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ABSTRACT 

Tracking of nonlinear dynamic plants under external 

disturbances is presently an active area of research. The main 

difficulty felt in the tracking of nonlinear dynamic plants 

under external disturbances is the computational complexity 

in control design. This paper presents a simple neural network 

internal model control (IMC) approach for off-line tracking of 

unknown nonaffine nonlinear discrete time systems subject to 

external disturbances. The proposed control scheme is based 

on the neural network plant model and the inverse model. 

These models are determined using input output data. The 

final neural network IMC approach, including network plant 

model and the inverse model, is work off-line for tracking 

nonaffine nonlinear discrete time systems subject to external 

disturbances. Simulation results have been presented toward 

the end of the paper to illustrate the effectiveness of the 

proposed control strategy for tracking unknown nonaffine 

nonlinear discrete-time systems with and without external 

disturbances.   
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1. INTRODUCTION 
Artificial neural networks (ANNs) have shown an excellent 

ability to model any nonlinear function to a desired degree of 

accuracy [8]. Because of this property, they are suitable for 

the identification and control of nonlinear plants [14]. From 

the different classes of networks, feedforward neural networks 

and particularly multi-layer perceptrons (MLPs) are the most 

frequently used for nonlinear control.      

In recent years there has been a significant increase in the 

number of neural network based control techniques. One such 

method is the neural network internal model control (IMC) 

strategy. This strategy is one of the important techniques used 

for the control of unknown nonlinear discrete-time systems 

subject to uncertainainties (model mismatch and disturbances) 

because of its robustness against uncertainties [2],[4], [5], [9], 

[11] ,[21]. The IMC-based ANN strategy consists of training a 

network to learn the plant dynamics. Another neural network 

is trained to learn the inverse dynamics so that it can be used 

as a nonlinear controller.  

 

In general the inversion of nonlinear models is not an easy 

task and analytical solutions may not exist, so solutions have 

to be found numerically. One important point is that the 

inversion of the plant model may lead to unstable controllers 

when the plant has unstable zeros. Fortunately, there are 

several strategies for obtaining the inverse model so that the 

nonlinear performance can be fully exploited in order to cope 

with a complex plant [3].  

It is well known that nonaffine nonlinear plant models 

represent a much broader group of both real-world and 

academic systems. For an unknown nonaffine nonlinear 

discrete-time system, its output depends nonlinearly on its 

input. Therefore, it is no longer a simple task to determine the 

control input of such a nonaffine nonlinear system.  

Most frequently used nonaffine nonlinear discrete-time 

systems are described by the nonlinear autoregressive moving 

average with eXogenous input (NARMAX) representation 

[1].  

Recently, neural network control for unknown nonaffine 

nonlinear discrete-time systems has received considerable 

attention for its academic challenge and its practical interest. 

Adaptive neural network for such nonlinear systems based on 

online identification with backpropagation is given in [16]. 

The study of adaptive inverse control in which dynamic 

gradient methods were used to adjust the neural networks 

weights is given in [17]. Control of nonaffine nonlinear 

discrete-time systems using reinforcement learnining based 

linearly parameterized neural networks is given in [19].    

All of the above mentioned results and others are limited to 

on-line control. In this paper the plant NARMAX 

representation and IMC based on artificial neural networks are 

used to produce an efficient off-line control scheme for 

tracking unknown nonaffine nonlinear discrete-time systems 

under external disturbances.  As we will see in the simulation 

results, the neural network IMC strategy shows satisfactory 

performance when it is used to control unknown nonaffine 

nonlinear discrete-time systems with and without 

disturbances. 

This paper is organized as follows: In section 2 the problem 

under consideration is stated. Section 3 gives details of the 

nonlinear internal model control (IMC) based neural 

networks. The input-output representation used for unknown 

nonaffine nonlinear plant modeling, the network architecture 

used, and full details of the training algorithm used for 

modeling are given in Section 4. In Section 5, the nonlinear 

relation used by neural network to find model of the plant 

inverse, the network architecture used, and training algorithm 

used for network weights learning are given. The block 
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diagram of the internal model control (IMC) structure with 

details of the implementation of model and inverse is given in 

section 6. Section 7 presents the simulation results for 

tracking SISO nonaffine nonlinear discrete-time systems with 

or without disturbances. A comparison study when control 

SISO nonaffine nonlinear discrete-time systems done with 

and without disturbances is shown in section 8. Finally, some 

conclusions are remarked in Section 9.  

2. STATEMENT OF THE PROBLEM 
Consider the following SISO nonaffine nonlinear discrete-

time system [20]: 

)]k(X[h)1k(y

]u(k) ),k(X[s)1k(x

            

)k(x)1k(x

)k(x)1k(x

n

32

21









                            (1) 

where   nT
n21 R)k(x , ),k(x ),k(x)k(X    is the internal 

state of the system, R)k(u  is the input to the system, 

R)k(y  is the measured output, and (.)s  and (.)h  are 

unknown smooth nonlinear functions. 

The control objective is to design a control input )k(u , such 

that the system output )k(y  subjected to disturbances d  

follows a known and bounded trajectory  R)k(r  . 

3. NONLINEAR IMC USING NEURAL 

NETWORKS 
For the control of nonlinear discrete-time systems subject to 

uncertainties (model mismatch and disturbances)nonlinear 

internal model control (IMC) using neural networks has 

received much attention [10], [12], [18]. Nonlinear IMC was 

proposed by [6], as shown in Fig. 1. The key characteristic of 

this type of control strategy is to have the inverse controller 

and the internal model. In Fig. 1, the model of the nonlinear 

plant is needed as the internal model. Using this internal 

model, the effect of uncertainties can be suppressed with the 

feedback signal generated. In nonlinear IMC, the nonlinear 

model and its inversion play a crucial role. Fig. 2 gives a basic 

neural network IMC structure [15], which is an extension of 

nonlinear IMC. For the control of unknown nonlinear discrete 

systems using the nonlinear IMC structure, neural network 

model is employed as the internal model and neural network 

inverse controller is used to replace the inverse controller, as 

shown in Fig. 2. The control structure given in Figs. 1 and 2 

has been shown to have good robustness against uncertainties 

[10], [11], [12].   

 Fig.1: Basic Structure of nonlinear IMC. 

 
Fig. 2: Basic Structure of NN IMC. 

4. NN MODELING 
The first step in performing control using IMC strategy is to 

find model of the plant. The model of the plant should capture 

the dynamics of the plant well enough so that a controller 

designed to control the plant model will also control the plant 

very well. 

For convenience of analysis, the future output of the SISO 

nonaffine nonlinear discrete-time system (1) is determined by 

a number of past observations of the inputs and outputs. An 

equivalent input-output representation can be written as the 

nonlinear auto regressive moving average with exogenous 

inputs (NARMAX) system: 

]1)m-u(k , 1),-u(k u(k),                  

 1),n-y(k , 1),-y(k ),k(y[f)1k(y








               (2) 

where n  and m  are the highest orders of the output and 

input, respectively, (.)f  is the smooth nonlinear function.  

The series-parallel identification model corresponding to a 

plant represented by (2) has the form shown in Fig. 3. TDL in 

Fig. 3 denotes a tapped delay line whose output vector has for 

its elements the delayed values of input signal. Hence the past 

values of the input and the output of the plant form the input 

vector to a neural network whose output )1k(ŷ   corresponds 

to the estimate of the plant output at any instant of time 1k  . 

The series-parallel model enjoys several advantages: 1) since 

the plant is assumed to be BIBO stable, all the signals used in 

the identification procedure are bounded. 2) since no feedback 

loop exists in the model, static back propagation can be used 

to adjust parameters reducing the computational overhead 

substantially. 3) assume that the output error tends to small 

value asymptotically i.e., )1k(y)1k(ŷ  , the series-

parallel model may be replaced by a parallel model without 

serious consequences. This has practical implications if the 

identification model is to be used off line.  

 

Fig. 3: Architecture for finding neural network internal model 

of the nonaffine plant represented by a NARMAX model (2). 

In this paper, a multilayer network with an input layer, an 

output layer with one neuron, and two hidden layers is used to 

model the nonaffine plant represented by a NARMAX model 

(2). 
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The multilayer network performs the calculations such that 

the output of the jth neuron in 1st and the output of the rth 

neuron in 2nd hidden layers are expressed as 














 

i

1h
ji
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jj bXwfI                        (3) 
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Where iX is the ith network input, 1h
jiw  is the connection 

weight from the ith input to the jth neuron in the 1st hidden 

layer, 2h
rjw  is the connection weight from the jth neuron in 

the 1st hidden layer to the rth neuron in the 2nd hidden layer, 
1h

jb  is the weight from the bias to the jth neuron in the 1st 

hidden layer, 2h
rb  is the weight from the bias to the rth 

neuron in the second hidden layer, (.)f 1h
j  and (.)f 2h

r  are 

nonlinear sigmoid activation functions defined as 

netinpute1

1
)netinput(f


                            (5) 

The network output is calculated by the following equation 
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where o
rw  is the weight connection of the neuron in the 

output layer to the rth neuron in the 2nd hidden layer, ob  is 

the bias weight for the output neuron, and of  is the 

transformation function between 2nd hidden layer and output 

layer and it is a linear function. 

The popular backpropagation algorithm for training the 

multilayer network is gradient descent-based algorithm to 

minimize the following cost function  

2))1k(ŷ)1k(y(
2

1
J                                   (7) 

A recursive algorithm, starting at the output nodes and 

working back to the first hidden layer is used to adjust 

weights, is given by 
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where   is the learning rate 10   and 
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Full details of the training algorithm used are given in [7], 

[14].   

After training, the plant output measurements in the series-

parallel model  

]1)m-u(k , 1),-u(k u(k),                  

 1),n-y(k , 1),-y(k ),k(y[f̂)1k(ŷ








                  (10) 

are replaced by the model outputs in the parallel model  

]1)m-u(k , 1),-u(k u(k),                  

 1),n-(kŷ , 1),-(kŷ ),k(ŷ[f̂)1k(ŷ








                  (11) 

This parallel model is used for neural network inverse 

modeling as we will see in the following section. 

5. NN INVERSE MODELING 
Inverse modeling plays a crucial role in IMC structure. The 

inverse learning structure is shown in Fig. 4. In this structure 

the plant model precedes the network to be trained as the 

inverse. We use the plant model because the plant is 

unknown. Using this architecture, we are able to explicitly 

calculate the partial derivatives of the plant model output with 

respect to its input. From (2), the inverse function 1f   leading 

to the generation of )k(u  would require knowledge of the 

future value )1k(y  . To overcome this problem, we replace 

this future value with the value of the reference signal 

)1k(r  , which we assume is available at time k . Thus, the 

nonlinear relation of the network modeling the plant inverse is 

given by 

 
)1)m-u(k , 1),-u(k                        

 1),r(k 1),n-(kŷ , ),k(ŷ(f̂)k(u 1



 




                (12) 

The condition governing the inevtibility of known system is 

that the linearization of the plant (1) around the equilibrium 

state is controllable. 

 
Fig. 4: Plant model inverse modeling using neural networks. 

The structure of inverse neural network is similar to that used 

for plant modeling. A multilayer network with an input layer, 

an output layer with one node, and two hidden layers is used 

to model the inverse model represented by (12).   

The inverse multilayer network performs the calculations 
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where the input vector is given by  
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The criterion to be minimized is given by: 
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A recursive algorithm, used to adjust weights, is given by 
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.

)1k(ŷ
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The training process is continued until the control sequence 

leads to minimize the difference between the plant model and 

the reference signal.  

6. IMC CONTROLLER DESIGN 
After training the plant neural network and inverse neural 

network models, as given in sections 4 and 5, we can 

incorporate them in the NN IMC structure given in section 3, 

Fig. 2.  

Because plant neural network and inverse neural network 

models are implemented according to equations (11) and (12) 
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 the block diagram given in Fig. 5 gives more details about the 

Internal Model Control structure. 

                                                                                                                                            

 
Fig. 5: Detailed structure of Internal Model Control   

The difference between the nonlinear plant output and plant 

neural network model (internal model) output represents the 

effect of disturbances and internal model mismatch. 

If the NN inverse controller static gain is equal to the inverse 

of the internal model static gain and if the overall closed loop 

system is stable, this structure presents robustness properties 

against disturbances and modeling mismatch; it allows having 

an offset-free response by canceling the noise at the process 

output. 

In practice perfect model cannot be obtained. In addition, the 

infinite gain required by perfect control would lead to 

sensitivity problem under model uncertainty.  

A filter is usually added at the input of the NN inverse 

controller to attenuate uncertainties in the feedback, generated 

by the difference between plant and model outputs and serves 

to moderate excessive control effort. In [11] it was found that 

to ensure robust stability, whether the model order, it is 

always possible to use first order filter of the form  
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where   is the filter tuning parameter and )1k(r*   is the 

filter output. 
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According to the Fig. 5, the models need to match, that is the 

inverse model should be the inverse of the forward model 

instead of the inverse of the system. 

7. SIMULATION RESULTS 
This section demonstrates the application of the IMC strategy 

on the unknown nonaffine nonlinear systems for both tracking 

and disturbance rejection studies. 

Example 1:  

Consider the liquid level system described by the following 

equation [20]: 
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The NARMAX model of the process should be written as: 
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The control objective is to make the liquid level )1k(y  to 

follow a desired trajectory 

0.4 ))50ksign(sin( 3.0)1k(r                         (26) 

In order to explain the disturbance-rejection capabilities of the 

Internal model control (IMC) structure, additive noise plus the 

influence of unknown plant dynamics are considered. The 

following additive noise is assumed to corrupt the output: 

))sin(35.49t+)sin(23.66t+sin(12t)+(sin(8t) * 0.01d(k) (27) 

To control this unknown nonlinear plant, the control process 

is divided into the following steps: 

Step 1: Plant modeling  

Using random input signal uniformly distributed over the 

interval ]1 ,1[  and input/output patterns generated from the 

unknown plant, neural network model of the plant with 10 

nodes in the 1st hidden layer and 5 neurons in the 2nd hidden 

layer can be trained using the rules given in section 4 to model 

the plant (24) represented by NARMAX model given by 

]1)-u(k u(k), 1),-y(k ),k(y[f)1k(y                 (28) 

The initial network weight values are selected randomly from 

the interval ]1 ,1[  and the learning rate )(  used is equal 0.2. 

Fig. 6 shows the output of the plant and the output of the 

model for a randomly selected input signal uniformly 

distributed over the interval ]1 ,1[ . Fig. 7 shows the error 

between model and plant which proves the accuracy of the 

modeling process. So the neural network model is used to find 

neural network inverse controller.   

Step 2: Using neural network plant model obtained from step 

1 and the architecture given in Fig. 4, the neural network 

inverse controller represented by 

]1)-u(k 1),r(k ),1k(y ),k(y[f)k(u mm
1             (29) 

with 10 nodes in the 1st hidden layer and 5 neurons in the 2nd 

hidden layer can be obtained. The initial network weight 

values are selected randomly from the interval ]1 ,1[  and the 

learning rate )(  used is equal 0.08. The rules used for the 

learning process are given in section 5. Fig. 8 shows the 

relation between input to the controller and output of the 

model. It can be seen from Fig. 8 that the relation is linear, as 

desired. Fig. 9 shows the tracking capabilities of the IMC 

strategy when the desired trajectory is given by (26) and the 

using the first-order filter F of the form given by 

1

1

z5.01

z5.0
F






                                      (30)     

Fig. 10 gives the error between the reference signal )1k(r   

and the plant output )1k(yp   result when IMC strategy is 

used for tracking. The control input for the system (24) 

obtained using IMC strategy is given in Fig. 11.  

Fig. 12 shows the disturbance given by (27). Fig. 13 shows 

that the performance of the IMC structure is satisfactory when 

controlling the system subjected to disturbance given by (27). 

The error between the reference signal )1k(r   and the plant 

output )1k(yp  , result when IMC strategy is used to control 

system subjected to disturbance (27), is shown in Fig. 14.  
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Fig. 6: Model and Plant response using random input 

uniformly distributed over the interval ]1 ,1[ . 
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Fig. 7: Error between model and plant response when using 

random input uniformly distributed over the interval ]1 ,1[ . 
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Fig. 8: Relation between input to the controller and output of 

the model. 
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Fig. 9: IMC tracking performance without disturbance. 
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Fig. 10: Error between reference signal and output of the 

system.     
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Fig. 11: Control signal for the system (24) in case of reference 

model (26) when using IMC strategy.  
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Fig. 12: Disturbance of the plant (24). 
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Fig. 13 IMC tracking performance under disturbance (27). 
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Fig. 14: Error between reference signal and output of the 

system when the system under disturbance (27).     

Example 2: 

Consider the first order SISO system as described in the 

following difference equation [13]: 

)])k(u)k(ycos[5)(k(u)]k(ysin[)1k(y             (31) 

The objectives of simulations include the following: 

1) Test the approximation performance of the NN input-

output approximation model under the following test signal 

with amplitude. 








 







 


25

k2
sin 5.0

50

k2
sin 5.0)k(u              (32) 

2) Track the following trajectories with magnitude: 

 






 







 


100

k2
sin 2

50

k2
sin 2)k(r                  (33) 

      when using the neural network IMC strategy. 

3) Explain the disturbance-rejection capabilities of the 

Internal model control (IMC) structure, additive noise plus 

the influence of unknown plant dynamics are considered. 

The following additive noise is assumed to corrupt the 

output: 

   (cos(3t)) * 0.01d(k)                           (34) 

To control this unknown nonlinear plant, the control process 

is divided into the following steps: 

Step 1: Plant modeling 

using random input signal uniformly distributed over the 

interval ]1 ,1[  and input/output patterns generated from the 

unknown plant, neural network model of the plant with 20 

nodes in the 1st hidden layer and 11 neurons in the 2nd hidden 

layer can be trained as seen in section 4 to model the plant 

(31) represented by NARMAX model as given by 

]u(k) ,)k(y[f)1k(y                           (35) 

The initial network weight values are selected randomly from 

the interval ]1 ,1[  and the learning rate )(  used is equal 

1.0 . Fig. 15 shows the output of the plant and the output of 

the model for a randomly selected input signal uniformly 

distributed over the interval ]1 ,1[ . Fig. 16 shows the error 

between model and plant which proves the accuracy of the 

modeling process. So the neural network model is used to find 

neural network inverse controller.   

Step 2: Using neural network plant model obtained from step 

1 and the architecture given in Fig. 4, the neural network 

inverse controller represented by 

]1)r(k ),k(y[f)k(u m
1                        (36) 

with 20 nodes in the 1st hidden layer and 11 neurons in the 2nd 

hidden layer can be obtained. The initial network weight 

values are selected randomly from the interval ]1 ,1[  and the 

learning rate )(  used is equal 0.02. Section 5 gives the 

details of the learning process. Fig. 17 shows the relation 

between input to the controller and output of the model. It can 

be seen from Fig. 17 that the relation is linear, as desired. Fig. 

18 shows the tracking capabilities of the IMC strategy when 

the desired trajectory is given by (33) and using the first-order 

filter F of the form given by (30). 
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Fig. 19 gives the error between the reference signal )1k(r   

and the plant output )1k(yp   result when IMC strategy is 

used for tracking. The control input for the system (31) 

obtained using IMC strategy is given in Fig. 20.  

Fig. 21 shows the disturbance given by (34). Fig. 22 shows 

that the performance of the IMC structure is satisfactory when 

controlling the system subjected to disturbance given by (34). 

The error between the reference signal )1k(r   and the plant 

output )1k(yp  , result when IMC strategy is used to control 

system (31) subjected to disturbance (34), is shown in Fig.23. 
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Fig. 15: Model and Plant response using random input 

uniformly distributed over the interval ]1 ,1[ . 
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Fig. 16: Error between model and plant response when using 

random input uniformly distributed over the interval ]1 ,1[ . 
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Fig. 17: Relation between input to the controller and output of 

the model. 
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Fig. 18: IMC tracking performance without disturbance. 
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Fig. 19: Error between reference signal and output of the 

system.     
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Fig. 20: Control signal for the system (31) in case of reference 

model (33) when using IMC strategy. 
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Fig. 21: Disturbance of the plant (31). 
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 Fig. 22: IMC tracking performance when the system is under 

disturbance (34). 
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Fig. 23: Error between reference signal and output of the 

system when the system is under disturbance (34).     

8. COMPARISON STUDY 
In this section, we will make a comparison between two 

control cases 1) when nonaffine nonlinear discrete-time 

systems are subject to disturbances and 2) when nonaffine 

nonlinear discrete-time systems are without any disturbances. 

Related to example 1, Mean square error, between the 

reference model )1k(r   and the plant output )1k(yp  , in 

the first case is given by 3108.4   and in the second case is 

given by 3103  . Related to example 2, Mean square error, 

between the reference model )1k(r   and the plant output 

)1k(yp  , in the first case is given by 2102.1   and in the 

second case is given by 3109.1  . Its clear that the difference 

is very small which prove the ability of the internal model 

control technique based neural networks to track unknown 

nonaffine nonlinear discrete-time systems under external 

disturbances.   



International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.6, February 2012 

26 

9. CONCLUSION 
This paper described the use of nonlinear internal model 

control (IMC), based on two feedforward neural networks, to 

control unknown nonaffine nonlinear systems. The neural 

network models (internal model and inverse model) are 

obtained from input-output data using a three-layer 

feedforward network trained with a backpropagation 

algorithm. The nonlinear IMC controller consists of a model 

inverse controller and a robustness filter with a single tuning 

parameter. Simulation results for two unknown nonaffine 

nonlinear systems demonstrate the ability of the IMC strategy 

to perform tracking control. In view of the flexibility that 

neural networks provide in modeling unknown nonlinear 

systems, the nonlinear IMC is potentially applicable to control 

unknown nonaffine nonlinear systems subjected under 

external disturbances.     
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