
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.7, February 2012

43

An Encryption Algorithm for Secure Data Transmission

Rohan Rayarikar
B.E Student

Dept. of Computer Engineering
Thakur College of Engineering
& Technology, Mumbai, India.

Sanket Upadhyay
B.E Student

Dept. of Computer Engineering
Thakur College of Engineering &

Technology, Mumbai, India.

Deeshen Shah
B.E Student

Dept. of Computer Engineering
K. J. Somaiya College of

engineering, Mumbai, India.

ABSTRACT
Encryption is of prime importance when confidential data is

transmitted over the network. Varied encryption algorithms

like AES, DES, RC4 and others are available for the same.

The most widely accepted algorithm is AES algorithm. We

have proposed a new algorithm based on the concept used by

Rijmen and Daemen (Rijndael algorithm), the founders of

AES algorithm. The proposed algorithm encrypts and

decrypts two 128 bits data simultaneously i.e. 256 bits data,

thus providing strong encryption accompanied with complex

processing. The proposed Feistal algorithm uses various

invertible, self-invertible, and non-invertible components of

modern encryption ciphers and key generation same as that of

AES. This algorithm provides a secure, fast, and strong

encryption of the data. There is a huge amount of confusion

and diffusion of the data during encryption which makes it

very difficult for an attacker to interpret the encryption pattern

and the plain text form of the encrypted data. The proposed

algorithm is also resistant to Brute-Force and pattern attacks.

General Terms

Security Algorithm, Symmetric Key Encryption.

Keywords

Encryption Algorithm, S-Box Substitution, Complement,

Feistal, ELT, ERT, EBT, LPT and RPT.

1. INTRODUCTION
Security of data is of prime importance in today’s world. With

every passing day, cryptanalysis is successful on some or the

other algorithm. Thus, it is very important that the algorithm

used for encryption of data is resistant to cryptanalysis. Along

with being resistant, it is equally important that the algorithm

uses optimum system resources. One of the most successful

algorithms till date is the AES algorithm proposed by Rijmen

and Daemen (Rijndael algorithm) in June 1998. This

algorithm is being used in many different applications. The

main feature of AES algorithm which makes it more secure

over the others is its unique round transformations and the

Rijndael key scheduling algorithm. In this proposed algorithm

we have used the round transformation concept of AES

algorithm, making changes in the components of the rounds

along with their ordering. The proposed Feistal algorithm

would be more secure and would be resistant to cryptanalysis.

2. PROPOSED ENCRYPTION

ALGORITHM
The following is the proposed algorithm for data encryption-

The plain text or the user text is arranged in a 4*8 matrix i.e.

2 * 128 bits. The reason behind this is that, more number of

bits can be processed in same amount of time as required to

process data arranged in 4*4 matrix i.e. 128 bits, in case of

AES.

Fig 1: 4*8 State Matrix

The key is generated using Rijndael’s key scheduling

algorithm. The generated key is the most important element in

this process as it is the key which decides the permutations

and order of components to be used in the algorithm. This

helps in confusion and diffusion in the proposed algorithm.

Based on the length of the key, the number of rounds in the

algorithm is decided. There can be 10, 12 or 14 rounds for

keys of length 128 bits, 192 bits or 256 bits. A new round key

is generated for each round based on the key scheduling

algorithm. The following are the steps carried out. [2]

Fig 2: Flowchart of the proposed Algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.7, February 2012

44

2.1 Matrix Division
Matrix Division is the first step in the algorithm. The 4*8

matrix is divided into two 4*4 matrices. The division is

carried out based on the predefined order. The two matrices

thus obtained are known as Left Plain Text (LPT) and Right

Plain Text (RPT). The LPT and RPT contain the user data in

plain text form. The data in these matrices is then converted

into hexadecimal form. An example of 128 bit plain text

matrix converted into hexadecimal form is shown in the figure

below.

 Fig 3: Matrix Conversion.

 The user inputted key, known as cipher key is XOR-ed with

each plain text matrix respectively. The output is given as

input to the next step. The steps which follow Matrix

Divisions are repeated over n times based on the length of the

cipher key. This is analogous to Round Transformations in

AES algorithm. [3]

2.2 S-Box Substitution
This step is same as SubBytes step of AES algorithm. In the

S-Box Substitution step, each byte in the matrix is reorganized

using an 8-bit substitution box. This substitution box is called

the Rijndael S-box. This operation provides the non-linearity

in the cipher. The S-box used is derived from the

multiplicative inverse over GF (28), known to have good non-

linearity properties. To avoid attacks based on simple

algebraic properties, the S-box is constructed by combining

the inverse function with an invertible affine transformation.

The S-box is also chosen to avoid any fixed points (and so is a

derangement), and also any opposite fixed points. [7] This

step causes confusion of data in the matrix. S-Box

Substitution is carried out separately for LPT and RPT. This is

the first step of iterative round transformation. The output of

this round is given to the next round. [2]

2.3 Complement
This is the second step of the transformation, which

completely changes the data based on the round key. The

round keys generated in this algorithm are of size 128 bits.

The 128 bit state matrix contains 16 words each of size 8 bits.

Therefore, the maximum value of any word in binary form is

1111 1111. If the round key of size 128 bits is divided by 16

we get the output as 8. This means that 8 bits of round key can

be associated with one word. Therefore, the round key is

divided into 16 groups; each group consisting of 8 bits data.

Each group is associated to one word, which means 16 groups

can be associated to corresponding 16 words.

In this step we take the complement of the bits in the words

based on the position of the 0s in the corresponding group of

the round key.

For example if the first group of round key is 00111100; the

position of 0s in the above group is 0, 1, 6 and 7. Therefore

the positions 0, 1, 6 and 7 of the first word, i.e. word

corresponding to position (1, 1) of the state matrix, are

complemented and rest of the bits are kept the same. The

same operation is carried out for the entire matrix; thereby

completely changing the data in the state matrix matrix.

2.4 MixColumns

In the MixColumns step, the four bytes of each column of the

state matrix are combined using an invertible linear

transformation. A randomly generated polynomial is arranged

in a 4*4 matrix. The same polynomial is used during

decryption. Each column of the state matrix is XOR-ed with

the corresponding column of the polynomial matrix. The

result is updated in the same column. This step is carried out

individually for both LPT and RPT. This step is same as the

MixColumns step in AES algorithm.

2.5 Rotation

This is a new kind of rotation that was proposed in [4]. In this

kind of rotation, entire 2D Array block is rotated by certain

angle depending upon certain value of the key bits. Its use will

increase the confusion aspect in the information bytes when

transformed to the ciphertext. The two operations on matrices

are denoted by, rCOOM (M) that denotes

reverseColumnsOrderOfMatrix M i.e. function that arranges

the columns of the matrix M in reverse order and rROOM(M)

that denotes reverseRowsOrderOfMatrix M i.e. function that

arranges the rows of the matrix in reverse order. Also the

standard notation M’ is used to denote the transpose of a

matrix M. The entire block is rotated in clockwise direction

by an amount of 0°, 90°, 180°, 270° during encryption

depending upon the 2 bits of the key value 00,01,10,11

respectively. The table below represents the operations carried

out. [4]

Table 1: Rotation Table

Key Bit

Value

Rotation in

Degrees

(Clockwise

Direction)

Operations carried on

the matrix

00 0 M

01 90 rCOOM(M’)

10 180 rROOM(rCOOM(M))

11 270 rROOM(M’)

 For key bit value 00 the matrix remains the same.

 For key bit value 01 the matrix rotates by 90

degrees. The operation corresponding to this

rotation is rCOOM (M’) where we arrange the

columns of the matrix M’ in reverse order as shown

in the figure below.

 For key bit value 01 the matrix rotates by 180

degrees. The operation corresponding to this

rotation is rROOM (rCOOM (M)) where we first

arrange the columns of the matrix M in reverse

order followed by arranging the rows of the newly

generated matrix in reverse order.

 For key bit value 11 the matrix rotates by 270

degrees. The operation corresponding to this

rotation is rROOM (M’) where we arrange the rows

of the matrix M’ in reverse order.

The figure below shows a 2D Rotation by 90 degrees. The

other rotations are carried out the same way.

Note- The data in the matrix is shown in plain text form for

understanding purpose. [4]

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.7, February 2012

45

Fig 4: Rotation of 2D Array

2.6 Add Round Key
This is the last step of the round transformation. In this step

the round key generated using the key scheduling algorithm is

XOR-ed with the matrix given input to this step. The key is

arranged in a 4*4 matrix. The XOR operation takes place

column-wise i.e. first column of round key matrix is XOR-ed

with the first column of the inputted matrix. For every round a

new round key is generated. For a particular round, same

round key is used to encrypt LPT and RPT. [2]

2.7 Cipher Text Generation
The operations described in 2.2, 2.3, 2.4, 2.5 and 2.6 are

repeated (n-1) number of times based on the length of the

cipher key; the value of n never exceeds 14. However, for the

nth round we do not include MixColumns step. This is based

on the Rijndael’s concept.

We obtain Encrypted Left Text (ELT) and Encrypted Right

Text (ERT) after the round transformation. ELT and ERT are

XOR-ed to form Encrypted Block Text (EBT) which is of 128

bits.

Furthermore, the original cipher key (128 bits) is inverted i.e.

read backwards and is then complemented. The then obtained

128 bit key is XOR-ed with the ELT to form 128 bits

Intermediate ELT.

Finally, the Intermediate ELT is concatenated with EBT to

form 256 bit Cipher Text. The concatenation process takes

place based on the key used in algorithm. The Cipher Text

obtained is transmitted over the network.

2.8 Round Transformations
The order of components in the round transformation differs

from one round to other except Add Round Key component

that is always executed at the end of each round. The key

matrix defines this order as shown in the figure below. The

key generated using the key scheduling is arranged in a 4*4

matrix. The first row of the key matrix contains four words.

Each word has a two bit hexadecimal value. First two words

define the order of execution of the left round transformation

and the last two words define the order of the right round

transformation. Consider first two words of the matrix. It

contains total of 4 hexadecimal values. These values are read

from left to right. Each value corresponds to a specific

component in the following order; S- Box, Complement, Mix-

Columns, and Rotation. The component corresponding to

least hexadecimal value is executed first. If the values are

same, then the components are executed in the order given

above. The same process is repeated for the right round

transformations. This process helps to make the algorithm

more secure by confusing and diffusing data to maximum

extent. The decryption takes place in reverse order.

Fig 5: Round Key Usage

3. DECRYPTION OF THE PROPOSED

ALGORITHM
The encryption algorithm is referred to as the cipher and the

decryption algorithm as the inverse cipher. In addition, the

cipher and the inverse cipher operations must be executed in

such a way that they cancel each other. The rounds keys must

also be used in reverse order. The Cipher Text which is

formed of 256-bit 4*8 Matrix is the input for the decryption

process.

3.1 Encrypted Text Generation
The Cipher text is split into Left Cipher Text (LCT) and Right

Cipher Text (RCT) based on the permutation with which it

was concatenated in the encryption process. Now in order to

obtain the Encrypted Left Text (ELT) and Encrypted Right

Text (ERT), we XOR the LCT with modified cipher key used

in the last step of encryption process i.e. by reading the

original cipher key in opposite direction (right to left) & then

complementing it. The ELT is XOR-ed with the RCT to

obtain ERT. Thus, we obtain both ELT and ERT. The

following operations are carried out on the ELT and ERT

separately repeated over n number of times so as to get the

LPT and RPT.

3.2 Inverse S-Box

Inverse S-Box is the inverse of S-Box substitution. The

substitution is done using substitution matrix which is inverse

of the S-Box matrix used for encryption. Inverse here

indicates that, the encrypted text is substituted in such a way

that we get the original text which was being used as an input

for S-Box Substitution during encryption. For example: If 15

is substituted as 60 using S-Box substitution, then using

Inverse S-Box 60 is substituted 15.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.7, February 2012

46

3.3 Complement
The key used for performing complement of plaintext, is same

for performing complement of cipher text. As explained in the

Encryption process, we take the complement of the bits in the

words based on the position of the 0s in the corresponding

group of the round key.

3.4 InvMixColumns
The InvMixColumns operation is same as the MixColumns

operation. The two matrices used for encryption and

decryption operation are inverses of each other. The

operations are carried out on the data matrix in exactly the

reverse order as that of encryption process. As mentioned

earlier, a randomly generated polynomial is arranged in a 4*4

matrix which is used for transformation. This step is carried

out individually for both Encrypted Left Text (ELT) and

Encrypted Right Text (ERT). [2]

3.5 Inverse Rotation

The inverse rotation takes place in opposite direction as that

of the rotation step in the encryption process. The matrix is

rotated in anti-clockwise direction. The operations performed

on the matrix during decryption are same as that performed

during encryption, but the order of operation changes. The

table below explains the operations corresponding to the four

angles for decryption process. [4]

Table 2: Inverse Rotation Table

Key Bit

Value

Rotation in

Degrees

Operation Equivalent

(in clock-wise

rotation)

00 -0 M

01 -90 rROOM(M’)

10 -180 rROOM(rCOOM(M))

11 -270 rCOOM(M’)

3.6 Add Round Key

This is the same step which is performed in the encryption

process. The round key generated is XOR-ed with the matrix

given input to this step. The key is arranged in a 4*4 matrix.

The XOR operation takes place column-wise i.e. first column

of round key matrix is XOR-ed with the first column of the

inputted matrix. For every round a new round key is

generated. For a particular round, same round key is used to

decrypt ELT and ERT. The round keys used for decryption

are in opposite direction as that of encryption. For example,

nth round key is used for nth round in case of encryption where

as in case of decryption it is used for first round.

3.7 Generation of Plain Text

After performing the iterative round transformation, we get

the Left Plain Text (LPT) and Right Plain Text (RPT). Both

these text are matrices of size 128 bits each i.e. 4*4 matrix.

These matrices are merged to obtain the plaintext i.e. 4*8

matrix- 256 bits. This is the original plain text which was

encrypted by the sender.

4. IMPLEMENTATION
The proposed algorithm can be implemented in any language.

This algorithm can also be used in Image Processing. We

have implemented it in java, java being an open source and

platform independent language. The pseudo codes for the

components of the cipher are given below.

4.1 Add Round key:
public byte[][] addRoundKey(byte[][] state,byte[][]

roundkey)

{

 for (int i=0;i<4;i++)

 {

 for (int j=0;j<4;j++)

 {

 state [i][j]=doExclusiveOR(state[i][j],

roundkey[i][j]);

 }

 }

 return state;

}

4.2 Substitute Bytes:
public byte[][] subBytes(byte[][] state)

{

 for (int i=0;i<4;i++)

 {

 for (int j=0;j<4;j++)

 {

 int row = getFirstFourBits(state[i][j]);

 int column =

getSecondFourBit(state[i][j]);

 state[i][j] =

sBoxSubstitution(row,column);

 }

 }

 return state;

}

4.3 MixColumns:
public byte[][] mixColumns(byte[][] state)

{

 for (int c=0;c<4;c++)

 {

 state [c]=matrixMultiplication(state[c], polynomial);

 }

 return state;

}

4.4 Complement:
public byte[][] complement(byte[][] state)

{

 for (int i=0;i<4;i++)

 {

 for (int j=0;j<4;j++)

 {

 state [i][j] = doCompelement(state[i][j]);

 }

 }

 return state;

}

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.7, February 2012

47

4.5 Rotation:
public byte[][] rotation(byte[][] state, int degree)

{

 for (int i=0;i<4;i++)

 {

 for (int j=0;j<4;j++)

 {

 state [i][j] =

byteRotatedByDegree(state[i][j],degree);

 }

 }

 return state;

}

5. STRENGTH OF THE PROPOSED

ALGORITHM

The cipher key used in the proposed algorithm is of 128 bits.

Therefore, to break the cipher key an attacker has to check

2128 possibilities which are practically almost impossible.

Therefore, the Brute-force Attack fails on this algorithm.

The flow of the algorithm makes sure that there is no fixed

pattern in any of the steps of the algorithm. The components

of the proposed algorithm have brought about strong diffusion

and confusion. Therefore, statistical and pattern analysis of

the ciphertext fails.

The Rotation component used in this algorithm has made the

algorithm turn to a Feistal structure. [4]

The most important security advantage is that no differential

or linear attacks can break this algorithm.

6. ACKNOWLEDGEMENT
The Rotation and Inverse Rotation mechanisms are

considered as a tentative solution that has been introduced by

Dr. (Mrs) Pushpa R. Suri and and Sukhvinder Singh Deora, in

“Design of a modified Rijndael algorithm using 2D

Rotations”, IJCSNS International Journal of Computer

Science and Network Security, VOL.11 No.9, September

2011. We would later propose a mechanism which would

operate as an alternative for the Rotation and Inverse Rotation

steps in the proposed algorithm.

7. CONCLUSION

The proposed algorithm is very secure for data encryption. It

is resistant to cryptanalysis. The algorithm makes use of

Rijndael concept; therefore, the strengths of Rijndael are

preserved. The proposed algorithm being Feistal increases

confusion and diffusion of the data. It is very difficult for an

intruder or an attacker to decrypt the data without the key of

the algorithm.

8. REFERENCES

[1] J. Daemen and V. Rijmen, AES Proposal: Rijndael,

NIST’s AES home page, http ://www:nist:gov/aes.

[2] “Announcing the Advanced Encryption Standard (AES)”,

Federal Information Processing Standards Publication

197, November 2001

[3] Priyanka Pimpale, Rohan Rayarikar and Sanket

Upadhyay, “Modifications to AES Algorithm for

Complex Encryption”, IJCSNS International Journal of

Computer Science and Network Security, VOL.11

No.10, October 2011.

[4] Dr (Mrs) Pushpa R. Suri and Sukhvinder Singh Deora,

“Design of a modified Rijndael algorithm using 2D

Rotations”, IJCSNS International Journal of Computer

Science and Network Security, VOL.11 No.9, September

2011.

[5] Xinmiao Zhang and Keshab K. Parhi, “Implementation

Approaches for the Advanced Encryption Standard

Algorithm”, 1531-636X/12, IEEE 2002.

[6] Chun Yan,Yanxia Guo, “A Research and Improvement

Based on Rijndael Algorithm”, 2009 First International

Conference on Information Science and Engineering,

Nanjing, Jiangsu China, December 26-December 28,

ISBN: 978-0-7695-3887-7

[7] Advanced Encryption Standard, http://en.wikipedia.org/

wiki/Advanced_Encryption_Standard

