
International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.7, February 2012 

27 

ARM7TDMI based Low Cost Portable Serial 

Asynchronous Protocol Analyzer 

 
Manoj Kumar Meena 

PEC University of Technology 
Sec-12, Chandigarh, India 

 

Neelam Rup Prakash 
PEC University of Technology 

Sec-12, Chandigarh, India 

 
 

ABSTRACT 
This brief proposes a novel low–cost serial asynchronous 

communication protocol analyzer based on ARM7TDMI 

micro controller. The paper also suggests the hardware 

configuration & software algorithms to implement such an 

embedded system. The ARM-7 microcontroller, a 32-bit 

architecture along with a full fledge 16C550 UART, high 

speed configurable timers, number of power saving modes & 

efficient algorithms explained in the paper, becomes very 

good choice for implementing a portable serial link debugging 

tool. The system compared to basic analysis tool like 

oscilloscope & logic analyzer, will not be able to detect 

voltage levels but will certainly be able to extract timing 

parameters. The system will be able to detect serial 

parameters like baud rate, data bits & parity at data layer & 

refresh rate, ideal time, transmission time, message format at 

application layer. This system unlike the traditional protocol 

analyzers can be made very light, compact, low power, low 

cost & rugged, making it suitable for field operations. The 

protocol analyzer proposed here has been thought off keeping 

in view the resource lacking & not so friendly debugging 

environment of most of the military systems operating in the 

field.  

Keywords 

ARM-7, Protocol Analyzer, RS-232, RS-422, Serial 

Asynchronous Communications, UART. 

1. INTRODUCTION 
Serial communications [1] introduced in 1960 as RS-232C 

standard for connecting devices like mouse and Keyboard to 

computer, is still in very much use for communication in 

embedded systems. It owes its popularity to the small 

hardware required & almost no protocol stack, for making a 

working communication link. Also the serialization of data for 

transmission helps in reducing the clock skew & cross talk [2] 

problems which are inherent in parallel communication links. 

As a result the serial links can be clocked considerably higher 

than parallel links for achieving higher data rates over longer 

distances extending up to hundreds of meters. Though most of 

the modern communications has shifted to high speed 

Ethernet, USB etc. for exchanging large volumes of data, 

serial asynchronous communications is still used for low cost 

communication interfaces in embedded systems. Further the 

industrial applications & legacy systems in military especially 

navy, use serial interfaces for real time data exchange between 

different weapon systems. 

The serial communication used can be of asynchronous or 

synchronous type. Asynchronous communication 

synchronizes for every byte and hence uses more overheads. 

Synchronous serial communication or more commonly known 

as Synchronous Data Link Control (SDLC) [1], [15] is able to 

achieve higher data rates than asynchronous as the 

synchronization is achieved over frames rather than individual 

bytes. However SDLC requires extra lines for clock & as a 

result is less popular for most of the moderate speed, small 

data exchange serial links. The emphasis of this paper is on 

asynchronous serial links. 

Monitoring serial communications is necessary in R&D phase 

for creating dummy systems for simulating integrated 

communication environment, and during testing and 

debugging phases. The classical tools, such as digital 

oscilloscopes or logic analyzers offer information at the bit 

level like bit timings & voltage levels, but they lack the 

capability to provide extensive data layer & application layer 

analysis for serial interfaces. The required solution is to build 

a dedicated system for one or more serial protocols, using a 

high speed, low power, low cost micro controller for 

monitoring and testing the data exchange. The terms serial 

communication & serial asynchronous communication will be 

used interchangeably hereafter conveying the same meaning. 

The remainder of this paper is organized as follows. Section 2 

provides a brief tutorial about serial asynchronous 

communication & its parameters. The similar work is 

discussed in section 3 and the proposed hardware 

configuration along with a detailed functional block diagram 

is presented in Section 4. Section 5 presents software 

algorithms required for the acquisition, analysis & extraction 

of the serial parameters. Section 6 reports performances & 

section 7 outlines the conclusions & future scope. 

2. SERIAL ASYNCHRONOUS 

COMMUNICATION 
Typically, asynchronous serial communication [1]-[3] is used 

to transmit ASCII data. Since the data exchange is not 

periodic in asynchronous hence communication is completed 

using 3 transmission lines: (1) Ground, (2) Transmit, and (3) 

Receive. Using these separate lines, both transmission & 

reception can be done simultaneously. The serial port also 

known as Universal Asynchronous Receiver & Transmitter 

(UART), generally has additional lines for handshaking & 

modem signals but are generally not used. The important 

serial characteristics that two communicating sides must agree 

on for correct communication are baud rate, data bits, parity 

and stop bits [1]. In serial communication the least significant 

bit is transmitted first after the start bit, followed by the rest of 

the data bits, parity & stop bits. The asynchronous serial 

transmission format for Hex value 4DH with even parity is 

explained in figure 1.  

The important serial asynchronous communication parameters 

[1]-[3] are explained as 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.7, February 2012 

28 

T
ra

n
s
m

it
te

r 

R
e
c
e
i
v
e
r
 

1 

STA
R

T
 

0 0 0 0 0 1 1 1 STOP IDLE IDLE 

DATA FIELD 

1 

1.5 

2 

P
A
R
I
T
Y
 

Fig.1 Asynchronous Byte Format 

 

2.1 Baud Rate 
It is the number of possible events, or data transitions, per 

second. It is a speed measurement for communication. Baud 

rate in case of serial communication is also called bits per 

second (bps) rate. Common baud rates for telephone lines are 

14400, 28800, and 33600. Baud rates like 9600, 19200, 

38400, 57600 etc. are frequently used in industrial 

applications & military systems for exchanging data. Baud 

rates greater than these are possible, but these rates reduce the 

distance by which devices can be separated. These high baud 

rates are used for device communication where the devices are 

located near one another. 

2.2 Start Bit  
It is used to signal the start of the communication for every 

byte or character transmitted. This bit has the same period 

time as the other bits and is used for synchronization between 

the two communicating devices. This bit is also called space 

(low) as it goes low from the default mark (high) state on the 

data line. 

2.3 Data Bits 
They are the measurement of the actual data bits in a 

transmission. When the computer sends a packet of 

information, the amount of actual data may not be a full 8 bits. 

Standard values for the data packets are 5, 6, 7 or 8 bits. The 

number of data bits depends on the size of the symbol set 

required for communication. For example, standard ASCII 

has values from 0 to 127and hence require 7 bits. Same way 

Extended ASCII uses 8 bits to represent 0 to 255 different 

symbols. Data bit size of 5 & 6 are rarely used in modern day 

communications as the symbol set they represent is very 

small. 

2.4 Parity  
It is a simple form of error checking that is used in serial 

communication. There are four types of parity: even, odd, 

marked, and spaced. The option of using no parity is also 

available. For even and odd parity, the serial port will set the 

parity bit (the last bit after the data bits) to a value to ensure 

that the transmission has either an even or odd number of 

logic high bits. For example, if the data to be transmitted is 

1001, then for odd parity, the parity bit would be 1 to keep the 

number of logic high bits odd. Marked and spaced parity does 

not actually check the data bits, but simply sets the parity bit 

high for marked parity or low for spaced parity. Parity bit 

allows the receiving device to check if noise is corrupting the 

data or if the transmitting and receiving devices' clocks are out 

of sync. It is very useful in case the two devices 

communicating are not using highly stable clocks.  

2.5 Stop Bits 
They are used to signal the end of communication for every 

byte. Typical values are 1, 1.5, and 2 bits. Since the data is 

clocked across the lines and each device has its own clock, it 

is possible for the two devices to become slightly out of sync. 

Therefore, the stop bits not only indicate the end transmission 

but also give the computers some room for error in the clock 

speeds. The number of stop bits used, depends on the 

responsiveness of the receiver device. Slower the receiver, 

higher the number of stop bits. Further time for processing 

can be provided by inserting inter byte gap, which is decided 

at application layer.  

2.6 Flow Control 
Flow control implies harmonious communication between a 

slow receiving device like printer & fast transmitting device 

like a computer. It helps in controlling the amount of data 

exchanged and the timing between the two communicating 

devices. It is done by using actual hardware lines. Similar to 

TX and RX lines, the Request To Send / Clear To Send 

(RTS/CTS) and Data Terminal Ready/Data Set Ready 

(DTR/DSR) lines work together with one being the output and 

the other the input as handshake signals. When a receiver is 

ready for data, it will assert the RTS line indicating it is ready 

to receive data. This is then read by the sender at the CTS 

input, indicating it is clear to send the data. The next set of 

lines is Data terminal Ready (DTR) and Data Set Ready (Data 

Set Ready). These lines are used mainly for communication 

between modems for status indication. 

2.7 Electrical Interfaces 
RS-232 (ANSI/EIA-232 Standard) [2], [3] is both an electrical 

& physical recommended standard given by Electronics 

Industry Association. It is commonly found on IBM-

compatible PCs. It uses single ended transmission where in a 

common ground line between receiver & transmitter is used 

for communicating 1‟s & 0‟s. The commonly used DB9S 

connector for rs-232 in computers is explained in figure 2. 

   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 D-Type 9-Pin RS-232 Connector 

 
RS-232 is limited to point-to-point connections between PC 

serial ports and devices. RS-232 hardware can be used for 

serial communication up to distances of 20 meters. 

RS-422 (EIA RS-422-A Standard) [3] is the recommended 

electrical serial communication standard used on Apple 

Macintosh computers. RS-422 uses a differential electrical 

signal, as opposed to unbalanced signals referenced to ground 

in RS-232. Differential transmission, which uses two lines, 

each for transmit and receive signals, results in greater noise 

immunity and longer distances as compared to the RS-232. 

The distance over which communication can be done using 

 

 

Pin Name Description 

1 DCD Data Carrier 

Detect 6 DSR Data Set Ready 

2 RX Receive Line 

7 RST Request To Send 

3 TX Transmit Line 

Line 8 CTS Clear To Send 

4 DTR Data Terminal 

Ready 9 RI Ring Indicator 

5 GND Common Ground 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.7, February 2012 

29 

RS-422 interface is 1200 meters. These advantages make RS-

422 a better fit for industrial and military applications. 

2.8 Encoding Schemes  
Serial asynchronous communication uses a non-return- 

 

 Fig.3 NRZ Encoding Scheme 

 
to-zero (NRZ) line code [1], [3]. The NRZ is explained in fig 

3.  In this 1's are represented by one significant condition 

(usually a positive voltage) and 0's are represented by some 

other significant condition (usually a negative voltage), with 

no other neutral or rest condition. 

This method wastes power, as DC level is maintained even 

when there is no information transmitted. Further the 

synchronization is lost if there is a long series of one or zeros.  

However due to its simplicity of implementation it is 

popularly used in RS-232 serial communication. 

3. RELATED WORK 
There is a lot of asynchronous communication monitoring 

tools available in the market but all of them are costly & 

bulky, PC based applications. Further they mostly run 

windows OS and hence does not give time parameters of the 

captured data correctly. Few of them which have scored well 

on the ease of operation & decent data analysis features are 

explained next. 

 

232Analyzer [4] and Packet Sniffer [5] are two very popular 

analyzing tools for RS-232, 422 and 485 type of electrical 

interfaces. They offer good data capture, analysis & logging 

capabilities. These tools come with good Graphical User 

Interfaces & require additional RS-232/422 convertors for 

data acquisition.  

 

The tools provide support for most of the windows OS. 

Reference [6] presents SI Scope RS232 Analyzer. It comes 

with a dual port Passive Monitoring Cable for simultaneous 

capturing serial data & forwarding it to the receiving end. Its 

interrupt driven design helps in maintaining the correct 

sequence of events and the time between the events is 

measured accurately.  

 

Serial Port Monitor is another classical monitoring tool for 

RS232 bus [7]. It runs on Windows-7/9x/XP/NT/2000 

platforms and displays the messages captured from the serial 

link in easy to read format like table view, line view, dump 

view & terminal view.  

MSB-RS232 analyzer [8] offers all necessary features for an 

effective examination of RS232 connections. It uses a 

dedicated hardware for the Simultaneous sampling of all lines, 

data analysis in real time, detection of invalid line levels, 

detection of asynchronous or drifting baud rates between 

sender and receiver. This tool provides interesting features but 

again requires a PC for the analysis.  

 

All these tools are purely software tools except MSB-RS232 

analyzer. They require the use of a personal computer or 

laptop for the analysis & a separate hardware for handling 

various electrical interfaces. They are not just costly, power 

inefficient & bulky but also not able to provide real time data 

as they all depend on OS (mostly standard windows) for time 

stamping, which is not very reliable. 

 

These application software are good for user friendly lab 

environment but does not serve an engineer working on 

industrial and military systems in the field. 

 

The system proposed here is a dedicated embedded system 

running algorithms written in assembly & embedded C [1], 

[9] for real time requirements. Also the serial data & results of 

analysis can be shown using a character LCD. The different 

modes of operations can be easily selected using a passive 

matrix keypad. All this does away with the requirement of a 

full-fledged computer making it a highly compact, light & 

portable. 

4. PROPOSED HARDWARE 
The proposed hardware for building serial synchronous 

analyzer, uses ARM-7TDMI [9] as the main building 

 
Fig.4 Functional Block Diagram 

  

block & RS-232/422 drivers, character LCD, matrix keypad, 

Electrically Erasable Programmable Read Only Memory 

(EEPROM), JTAG port as supporting modules. The system 

can be functionally divided into four sections as explained in 

figure 4. 

4.1 Data Acquisition Section 
The data acquisition section is responsible for acquiring the 

serial parameters & data through oversampling of line 

transitions [5]. Both RS-232 & RS-422 electrical interfaces 

can be handled using appropriate line driver ICs like MAX-

232, AM26LS31/32 [1], [3] etc. These line drivers not only 

protect the microcontroller but also convert the RS-232/422 

signals into TTL signals. The selection between the types of 

interface to be handled is done using a two way switch.   

4.2 Data Analysis Section 
It is responsible for the extraction of required information like 

bit timings, serial parameters & application layer parameters 

from the byte or frame received. The general purpose input 

output (GPIO) pins of microcontroller along with the timer, 

interrupt & UART peripheral is able to do this under software 

control. A timer configured for nanosecond resolution is 

required for the determination of commonly used baud rates 

& refresh rates.   

1 

 

0 

1 1 1 1 1 1 1 0 0 0 0 0 

U
 A

 R
 T

 

LIQUID CRYSTAL DISPLAY KEYPAD 

 

ARM-7 

MICRO 

CONTROLLER 

JTAG 

RS-232 

RS-422 

SERIAL EEPROM 

(STORAGE) 

 

http://en.wikipedia.org/wiki/Line_code
http://en.wikipedia.org/wiki/Significant_condition


International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.7, February 2012 

30 

4.3 Data Input & Display Section 
This section handles the displaying of the raw/processed data 

& results as selected by the user. Basically the user is 

provided with a number of options to select. The user 

interface is provided through a character LCD & a matrix 

keypad. The LCD is provided with an optional backlit for 

night operations & saving energy during day time. This 

section consumes most of the power in the system. A passive 

matrix keypad can be used to select different mode of 

operations and navigation through stored data.   

4.4 Offline Storage & Program Download 

Section 
An EEPROM of suitable size 16/32/64K can be used for data 

storage. This huge stored data can be later on used for offline 

analysis. The good size of static ram (16kB) available in most 

of the ARM-7 based microcontrollers helps in storing large 

continuous raw serial data without losing any. The ARM-7 

JTAG port has been provided for convenient & easy 

downloading of the updated or modified code into the system. 

5. ALGORITHMS 
The various algorithms for detecting various serial 

asynchronous communication parameters [10]-[14] both at 

data layer & application layer are as follow 

5.1 Baud Rate Detection 
Baud rate detection requires a high resolution timer having 

resolution of the order of few hundred nanoseconds. This is 

required because the common range of the baud rates for 

asynchronous serial communication is 150-250000bps i.e. on 

time scale it is 6.67ms to 4µs respectively. Initially the serial 

RX pin is to be used as a port pin for detecting the baud rate. 

An external interrupt pin is shorted to RX pin for detecting & 

reporting transitions on interrupt basis. The line is sampled at 

a rate at least 8 to 10 times higher than the baud rate being 

detected [10], [11], [12]. The timer is used for counting the no 

of nanoseconds passed between the two consecutive opposite 

transitions. The timer is started at the detection of the first 

high to low or low to high transition. It is stopped on detecting 

the next opposite transition. The time interval is stored & 

compared with subsequent readings for the minimum delay. 

The sampling is done over a good amount of time say 1 

second for a baud rate of 9600. Assuming a variable data 

transmission & evenly spread 1‟s & 0‟s, the user is expected 

to get sufficient transitions for the detection of baud rate. The 

baud rate is calculated by taking reciprocal of the minimum 

time interval detected.  For example in figure 5, if ∆t is the 

smallest time detected over 100 readings then the baud rate is 

calculated as 1/∆t.  

 

 
Fig.5 smallest bit intervals 

 

Time to detect the baud rate depends both on the refresh rate 

of data, no of samples taken and the no of repetitions of the 

least time interval. 

5.2 Data Bits Detection 
Once the baud rate is detected with certainty the data bits can 

be determined. This requires an iterative process of assuming 

data bits, configuring Universal Asynchronous  UART and 

then checking it against the parity & frame errors [11], [13], 

detected automatically by the UART.    For this, various 

possible combinations like 1-8-N-1, 1-7-N-1 etc. are tried one 

by one for the correct match. If a match is found the same is 

done for number of times to make sure the reading was 

correct. This process being iterative in nature & due to the 

requirement of multiple readings for accuracy is very time 

consuming. This method is not so successful in case the data 

is corrupted by noise. 

5.3 Parity Detection 
Parity is detected more or less in the same fashion as data bits. 

The UART is configured for an assumed parity & the parity 

flag is checked for a correct match. However this process 

takes very little time as the combinations to be checked are 

only 4, i.e. even, odd, mark & space. Again it is assumed that 

there is no noise on the line.  

5.4 Stop Bits Detection 
Once the baud rate, data bits & parity is known the stop bits 

can be checked by using the time between last character 

received & start of the next character by using a timer. The 

reading is confirmed by taking multiple readings as the inter 

byte gap may wrongly be interpreted as stop bits.  

5.5 Idle Time Detection 
The idle time is mostly the largest time interval when there is 

no activity on the RX line. This time is sufficiently large 

 

 
Fig.6 Idle Time Detection 

 

As compared to inter byte gap. As a result the two can be 

differentiated easily. Again timer is used over a no of times to 

determine a precise value. Idle time is used to calculate the 

refresh rate & tolerance of the received packet. The idle time 

as shown in figure 6 is denoted by ∆t. 

5.6 Refresh Rate Detection 
The packet refresh rate, an application layer parameter, can be 

determined, once the serial parameters & idle time are 

detected correctly. The time interval between the two 

consecutive idle times is taken as refresh rate. However this 

sometimes is unreliable as idle time is very short. Hence a 

second method i.e. time interval between two consecutive 

header field or footer field (explained later) is sometimes used 

for calculating refresh rate. 

Time 

1 

 

0 

∆t 

Bits 

Packets 

Time 

1 

 

0 

∆t 

Packets 



International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.7, February 2012 

31 

 

 
Fig.7 Refresh Rate Detection 

 

The refresh rate as shown in figure 7 can be calculated as 

Refresh rate = (1/∆t) Hz 

5.7 Transmission Time 
The transmission time is the time taken by the frame to get 

transmitted fully. This is calculated by subtracting the idle 

time from the refresh rate. The idle time as shown in figure 8 

is denoted by ∆t. 

 

Fig.8 Transmission Time Detection 

5.8 Packet Header & Footer Detection 
The Byte or Bytes repeated for every packet, after the end of 

the idle time on RX line are called Packet header bytes or 

header field. Packet header is important information which 

tells the position of particular information in the packet.  

Similarly the Byte or Bytes repeated before the start of the 

idle time on RX line are called Packet Footer bytes. Like 

header field this field also should be consistent for every 

packet or frame captured. 

5.9 Packet or Frame Size Detection 
The header, footer & no of bytes in between the two are called 

packet size. The packet size is sometimes required for 

checking the data integrity at packet level. Further it helps in 

calculating the storage memory requirements in case of large 

data & high speed serial link. 

5.10 Polarity Detection for RS-232 & RS-

422 Interface 
The polarity of the RS-232 interface needs to be checked in 

case the RX & TX points of a system are not clear. It can be 

done by checking the status of the TX line of the transmitter. 

If the polarity is correct then the RX line of the receiver is 

logic high (pulled high), for idle or inactive time. This is done 

assuming there is nothing wrong with the TX & RX lines 

electrically.  

5.11 Polarity Detection for RS-422 

Interface 
The RS-422 serial link requires both RX, TX & their „+‟, „-‟ 

ends to be detected for correct communication. It is done in a 

manner similar to RS-232 polarity detection.  

In fact the polarity detection is done first to be able to 

determine other parameters explained above correctly. The 

coding done in embedded C and assembly [9] helps in 

achieving real time requirements. 

6. PERFORMANCES 
The proposed system was implemented using LPC2129 [15] 

ARM-7TDMI micro controller. The system automatically 

detected baud rates in the range of 150 to 250000bps with 

95% accuracy at highest baud rate. The data bits generally 

take longer long time as a number of combinations that needs 

be tried out for arriving at correct decision are large. The 

success rate for the data bits was around 95%. Other serial 

parameters like parity, stop bits & line polarity were detected 

correctly all the times. The application layer parameters like 

refresh rate, idle time, transmission time, header & footer 

parameters had 100% accuracy. The total code size (after 

compilation), written in embedded C & inline assembly was 

less than 10kbytes. The RAM utilized, mainly for storing 

captured raw data & extracted serial parameters, was under 

1.5kbytes. 

 

The MMI provided using a 20x4 character LCD & a passive 

4x4 matrix keypad was able to meet all user requirements. 

The user could easily understand & select required mode of 

operation. Further the results of the analysis like serial 

parameters & raw data (both in ASCII & Hex format) were 

displayed on LCD in 80characeter page format. Both forward 

& backward navigation between pages was possible using the 

keypad. The data acquisition was implemented using 

max3223 & 26LS31/32 line drivers for RS-232 & RS-422 

interfaces respectively. Though in application programming, 

is available in LPC2129 micro controller for storage, yet 

24LC256 EEPROM was provided for additional storage & 

data portability. The system was also provided with a standard 

20-pin JTAG port & serial port programming for easy code 

modification. The system used only UART, GPIO, interrupts 

& timer peripherals to achieve all the required features.  

 

The backlit of the LCD was provided with a switch & most of 

the line drivers were enabled under LPC2129 control, making 

it highly power efficient. The total power consumption for the 

system was less than 1750mW for worst case. Therefore a 

standard 5V, 1500mAh battery can support it for 2 to 3 hours.  

 

Most of the components being IC, added very little to the 

weight of the system. The main components that added to the 

weight of the system were LCD, keypad, battery & the 

enclosure. However the system was still less than 1 Kg, which 

is not bad for a rugged, portable test equipment of this type. 

The system was easily assembled on a PCB of 15x10cm size. 

The system because of its small size & light weight can be 

easily set up, held in hand & can be moved around. Further 

the system was provided with all the required connectors & 

convertors on the same PCB, hence the system was very 

compact making it ideal for portability. 

 

The system in addition to above features also included ASCII 

set, Hex to ASCII & vice versa conversion, XOR, Modulo-

8/16, CRC-16 & CRC-CCITT [14] calculations for the 

specified string.   

7. CONCLUSION & FUTURE SCOPE 
A prototype of the proposed system was developed 

specifically for Indian Naval requirements. The system 

realized was able to meet all the requirements of a system 

integrator, serial application programmer, device driver 

developer & an engineer involved in reverse engineering. 

Future scope for the system may include 

Time 

1 

 

0 

∆t 

Packets 

Time 

1 

 

0 

∆t 

Packets 



International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.7, February 2012 

32 

- Extending auto baud rate detection to 1mbps 

- Inclusion of SDLC analysis 

- Increasing power efficiency for enhanced battery life 

- Reducing system weight further for ultra portability 

- Traffic generation & simulation capabilities 

8. REFERENCES 
[1] Serial Port Complete, 2nd Ed. by Jan   Axelson. 

[2] Texas instruments, “Interface Circuits for TIA/EIA-232-

F”, SLLS037A, September 2002. 

[3] Frank Dehmelt, Matthias Feulner, Carmen Gonzalez, 

Michael, Groenebaum, Firoj Kabir, Arek Kacprzak, 

Clark Kinnaird, Johann Zipperer, “Comparing Bus 

Solutions (High Performance Linear Interface)”, 

Application Report-SLLA067A-MARCH2000-Revised 

February 2004, Texas Instruments, 2004. 2011. 

[4] CommFront Knowledge Base and FAQs - 232Analyzer, 

available at: http://www.commfront.com/232analyzer-

faq.htm 

[5] Serialtest®: Asynchronous RS-232/422/485 Serial 

Protocol Analyzer and Packet Sniffer, available at: 

http://www.fte.com/products/serialanalyzers-RS232.aspx 

[6] New UltraTap RS232 Analyzer Cable, Available at: 

http://www.sinnovations.com/htdocs/siscope_rs232_ 

analyzer.htm 

[7] Serial Port Monitor - Eltima Software, Available at: 

http://www.eltima.com/products/serial-port-monitor/ 

[8] IFTOOLS: https://iftools.com/analyzer/msb-rs232/index. 

en.php 

[9] ARM System Developer‟s Guide Designing and 

Optimizing System Software by A. N. Sloss, D. Symes, 

C. Wright, J. Rayfield, Elsevier 2004. 

[10] Yongjian Tang, Lenian He and Xiaolang Yan, “A novel 

data processing in high speed serial communication”, 

IEEE, pp.  1228-1231, 2005.  

[11] Li Pang, Houde Liu, Baohua Li and Bin Liang, “A Data 

Recovery Method for High Speed Serial Communication 

based on FPGA”, IEEE, pp. 664-667, 2010. 

[12] M. Popa, A.S. Popa, V. Cretu and M. Micea, 

“Monitoring Serial Communications in Microcontroller 

Based Embedded Systems”, IEEE, pp. 56-61, 2006. 

[13] Jie Liang and Ran Duan, “Design of the Embedded 

Serial and Parallel Communication Protocol Controller”, 

IEEE, pp. 436-439, 2010. 

[14] Wang Qi, Fan Jianwei, CUI Wei and Yang Duwei, 

“Design of sdlc synchronous serial communication based 

on intel 8274”, IEEE, pp. 315-317, 2008. 

[15] LPC2119/2129/2194/2292/2294 USER MANUAL, 

http://www.nxp.com/technical-support-

portal/50809/45994/user-manuals. 

 

http://www.commfront.com/232analyzer-faq.htm
http://www.commfront.com/232analyzer-faq.htm
http://www.fte.com/products/serialanalyzers-RS232.aspx
http://www.sinnovations.com/htdocs/siscope_rs232_%20analyzer.htm
http://www.sinnovations.com/htdocs/siscope_rs232_%20analyzer.htm
http://www.nxp.com/technical-support-portal/50809/45994/user-manuals
http://www.nxp.com/technical-support-portal/50809/45994/user-manuals

