goals of the case studies

were

 Evaluate the concept of reusability from the existing

environment

 Study the application of the proposed architecture to the

existing environment for reusability

 Analyze the metrics used in the different phases of

reusability

 Classifying the set of component which is qualified for

reuse.

For experimental study Local Area Network Environment

with following specification where chosen:

 No. of Nodes=5000 i. e node 0 to node 4999 i. e

Distance[Cend]=4999

 Present reuser position is 1919 i. e distance

[Cst]=1919 th node

 Ci denotes the components in the Network

We performed the case study according the these constraints

 Making sure that all the necessary information are

available

 Computing the four metrics and measuring criteria

 Reuse the qualified components based on the

quality of the components

Initially the component reuse library will contain some set of

components with functionality of the component was indexed

by the domain keywords and will contain the reuse frequency

of that particular component. In the existing environment in

some node there may be faulty behavior components. The

reuser according to their functional specification they generate

the automatic test cases using some tool and based on

coverage analysis report a set of components are identified

and a dynamic metrics library is created for the particular

reuser with the characteristics in Table 1. The metrics used for

identification is statement coverage with 100% and branch

coverage with 85% and the distance of the components from

the current reuser position also maintained in the metrics

library. The reuse frequency is calculates using the equation

(1).

Table 1: Dynamic metrics library after identification

phase

Identified

Component

Distance

of Ci

Statement

Coverage

Branch

coverage

Reuse

frequency

C1 2496 100% 85% 1.36

C2 1285 100% 90% 0.30

C3 793 100% 85% 0.41

C4 2195 100% 95% 1.62

C5 86 100% 95% 0.68

C6 2693 100% 95% 1.09

C7 999 100% 90% 0.90

C8 1596 100% 85% 0.75

C9 2105 100% 95% 1.93

C10 121 100% 85% 1.78

In the component extraction phase the extraction time of each

component in the identified set is calculated using the

minimum Extraction Time First (METF) method. Also

average extraction time is calculated where this metrics will

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.9, February 2012

33

behave as a qualifier in the qualification phase in order to

speed up the reuse process. The optimal path for the

component extraction after qualifying is also decided in this

phase itself. Table 2 outlines the updated metrics library with

extraction time after extraction phase. The optimal extraction

path for the component extraction is shown in the fig. 2.

Average Extraction Time : 0.492

Optimal path : C9 C4 C1 C6 C8 C2C7 C3

C10 C5

Table 2: Dynamic metrics library after extraction

phase

Identified

Component

Statement

Coverage

Branch

coverage

Reuse

frequency

Extraction

time

C1 100% 85% 1.36 0.160

C2 100% 90% 0.30 0.606

C3 100% 85% 0.41 0.743

C4 100% 95% 1.62 0.077

C5 100% 95% 0.68 0.939

C6 100% 95% 1.09 0.215

C7 100% 90% 0.90 0.686

C8 100% 85% 0.75 0.520

C9 100% 95% 1.93 0.052

C10 100% 85% 1.78 0.929

The optimal extraction path for the component extraction is

shown in the fig. 2.

Fig 2 : Optimal path using METF

In the qualification phase the metrics are chosen for analyzing

the quality of the components and the qualifying criteria is

defined. If statement coverage is equal to 100% and branch

coverage is above 90% and if the reuse frequency is HIGH

and if the extraction time is less than the average extraction

time then the component is classified as Qualified or Not

Qualified. These analyses are done dynamically for each and

every request of the reuser.

Once component is qualified and reused then the dynamic

metrics library is deleted which is created for the particular

reuser. The data in the last column of the Table 3 is the status

of the component. If the component is reused by the reuser the

reuse frequency is calculated with eq. (1) and component

reuse library is updated with the reuse frequency value.

Table 3: Dynamic metrics library after qualification

phase

Identified Component Status

C1 Not Qualified

C2 Not Qualified

C3 Not Qualified

C4 Qualified

C5 Not Qualified

C6 Qualified

C7 Not Qualified

C8 Not Qualified

C9 Qualified

C10 Not Qualified

Accordingly, Table 3 presents the measurement data for high

reuse components and it shows that in general 25 to 35

percent of identified components for possible reuse. These

case studies show that reusable components have measurable

properties that can be used as a qualifier for the quality of the

components for reuse.

This study suggests the potential benefit of the components

reuse percentage is measured by the equation (2)

Component reuse percentage = 30%

Comparison of Identification Indicators for all the repositories

with our purpose architecture is listed in Table 4

Table 4 : Comparative analysis with the indicators

of existing reuse libraries

Component

Repositories

Identification by

Indicators

SALMS Keywords

ASRR Keywords

AIRS Facets Approach

RLT Keywords

DSRS Keywords

I-CASE Keywords

MORE Keywords

LID Keywords

DAL Keywords

CAPS Browsing with Keyword

DYNAMIC

COMPONET REUSE

LIBRARY

Indexed with Keywords and

Coverage driven Functional

Verification Method

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.9, February 2012

34

5. CONCLUSION

It is always a challenge for the reuser to find out a quality

component for reuse. This paper focuses and proposes

architecture for component reusability in context level. The

fundamental motivation of the proposed architecture and

dynamic libraries is to reduce the effort spent by the reuser to

qualify the component candidates for reuse. The basic premise

assumed by this approach is that reusable components have

certain quality attributes like functional usefulness, extraction

time, and reuse frequency. We foresee three major

developments in this architecture.

 Supporting Component identification both by Keyword

Queries and by Functional Specification.

 The keyword Query is the basic method where the

identification is done by indexing the component reuse

libraries.

 The proposed method coverage driven functional

verification is used to identify the component based on

functional behaviour and this method increases the reuse

level by reusing not only the component repositories but

also the faulty components which match the functional

specification of the reuse.

The metrics library is a dynamic object where reusers can

retrieve the measures on the time of reusability according to

their specification. The component reuse library is also

dynamic where components can be identified by indexing the

keyword and by coverage driven functional verification.

However, more research work needs to be done to develop

perfect test cases to improve the component reuse. The future

research efforts will be dedicated to come out with a perfect

coverage report. We also need to broaden our analysis to

different environments for broader verification of our

proposed architecture. This architecture can be applied for

service oriented architecture and cloud services.

6. REFERENCES
[1] Richard W. Selby, “Enabling Reuse-Based Software

Development of Large-Scale Systems,” IEEE

Transaction of Software Engineering, Vol. 31, No. 6, PP.

495-510, Jun 2005

[2] Fazal-e-amin, Ahmad Kamil Mahmood and Alan Oxley,

“A Review of Software Component reusability

Assessment Approaches”, Research Journal of

Information Technology, pp. Vol. 3, 1-11, 2011

[3] Parvinder Singh Sandhu and Hardeep Singh, “Automatic

Reusability Appraisal of Software Components using

Neuro-Fuzzy Approach”, International Journal Of

Information Technology, vol. 3, no. 3, pp. 209-214, 2006

[4] Matteo Gaeta, Francesco Orciuoli, Stefano Paolozzi, and

Saverio Salernol, “Ontology Extraction for Knowledge

Reuse: The e-Learning Perspective “, IEEE Transactions

on Systems, Man and Cybernetics, Vol. 41, No. 4, pp.

789-809 Jul 2011.

[5] Husein. S and A. Oxley, “A Coupling and Cohesion

Metrics suite for Object-Oriented Software”, Proceedings

of International Conference on Computer Technology

and Development, Malaysia, pp.421-425, Nov 2009

[6] Gui G and Paul D. Scott, “Measuring Software

Component Reusability by Coupling and Cohesion

Metrics”, Journal of Computers, Vol 4, No 9, 797-805,

Sep 2009

[7] Fazal-e-amin, Ahmad Kamil Mahmood and Alan Oxley,

“A Reusability attribute model for aspect oriented

software product line core assests.” Proceedings of the

International Symposium on Information Technology,

Malaysia, pp.1138-1141, Jun 2010.

[8] Ajay Kumar, “Measuring Software Reusability using

SVM based Classifier Approach”, International Journal

of Information Technology and Knowledge

Management.”, Vol. 5, No. 1, pp.205-209, Jan 2012

[9] Sonia Manhas, Rajeev Vashisht and Reeta Bharrdwaj,

“Framework for Evaluating Reusability of Procedure

Oriented System using Metrics Based Approach “,

International Journal of Computer Applications (0975 –

8887), Vol 9, No.10, Nov 2010.

[10] Norman E Fenton and Martin Neil, “Software Metrics:

Successes, Failures and New Directions”, Journal of

Systems and Software, Nov 1998.

