
International Journal of Computer Applications (0975 – 8887)
Volume 40 – No.7, February 2012

DRω
π F : A Fault Tolerant Distributed Routing Calculi

Manish Gaur Rama Kant
Institute of Engg. & Tech. Anand Engg. college
Sitapur Road,Lucknow Keetham, Agra
manish.gaur@ietlucknow.ac.in baghel_kant@rediffmail.com

ABSTRACT

We design a new language DRω
π F in which we extend

the language DRω
π to handle node failure during com-

munication. We have extended the reduction seman-
tics of DRω

π . For handling the node failure we describe
two tables at router: One is routing table contains name
mapping for forward travel of messages and other is a
database of all active nodes at any router. Further we
discuss the new node creation and failed node activa-
tion during communication. We show how the entries
of routing tables are updated using backward learning
updates. We explain the usefulness and working of our
reduction semantics by taking one example.

General Terms
Pi Calculus, Formal Methods, Routing
Keywords
Routing calculi,node failure,Fault Tolerance

1 INTRODUCTION
Nowadays interactive systems permeate our everyday
life such as online shopping, online banking, social net-
working sites, ATM machines etc. We are so advanced
technologically to meet these requirements but design
principles and techniques for assuring their correct
behaviour are at much more primitive stage. There
are many approaches used to meet these requirements.
One of them is developing a Formal Calculi in which
the fundamental concepts of underlying interactive
systems can be described and studied. There are
many earlier developments describing the abstract
behaviour of systems such as CCS [14, 13, 12] and
Pi-Calculus[14, 13, 12].

Asynchronous Pi-Calculus [8] is one such calculi de-
scribing the evolution and behaviour of a asynchronous

communication system. In this language, values can be
exchanged between concurrent processes via communi-
cation channels. Communication channels can be used
to model resources and the syntax allows them to be
declared as private, for the exclusive shared use of spe-
cific processes. The names of these channels/resources
can also be transmitted between processes. The other
developments are Distributed Pi-Calculus [8] and
routing calculi ,DRω

π [5] and DRπ [6]. Many other vari-
ous developments are discussed in [7, 17, 9, 16, 15, 11].

The routing calculi ,DRω
π [5] and DRπ [6], are

developed with the intention of modeling a distributed
network to demonstrate the cost of communication
between the communicating processes. The cost of
communication is the number of hops (router) a value
propagating message crosses before delivering it to the
destination in a network of routers. In fact the value
propagating messages used in these models closely
resemble the IP packet in TCP/IP [1, 2, 10, 18, 19]
model of networks. However ,the names (addresses)
of source and destination nodes and data in messages
are used unlike real IP packets where lots of other
information is contained in it. The crucial role of
routers in determining the quality of communication
services in a distributed network is demonstrated in
both the calculi.The difference between DRπ [6] and
DRω

π [5] is that DRω
π [5] uses backward learning update

of routing tables while DRπ [6] uses flooding for update
routing tables.

In this short paper we show how the reduction
semantics which are developed for DRω

π F works under
distributed systems with node failure. we describe a
language which consists of a network of routers where
routers connectivity is fixed . The processes reside in a
located site called nodes. Nodes are directly connected

1

mailto:manish.gaur@ietlucknow.ac.in
mailto:baghel_kant@rediffmail.com

International Journal of Computer Applications (0975 – 8887)
Volume 40 – No.7, February 2012

S,T::= Systems

⟨ R⟩ J M K Router
S ∣ T Concurrency
[R]Mk

sg(n,m,v@c) Messages
(new d)M New Name
ε Identity

M,N::= Nodes

n[T] Named Processes
M ∣ N Concurrency
(new d)M New Name
0 Identity

T,U::= Process Terms

c?(x)T Input
m!⟨ v@c ⟩ Output
if u = v then T else U Matching
(new b)T Channel Name creation
newnode m with P in Q New Node creation
T ∣ U Concurrency
*T Repetition
stop Identity

Figure 1: Syntax for DRω
π F

to some specific router and any two processes at nodes
can communicate via the routers. Nodes may fail dur-
ing communication between processes. A considerable
amount of work has been done along the line in [4, 3].

We discuss syntax,structural equivalence and reduc-
tion semantics in section 2. We also discuss one ex-
ample to show the application of reduction semantics in
section 3.

(S-SCOPE-EXTRUSION) (new d)(P∣ Q) ≡ P ∣ (new d) Q,
if d ∉ fn(P)

(S-MONOID-COM) P ∣ Q ≡ Q∣ P
(S-MONOID-ASSOC) (P ∣ Q) ∣ R ≡ P ∣ (Q ∣ R)
(S-MONOID-ID) P ∣ id ≡ P
(S-NEW-FLIP) (new c) (new d) P ≡ (new d) (new c) P
(S-NEW) (new d) P ≡ P , if d ∉ fn(P)
(S-NEW-ID) (new d) id ≡ id

Figure 2: Structural Equivalence (Standard) for DRω
π F

(S-P-STANDARD) standard axioms
(S-P-UNWIND) *P ≡ P∣ *P

Figure 3: Structural Equivalence (Processes) for DRω
π F

2 DRω
π F: A FAULT TOLERANT

DISTRIBUTED ROUTING
CALCULI

2.1 Syntax
The syntax of the language DRω

π F is given in Figure 1.
We will use v, v1, v2, u, u1, u2 . . . to describe values
which may be a name or a variable or a simple value.
For simplicity in the language we don’t use tuples as
values. Therefore v, u, . . . are singleton names or
simple values i.e. integers, boolean etc. We use meta
variables a, b, c, . . . to range over sets of channel
names CN or node names NN. In the description of the
language n,m, . . . are used to range over set of node
names NN and we use R,R1,R2, . . . to range set of
router names RN. The variables k, l, . . . range over
set of integers to represent the cost of communication.
Further, we assume that sets of channel names, node
names and router names are disjoint from each other.
More formally

RN ∩ NN ∩ CN = φ

There are three syntactic categories in the language.
These are Systems, Nodes and Processes.

2.2 Structural Equivalence
The concepts of structural equivalence in DRω

π F, where
two terms are said to be structurally equivalent if they
are same computational entity. For example , the
terms ⟨ R ⟩ J M ∣ N K and ⟨ R ⟩ J N ∣ M K intuitively
represent the same systems where the nodes M and N
at router R are running in parallel; the order of their

2

International Journal of Computer Applications (0975 – 8887)
Volume 40 – No.7, February 2012

(S-P-STANDARD) standard axioms
(S-N-STOP) m[stop] ≡ 0

(S-N-INHERITANCE)
P ≡ Q

m[P] ≡ m[Q]
(S-N-EXTR) m[(new d)P] ≡ (new d)m[P], if d≠ m

Figure 4: Structural Equivalence (Nodes) for DRω
π F

(S-SY-STANDARD) standard axioms

(S-SY-INHERITANCE)
N ≡ S

⟨R⟩JNK ≡ ⟨R⟩JSK
(S-SY-EXTR) (new d)⟨ R⟩ J N K ≡ ⟨ R ⟩ J (new d)MK

,if d≠ R

Figure 5: Structural Equivalence (Systems) for DRω
π F

composition really does not matter. Similarly in the
systems ⟨ R ⟩ J m[P ∣ Q]K and ⟨ R ⟩ J m[Q ∣ P]K the
order of composition of processes running at node m at
router R is not important and they represent the same
system as well. However, it is very important to note
that in DRω

π F , α -conversion is only applied to the
channel names of processes and not to the node and
system names. The names of routers and nodes are
fixed and disjoint. They can not be renamed or altered
at any stage.

The axioms which are specific to process, nodes and
system equivalence are stated in Figure 2, Figure 4
and Figure 5 respectively. There are certain axioms of
structural equivalence which are standard and applica-
ble to all syntactic categories so they are separated and
described in Figure 2. In Figure 2, the terms used as
P, Q, R can be a process term, node or system. Only
terms in the same syntactic category can have structural
equivalence.

Therefore for example in Figure 2 when using the
axiom (S-MONOID-COM) we say that P ∣ Q ≡ Q ∣ P
then we mean that this axiom can be applied when P
and Q both are any one of system terms, node terms
or process terms. The term used as id refers to the
respective identity elements in each syntactic category.
The identity for system, node and process is ε , 0 and
stop respectively.

2.3 Reduction Semantics

To handle node failure routers maintain two tables: a
routing table, ⟨ Rt⟩ , consists of a mapping for each
node name to some adjacent router which is on the

(R-OUT-NF)

⟨Ra⟩[n] ↓
Γc▷ ⟨R⟩Jn[m!⟨v@c⟩ ∣ P] ∣ NKÐ→
Γc▷ [R]M0

sg(n,m,v@c) ∣ ⟨R⟩Jn[P] ∣ NK

(R-MSG-FWD-NF-I)
(R1,R2) ∈ Γc
⟨Rt

1⟩(m) = R2
⟨Rt

2⟩(v) ↑, i f v ∈NodeName

Γc▷ [R1]Mk
sg(n,m,v@c) ∣ ⟨R2⟩JNK ∣ SÐ→

Γc▷ [R2]Mk+1
sg (n,m,v@c) ∣ ⟨Rt

2{m→ R1}
+⟩JNK ∣ S

(R-MSG-FWD-NF-II)
(R1,R2) ∈ Γc
⟨Rt

1⟩(m) = R2
⟨Rt

2⟩(v) ↓, i f v ∈NodeName

Γc▷ [R1]Mk
sg(n,m,v@c) ∣ ⟨R2⟩JNK ∣ SÐ→

Γc▷ [R2]Mk+1
sg (n,m,v@c) ∣ ⟨R2⟩JNK ∣ S

(R-IN-NF-I)
⟨Ra⟩[m] ↓

⟨Rt⟩(m) = R
Γc▷ [R]Mk

sg(n,m,v@c) ∣ ⟨R⟩Jm[c?(x)P ∣ Q] ∣ NKÐ→k

Γc▷ ⟨R⟩Jm[P{v/x} ∣ Q] ∣ NK

(R-IN-NF-II)
⟨Ra⟩[m] ↑

⟨Rt⟩(m) = R
Γc▷ [R]Mk

sg(n,m,v@c) ∣ ⟨R⟩Jm[P] ∣ NK ∣ SÐ→
Γc▷ ⟨Rt{m→ R}−,Ra{m}−⟩JNK ∣ S

(R-NEWNODE-CREATION-ACTIVATION)
Γc ▷ ⟨ R⟩ J n[newnode m with P in Q]K Ð→
Γc ▷ (new m) (⟨Rt{m→ R}+,Ra{m}+⟩ J n[Q]∣ m[P]K)
(R-MATCH)
Γc ▷ ⟨ R⟩ J n[if v=v then P else Q]KÐ→ Γc ▷ ⟨ R⟩ J n[P]K

(R-MISMATCH)
Γc ▷ ⟨ R⟩ J n[if v1=v2 then P else Q]KÐ→
Γc ▷ ⟨ R⟩ J n[Q]K , v1 ≠ v2

(R-STRUCT)
S ≡ S′,Γc▷S′ Ð→k

Γc▷R′,R′ ≡ R
Γc▷SÐ→k Γc▷R

(R-CONTX)
Γc▷S1 Ð→

k
Γc▷S′1

Γc▷S1 ∣ S2 Ð→
k

Γc▷S′1 ∣ S2

Γc▷S2 ∣ S1 Ð→
k

Γc▷S2 ∣ S′1
Γc▷(new k)S1 Ð→

k
Γc▷(new k)S′1

Figure 6: Reduction Semantics for DRω
π F

3

International Journal of Computer Applications (0975 – 8887)
Volume 40 – No.7, February 2012

path of the destination node and a active node table ,
⟨ Ra⟩ , maintains the set of active node at router R in
a system. In DRω

π F we will represent the combination
of routing table, ⟨ Rt⟩ and active node table,⟨ Ra⟩ by
router table, ⟨ R⟩ as needed. The status of a node is
detected automatically at home router i.e. node is failed
or get activated.

On detection of the node failure, the router handles
the node failure with the help of these tables. Suppose a
node m fails at router R then two actions are performed
at router R: First node m is deleted from active node
table ⟨ Ra⟩ ; this is formally represented as ⟨ Ra{m}−⟩

and second entry ⟨ Rt⟩ (m)=R is deleted from ⟨ Rt⟩

; this is formally represented as ⟨ Rt{m → R}−⟩ . In
another words the node m is deleted from router R
which is the result of these two atomic actions.

Upon creation of new nodes (or activation of failed
node) , we describe the method of updating the routing
table ⟨ Rt⟩ and active node table ⟨ Ra⟩ of home router.
The routing table of other router which either use this
new node name (or recently activated node name) in
the propagating messages or/and delivery of values will
be updated. This method is called backward learning
update.

The entries of the routing table, ⟨ Rt⟩ , and the
active node table,⟨ Ra⟩ , are very much dependent on
router connectivity and node failure. Therefore we
define a configuration, consisting of router network
where routers are capable to handle the node failure and
a system, over which the reduction semantics is defined.

Therefore the reduction semantics of the systems is
described with respect to the router connectivity and
node status. It is defined as a binary relation between
constructs called configurations. A configuration is
defined in terms of network of routers where routers
are capable to deal with node failure and a system.
The network of routers Γc is basically a binary relation
between the router names. The configuration Γc ▷ S is
taken from [6] and restated here as:

Configuration: 2.1 A configuration consists of a pair
(Γc , S) where Γc ⊆ RN × RN, the network of routers
connectivity, and RN is the set of router names in any
system S. The undirected graph (RN, Γc) is connected.

Notation: 2.1 In a router connectivity Γc, for routers
Ri,Ri+1, . . . , Rk−1,Rk,

Ri ↝ Ri+1↝ . . . ↝ Rk−1↝ Rk
means {(Ri,Ri+1), . . . , (Rk−1,Rk)} ∈ Γc. We shall use
the notation p(Ri,Rk) to represent a path of routers, Ri
↝ . . . ↝ Rk between pair of routers Ri and Rk.

Further in DRω
π F, for the purpose of determining the

path between the communicating processes on node
failure it is required that each router maintains two
tables: a routing table which is represented by ⟨ Rt⟩ and
a active node table which is represented by ⟨ Ra⟩ . We
can represent router table , ⟨ R⟩ , as the combination
of routing table, ⟨ Rt⟩ and a active node table, ⟨ Ra⟩ .
Before we formally define the routing table we shall
describe the notation used for adjacent routers. We
use the notation Adj(R) to represent the set of adjacent
routers of R in Γc. It is defined as:

Adj(R) = {R′ ∣ (R,R′) ∈ Γc}

Now formally, the router table, ⟨ R⟩ , is defined as
follows:

Definition: 2.1 In a configuration Γc ▷ ⟨ R⟩ J N K ∣ S,
the named router table ⟨ R⟩ is the combination of two
tables: one is routing table, ⟨ Rt⟩ and second is active
node table, ⟨ Ra⟩ . At some router R, following two
functions have been performed :

1. routing table, ⟨ Rt⟩ performs the function, f: NN→
RN , from the set of node names, NN, to the set of
adjacent router names, RN. Formally expressed as
⟨ Rt

i⟩ (r) = R j, (Ri ,R j) ∈ Γc.

2. active node table, ⟨ Ra⟩ performs the boolean
function, fb: M → {T,F}, where M is the set
of node names such that m ∈ NN and present
at R ; which returns T if node is active at
router R(i.e. node is present in active node
table ⟨ Ra⟩); this is formally represented as ⟨

Ra⟩ [m]↓ or returns F if node is not active at
router R (i.e. node is absent in active node table
⟨ Ra⟩) ; this is formally represented as ⟨ Ra⟩ [m]↑ .

The function f can be many-to-one as many node
names may have the same adjacent router on the path

4

International Journal of Computer Applications (0975 – 8887)
Volume 40 – No.7, February 2012

towards the destination. But each destination node will
have only one choice of adjacent router.
If a node name m belongs to the domain of the routing
table ⟨ Rt⟩ then we use the notation ⟨ Rt⟩ (m)↓ .
Similarly if the node name m does not belong to the
domain of the routing table ⟨ Rt⟩ then we use the
notation ⟨ Rt⟩ (m) ↑ .

3 EXAMPLE
Now we will take an example to demonstrate the new
node creation and message forwarding in DRω

π F. We
will also demonstrate that how this new node name is
propagated across the network and various routing ta-
ble and active node tables entries are updated by this
new node name using backward learning updates. This
example also considers the cases of node failures and
its semantic handling in the calculi.

Example: 1 Let us take a configuration Γc ▷ S1 ∣ S2 ∣

S3∣ S4 where Γc = (R1,R2), (R2,R3), (R3,R1) as shown
in the Figure 7. S1, S2 and S3 are defined as follows:
S1 ≡ ⟨ R1⟩ J n[new node r with P in Q] K
S2 ≡ ⟨ R2⟩ J N2 K
S3 ≡ ⟨ R3⟩ J m[M] K
S4 ≡ ⟨ R4⟩ J J o[c?(x)R] K

where P≡ o!⟨ r@c⟩ ∣ Q′.
The routers connectivity Γc is defined as

{(R1,R2),(R1,R3),(R1,R4),(R2,R5),(R3,R5),(R4,R5)}
In this example a process at node n at router R1
creates a new node r and this new node is exported by
another process running at same node to a process at
distant node o at router R4. We shall see how various
routing tables are updated about this new node using
backward learning approach. With an application of
the rule (R-NEWNODE -CREATION-ACTIVATION) in
Figure 6 the configuration Γc ▷ S1 ∣ S2 ∣ S3∣ S4 can do
a reduction to

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[P]∣ n[Q]K) ∣

S2 ∣ S3 ∣ S4

where a new node r has been created at router
R1 with process P in it. The routing table Rt

1 and
active node table Ra

1 are also updated with the entries
{r → R1}

+ and {r}+ respectively because R1 is the
home for node r. Also note that no other router in Γc

know about new node r.

Now the process P ≡ o!⟨ r@c ⟩ ∣ Q′ at node r exports
a value r which is a node name to another process
at node o at router R4. For convenience of writing
terms we replace definitions of S1, S2 . . . where ever
necessary because we know by the rule (R-STRUCT)
that reductions are defined upto structural equivalence.
Also we will use various axioms of structural equiv-
alence in Figure 2, Figure 3, Figure 4 and Figure 5
to express the terms upto structural equivalence but
don’t explicitly mention them. An application of
rule (R-OUT-NF) and (R-CONTX) will reduce the
configuration

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[o!⟨ r@c ⟩ ∣

Q′]∣ n[Q]K) ∣ S2 ∣ S3 ∣ S4

to

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R1]M0
sg(r, o, r@c)) ∣ S2 ∣ S3 ∣ S4

Now the message [R1]M0
sg(r, o, r@c) hops towards

destination o for delivering the value. Suppose ⟨ Rt
1⟩

(o) = R2. We know that (R1,R2) ∈ Γc. Since r is a
new node therefore ⟨ Rt

2⟩ (r)↑ is true, therefore with
an application of rule (R-MSG - FWD-NF - I) and
(R-CONTX) the message [R1]M0

sg(r, o, r@c) hops at
R2. So the configuration

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R1]M0
sg(r, o, r@c))∣ S2 ∣ S3 ∣ S4

reduces to

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R2]M0+1
sg (r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+⟩ J N2 K)∣ S3 ∣ S4

Note that the routing table ⟨ Rt
2 ⟩ is updated with a

new entry {r → R1}
+ because the message carrying r

has hoped from R1 and ⟨ R1 ⟩ (r)↓ . The cost of this
reduction is 0. Further suppose ⟨ Rt

2 ⟩ (o) = R3 and
message [R2]M1

sg(r, o, r@c) is propagated to R3. Since
⟨ Rt

3 ⟩ (r)↑ and (R2,R3) ∈ Γc therefore again using
the rule (R-MSG-FWD- NF-I) and (R-CONTX) the
configuration

5

International Journal of Computer Applications (0975 – 8887)
Volume 40 – No.7, February 2012

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R2]M0+1
sg (r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+⟩ J N2 K) ∣ S3 ∣ S4

is reduced to

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R3]M2
sg(r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+⟩ J N2 K ∣ ⟨ Rt

3
{r→ R2}

+⟩ J m[M] K)∣ S4

Note that the routing table ⟨ Rt
3 ⟩ is updated with

{r→ R2}
+ because the message [R3]M2

sg(r, o, r@c) has
hoped from R2 and ⟨ Rt

2 ⟩ (r)↓ . Further suppose ⟨ Rt
3 ⟩

(o) = R4 and message [R3]M2
sg(r, o, r@c) is propagated

to R4. Since ⟨ Rt
4 ⟩ (r)↑ and (R3,R4) ∈ Γc therefore again

using the rule (R-MSG-FWD- NF-I) and (R-CONTX)
the configuration

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R3]M2
sg(r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+⟩ J N2 K ∣ ⟨ Rt

3
{r→ R2}

+⟩ J m[M] K)∣ S4

is reduced to

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R4]M3
sg(r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+⟩ J N2 K ∣ ⟨ Rt

3
{r→ R1}

+⟩ J m[M] K ∣ ⟨ Rt
4 {r→ R3}

+ ⟩ J o[c?(x)R] K)

Note that the routing table ⟨ Rt
4 ⟩ is updated with

{r → R3}
+ because the message [R4]M3

sg(r, o, r@c)
has hoped from R3 and ⟨ Rt

3 ⟩ (r)↓ . The cost of this
reduction is 3. Before proceeding further it is worth
noting that routers R2 ,R3 and R4 are updated with
relevant entries about the new node r in the process
of delivery of the value r from a process at source
node r at R1 to a waiting process at node o at R4. All
the routers in path of communication between R1 and
R4 are updated. But if there are many other routers
then they don’t know about the new node name. They
will not know about the new node name until it is
propagated along any path. This method of routing
table update is known as backward learning.

Because ⟨ Rt
4 ⟩ (o) = R4, now there are two cases:-

Case 1: if active node table, ⟨ Ra
4⟩ , function fb

returns T i.e. node o is active at router R4 i.e ⟨ Ra
4⟩ [o]↓

.
Case 2: if if active node table, ⟨ Ra

4⟩ , function fb

R4

o

R2

R3

m

R1

n

r

new node r

Figure 7: A Distributed Network of Routers

returns F i.e. node o is not active at router R4 i.e ⟨ Ra
4⟩

[o]↑ .

In case 1 the node o is active at router R4, so the
value r is delivered to the waiting process at o using
the rule (R-IN-NF-I). Therefore the configuration

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R4]M3
sg(r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+⟩ J N2 K ∣ ⟨ Rt

3
{r→ R1}

+ ⟩ J m[M] K ∣ ⟨ Rt
4 {r→ R3}

+ ⟩ J o[c?(x)R] K)

reduces to

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R4]M3
sg(r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+ ⟩ J N2 K ∣ ⟨ Rt

3
{r→ R1}

+ ⟩ J m[M] K ∣ ⟨ Rt
4 {r→ R3}

+ ⟩ J o[R{r/x}] K)

In case 2 the node o is not active at router R4, so
using (R-IN-NF-II) the value r in the message is not
delivered at channel c. Now with an application of the
rule (R-IN-NF-II) the configuration

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

[R4]M3
sg(r, o, r@c) ∣ ⟨ Rt

2 {r→ R1}
+ ⟩ J N2 K ∣ ⟨ Rt

3
{r→ R1}

+ ⟩ J m[M] K ∣ ⟨ Rt
4 {r→ R3}

+ ⟩ J o[c?(x)R] K)

reduces to

6

International Journal of Computer Applications (0975 – 8887)
Volume 40 – No.7, February 2012

Γc ▷ (new r)(⟨ Rt
1 {r→ R1}

+,Ra
1{r}+⟩ J r[Q′] ∣ n[Q]K ∣

⟨ Rt
2 {r→ R1}

+ ⟩ J N2 K ∣ ⟨ Rt
3 {r→ R1}

+ ⟩ J m[M] K ∣ ⟨

Rt
4{o→ R4}

−,Ra
4{o}−⟩ J K)

Note the updated entries at routers R1,R2,R3 and R4
as a result of these reductions. With this example we
complete the discussion of reduction semantics.

4 CONCLUSION
In this paper we have discussed a new language DRω

π F.
In DRω

π F we have extended the language DRω
π [5] to

handle node failure during communication. At the
primitive level we have discussed only syntax and se-
mantics of the calculi. DRω

π F contains only semantic
extension of DRω

π [5], therefore the proof systems of
equivalence between specification and its implementa-
tion should directly apply to DRω

π F as well. We fur-
ther propose to work towards wellformedness and name
forms full abstraction proof the calculi.

REFERENCES
[1] Andrew T. Campbell and S. Keshav. Quality of

service in distributed systems. Computer Commu-
nications, pages 21(4):291–293, 1998.

[2] editor Douglas Comer. Internetworking with
TCP/IP - Principles, Protocols, and Architec-
tures,. Prentice-Hall, fourth edition, 2000.

[3] Adrian Francalanza and Matthew Hennessy. A
theory of system behaviour in the presence of
node and link failures. In CONCUR, pages 368–
382, 2005.

[4] Adrian Francalanza and Matthew Hennessy. A
theory of system behaviour in the presence of
node and link failure. Inf. Comput., pages
206(6):711–759, 2008.

[5] Manish Gaur. A routing calculus for distributed
computing. In Elena Troubitsyna, editor, Pro-
ceedings of Doctoral Symposium held in conjunc-
tion with Formal Methods 2008,Turku Centre for
Computer Science General Publication, 48:23–
32., May 2008.

[6] Manish Gaur. A Routing Calculus: Towards for-
malising the cost of computation in a distributed

computer network. Phd, Informatics, University
of Sussex, U.K., December 2008.

[7] Manish Gaur and Matthew Hennessy. . count-
ing the cost in the picalculus (extended abstract).
Electronic Notes in Theoretical Computer Science
(ENTCS), pages 229:117–129, 2009.

[8] Matthew Hennessy. A distributed Pi-Calculus.
Cambridge University Press, 2007.

[9] Matthew Hennessy and Julian Rathke. Typed be-
havioural equivalences for processes in thepres-
ence of subtyping. Mathematical Structures in
Computer Science, pages 14(5):651–684, 2004.

[10] James F. Kurose and Keith W. Ross. Computer
Networking: A top down approach featuring the
Internet. Addison Wesley, 2001.

[11] J. Riely. M. Hennessy. Resource access control in
systems of mobile agents. Information and Com-
putation ., pages 173 :82–120, 2002.

[12] Robin Milner. A calculus of communicating sys-
tems. volume 92 of Lecture Notes in Computer
Science. Springer, 1980.

[13] Robin Milner. Communication and Concurrency.
Prentice Hall, 1989.

[14] Robin Milner. Communicating and mobile sys-
tems: The π -Calculus. Cambridge University
Press, 1999.

[15] Benjamin C. Pierce and Davide Sangiorgi. Typ-
ing and subtyping for mobile processes. Math-
ematical Structures in Computer Science, pages
6(5):409–453, 1996.

[16] Daniele Gorla Rocco De Nicola and Rosario
Pugliese. Basic observables for a calculus
for global computing. Inf. Comput.,, pages
205(10):1491–1525, 2007.

[17] Davide Sangiorgi and DavidWalker. The π -
Calculus: A theory of Mobile Processes. Cam-
bridge University Press, 2001.

[18] W. Richard Stevens. TCP/IP Illustrated : The Pro-
tocols,, volume 1. Addison-Wesley, 1994.

[19] Andrew S. Tanenbaum. Computer Networks.
Pearson Education, Inc.„ Upper Saddle River,New
Jersey„ fourth edition, 2003.

7

	INTRODUCTION
	DRF: A FAULT TOLERANT DISTRIBUTED ROUTING CALCULI
	Syntax
	Structural Equivalence
	Reduction Semantics

	EXAMPLE
	CONCLUSION

