
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.5, February 2012

41

Augmenting the Performance of Existing

OODBMS Benchmarks

V. Geetha

Department of Information Technology

Pondicherry Engineering College
Puducherry -605014.

N. Sreenath

Department of Computer Science & Engineering

Pondicherry Engineering College
Puducherry -605014.

ABSTRACT

Object oriented databases are widely popular for their

complex data support and data relationships. Several object

oriented database products are now coming to the market.

Existing benchmarks are inadequate in testing the complex

data support, concurrency control and performance of the

database. They do not exploit the object oriented features

native to the databases. This paper aims in highlighting the

points where the benchmarks should focus, how they should

be structured to test the performance of the databases

satisfactorily.

General Terms: Object oriented databases, benchmarks,

performance

Keywords: Object oriented databases, Benchmark,

Concurrency control, Performance, Object oriented features

1. INTRODUCTION
Object oriented databases are very popular for their complex

data support. They are widely used for applications like CAD,

CAM. Several object oriented databases like E/Exodus,

Objectivity, ObjectStore and Versant etc., are in the market.

New object oriented database products are introduced in the

market and the developers of these systems have made

different choices for fundamental aspects of the system. The

buyers of these object oriented database products should make

certain whether these products will cater to their needs.

Hence, a standard benchmark is needed to compare all the

object oriented database products and choose one of them that

fit best to their requirements. Benchmark also helps to identify

problems with database systems. Standard benchmarks

alleviate the design and development cost that are incurred in

custom-made benchmarks.

Benchmarks are usually designed to measure one of the

following objectives:

1. Performance in single user environment

2. Sufficiency of query support

3. Concurrency in multi user environment

4. Complex data type support

Though other objectives like disk I/O, object reference and

inter process communication exist, they are given lesser

importance.

In the case of relational databases, the first industry

benchmark [1] by IBM purported to measure the performance

of a system handling ATM transactions in batch mode. Both

TPC-C and TPC-D [23] are popular benchmarks for OLTP

and decision support. TPC-E is an enterprise benchmark.

Object databases differ from relational databases. They can be

object - relational databases or object oriented databases.

Lakey [18] has pointed out the following reasons for not

adopting relational database benchmarks to test object

databases. They are

1. Applications in object databases are characterized by

complex structures and relationships. They follow

conceptual paths rather than logical or physical paths.

2. In object database, a programming language acts as data

definition language, data manipulation language and

data control language. This is tightly integrated with

database management.

3. Traditional metrics are different from metrics of object

databases.

 Several benchmarks [7, 8, 16, 19] are available for object-

relational databases. Object-relational databases [24] are built

on top of relational database by adding the key features

namely inheritance, complex object support, an extensible

type system and triggers. They emphasize on the features that

are not covered in pure relational databases. The objectives of

object-relational database benchmarks are different from

object oriented databases. As object –relational databases are

hybrid of objectives of object oriented concepts and relational

databases; they have to cover features of both of them.

 Gray [12] defines four primary criteria to specify a good

benchmark. They are

(1) Relevance: it must concern aspects of performance that

appeal to the largest number of potential users.

(2) Portability: it must be reusable to test the performances of

different OODBMS.

(3) Simplicity: it must be feasible and must not require too

many resources.

(4) Scalability: it must be able to be adapted to small or large

computer systems or new architectures.

Based on the above factors, Darmont [9] has made a

comparison of the four benchmarks namely 001, HyperModel,

007 and OCB (Object Clustering Benchmark) as given in

table 1. However, the factors are too generic and can be

applied to any type of benchmark.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.5, February 2012

42

Table 1. Comparison of existing benchmarks with Gray’s

criteria by Darmont [9]

 Relevance Portability Simplicity Scalability

001[7] – – ++ ++ –

Hypermod

el [2]
+ + – – –

007[5] ++ + – – –

OCB[10] ++ + – ++

Strong point: + Very strong point: ++ Weak point: –

Very weak point: – –

Several object oriented database benchmarks [2, 9, 11, 18, 19]

are proposed for object oriented databases. OO1 or “Cattell

Benchmark”[7] was developed early in the nineties when

there was no appropriate benchmark for engineering

applications such as computer aided design (CAD), computer

aided manufacturing (CAM), or software engineering (SE).

OO1 is a simple benchmark that is very easy to implement. A

major drawback of this tool is that its workload model is too

elementary to measure the elaborate traversals that are

common in many types of object-oriented applications.

The HyperModel Benchmark [2] or Tektronix Benchmark

possesses a richer workload model than OO1. This renders it

potentially more effective than OO1 in measuring the

performance of engineering databases. However, this added

complexity also makes HyperModel harder to implement.

ACOB (Altair Complex Object Benchmark) [11] is a study of

three workstation-server or client –server object oriented

database. It is designed to understand the system behavior of

architecture in the execution of object operations.

Of all the object oriented database benchmarks, 007

benchmark [5] [6] is very popular and widely used. It tests the

performance of object-oriented databases, by providing wide

range of pointer traversals and a rich set of updates and

queries. OO7 benchmark [5] reuses the structures of OO1 and

HyperModel to propose a more complete benchmark and to

simulate various transactions running on a diversified

database. It has also been designed to be more generic than its

predecessors do and to correct some of their known

weaknesses. OO7 is even harder to implement than

HyperModel.

However, it requires some more additions to make it a good

object oriented database benchmark. Jun and Gruenwald [15]

has identified the following lacuna in 007 benchmark.

1. Test cases to test queries that alter the schema are

lacking.

2. The depth of the class hierarchy is not sufficient.

3. The depth of composition or nested hierarchy is very

small for testing.

OO1, HyperModel, and OO7, though aimed at engineering

applications are often viewed as general-purpose benchmarks.

However, they feature relatively simple databases and are not

well suited for other types of applications such as financial,

telecommunication, and multimedia applications [3].

Hence, many benchmarks were developed to study particular

domains such as client-server architectures, object clustering,

active databases, workflow management, CAD applications

or the study of views in an object-oriented context. A fair

number of these benchmarks are more or less based on OO1,

HyperModel, or OO7.

An alternative to very specific benchmarks resides in generic

and tunable benchmarks such as OCB [9]. The flexibility and

scalability of OCB is achieved through an extensive set of

parameters that helps OCB to simulate the behavior of the de

facto standards in object-oriented benchmarking.

Furthermore, OCB’s generic model can be implemented

within an object-relational system easily and most of its

operations are relevant for such a system. Hence, it can also

be applied in an object-relational context with few

adaptations. It is mainly meant for testing clustering

performances of object oriented databases.

This paper highlights the lacuna in current object oriented

database bench marks and indicate what could done to make

them a good object oriented database benchmark. The main

drawback in these benchmarks is they do not use exploit the

object oriented aspects of object oriented databases to design

their test cases. The performance of object oriented databases

is mainly based on complex data support and concurrency.

Hence, this paper focuses in highlighting how the test

parameters can be chosen based on object-oriented aspects.

 The paper is organized as follows. Chapter 2 gives the

background needed to understand the need for new

benchmark. It describes the structure of a typical object

oriented database and identifies the lacuna in existing

benchmarks. Chapter 3 describes the expectations from a

good object oriented database benchmark. It highlights the

expected benchmark objectives and lists the test parameters

and test cases. Chapter 4 concludes the paper.

2. BACKGROUND

2.1 Structure of Object Oriented

Databases
Object oriented databases are widely used for advanced

applications like CAD, CAM etc., as they support

representation of complex data and their complicated

relationships. Object oriented database is a collection of

objects. The objects are of two types - classes and instances.

A class object consists of attributes and methods. It defines

the structure and behavior of an entity. The domain is mapped

on the instances and represented as database.

The clients can access the ODBMS in two modes - runtime

mode and design time mode. In runtime mode, the domain

data is mapped onto the attributes of instances and the

associated member functions operate on them to satisfy client

requests. The member function (also called as methods) might

read / modify the attribute values. Design time mode is used

to read or modify the schema to reflect the changes in the

domain. It can be in one of these granularities: - class lattice

level, class level and instance level. The operations allowed

are to read and modify attribute definitions, method

definitions, class definitions and class relationship definitions.

In general, database access can be a read/write operation. The

read operations can be executed in shared lock mode and

write operations should be executed in exclusive lock mode.

The transactions in object oriented databases are long duration

transactions.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.5, February 2012

43

The schema of OODB is represented as a class diagram. The

class diagram is a collection of classes related by inheritance,

aggregation (composition) and association relationships.

Group of classes related by inheritance (excluding multiple

inheritance) is called class hierarchy. Group of classes related

by a combination of all types of relationships mentioned

above is called class lattice. Then class diagram can be

viewed as a class lattice and represented as Directed Acyclic

Graph (DAG). The classes are viewed as nodes and the

relationship links connecting classes are viewed as edges. The

design time transactions can do changes to schema in two

ways as specified in Bannerjee et al. [4].

The schema changes are categorized into

1. Changes to the contents of node or class

1.1 Changes to instances

 Add a new instance to a class

 Delete an existing instance from a class

 Modify the definition of an instance

 Move an instance from one class to another

class

 Read the definition of an instance

Changes to attributes

 Add a new attribute to a class

 Delete an existing attribute from a class

 Modify the definition of an attribute

 Move an attribute from one class to another

class

 Read the definition of an attribute

1.3 Changes to methods

 Add a new method to a class

 Delete an existing method from a class

 Modify the definition of an method

 Move a method from one class to another class

 Read the definition of an method

2. Changes to an edge

 Make a class S as superclass of class C

 Delete a class S from the super class list of class C.

 Modify the order of superclasses of class C

 Read the superclass list of class C.

3. Changes to a node or class

 Add a new class

 Delete an existing class

 Modify the definition of a class

 Move a class from one location to another position

 Read the definition of a class

From the above group of operations, certain semantic aspects

can be inferred. During runtime transactions, the values of

attributes are read or modified by executing the associated

methods in a class. The attribute values are locked in read or

write lock mode. In design time transactions, the attribute

definitions are read or modified. Thus, attribute has two facets

and they are chosen depending on the type of transaction.

During runtime transactions, the methods are locked in read

mode, as their contents are not modified by execution. In

design time transactions, the method definitions are read or

modified. When any attribute or method definition is

modified, runtime transactions accessing them should not be

allowed.

 A runtime transaction can have attribute, instance or class

level of granularity. It is based on the property of the method

as to whether the method is 1. Primitive or Composed and 2.

Instance or Class level as defined by Reihle and Beczuck

[20].

2.2 Lacuna in existing object oriented

database benchmarks
After analyzing all the benchmarks for object oriented

databases, while testing the concurrency control techniques

[15, 14], the following lacuna were identified:

 All the benchmarks focus on database aspects namely

pointer traversal, indexing, support of scan, selection and

range queries, join complexity, buffer management etc.

The focus on object-oriented aspects is shallow. This is

very important because all the features offered by object-

oriented databases are offered through object-oriented

aspects.

 Object oriented databases are adopted for several

domains. The requirements of each of these domains are

different. So testing the product with single application is

not sufficient. A very good application in each domain

has to be identified. For example, implementing ATM

application can be considered as benchmark application

for finance domain.

 The query support is inadequate in all the benchmarks.

Hence, test cases should be framed in such a way as to

cover all possible operations done at runtime and design

time in the domain. For example, 007 benchmark does

not support queries altering the schema. In object

oriented databases, the schema is represented by class

diagram as pointed earlier in section 2.1. 007

benchmarks allow usage of existing schema. It does not

provide any test case to modify the structure of the

schema.

 Complex data support is the main attraction of object

oriented databases. It is possible only by the relationships

namely inheritance, aggregation and association. Some

of the benchmarks provide test cases to test the support

of these relationships only individually. But in order to

implement any domain, a mixture of all the relationships

in any order is required. For example, object of an

inherited subclass can be component of a composite class

or class of a composite object may be a base class that is

inherited to one or more sub classes. Hence, complexity

of data support depends on the depth to which the

combinations of these relationships are supported.

 To test the concurrency of any product, the conflicts

among runtime transactions, among design time

transactions and between runtime and design time

transactions are to be taken as test cases. While testing

the product in multi user environment, apart from

measuring the response time of transactions, the smallest

granularity supported should also be noted.

3. DESIGN EXPECTATIONS FROM A

GOOD OBJECT ORIENTED DATABASE

BENCHMARK
The expectations from a good benchmark are discussed in this

section. The factors to be considered for benchmarking are

first identified. Then associated testing parameters and test

cases are listed.

3.1 Factors for benchmarking
1. Complex data support:
 Data is represented as attributes in object oriented databases.

The attributes and associated member functions compose the

objects. Attributes map to the underlying database. The data

type of attributes can be ADT (Abstract Data Type) or object.

ADT is an atomic data type defining primitive data types. The

support of ADT is available in all databases. Object data type

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.5, February 2012

44

is a user defined complex data type. It allows users to define

one object as part of another object. The object that is defined

inside another object is called component object and the

object holding it is called composite object.

Class Person {

String name; * attributes*\

String address;

:

}

Class faculty: class person {

int empID; * attributes*\

String designation;

 :

}

Class department {

int deptID;

faculty staff [50]; * attributes*\

 :

 }

In the above example, all attributes of class ‘person’ and

‘faculty’ belongs to ADT. Class ‘faculty’ is inherited as sub

class from base class ‘person’ by inheritance. In class

‘department’, attribute ‘deptID’ is of abstract data type.

Attribute ‘staff’ is of object data type. Object of ‘faculty’ is

included as attribute of department. Then ‘faculty’ is called as

component object and object of ‘department’ is composite

object. This can be nested to any level. Kim [17] has defined

this “part of “relationship also called as composition or

aggregation to be of two types namely shared or dedicated

composition. The dedicated composition does not allow an

object to be part of more than one object. On the other hand,

shared composition allows this. Same component object can

be part of more than one composite object. When a

component object is accessed in one composite object, it

should not be simultaneously accessed by other composite

objects sharing this component object. This is needed to

preserve consistency of the component object. Composition is

also classified into dependent and independent composition. A

dependent composite object depends on component object for

its life. If the component object is destructed, the associated

composite object is also destructed. However an independent

composite object’s life is independent of its components. The

composition is thus classified into shared dependent

composition, shared independent composition, dedicated

dependent composition and dedicated independent

composition.

 In the above example, inheritance is followed by

composition. Inheritance is classified into single inheritance,

multilevel inheritance, multiple inheritance and hybrid

inheritance. Similarly, association is classified into

independent association and dependent association. In the

schema of a domain, these relationships can be defined any

number of times and in any combination. Then the benchmark

has to be adequate enough to test the support of the product to

represent them.

2. Support for completeness of operations

 The domain operations at database level are listed. Basically

the operations can be classified into two types: operations

possible at runtime and operations possible at design time. At

runtime, the data from database copied on attributes are

accessed. The attribute values are read or updated. At design

time, the operations for modifying the schema are allowed.

The operations allowed at design time are listed in section 2.1.

So a good benchmark has to verify whether the domain

operations relating to all these operations are supported in the

product. Even if a database product does not individually

support all these operations, it might provide all these

operations in few groups. Then operation granularity becomes

coarse and performance will be poor.

3. Support for concurrency

In single user scenario, performance is measured by response

time. In multi user environment, performance is measured by

concurrency. In multi user environment, three different test

cases are to be included to test

[1] Conflicts among runtime transactions

[2] Conflicts among design time transactions

[3] Conflicts between runtime and design time transactions.

The database product has to be tested for concurrency support

by applying all the above three cases.

3.2 Testing parameters
After analyzing the lacuna in the existing benchmarks, the

following parameters are recommended to be added to make

them a good benchmark.

 Application – An application has to be identified by for

each of the domain namely CAD, CAM, Software

Engineering, Finance etc. This is needed to test the

versatility of the product.

 Database Size - Three database sizes namely small,

medium and large as in 007 can be maintained to test the

scalability of the product.

 Lattice Depth – This defines the total depth of the class

diagram. This is defined by the number of levels in the

class diagram. It is the maximum number of

combinations of inheritance, composition and association

relationships between the classes on the top of the class

diagram and the bottom most class. Values for this

parameter can be fixed for all the three database sizes.

 Hierarchy Depth – It is the maximum number of

inheritance hierarchy levels between any two classes in

the class diagram. It can be less than or equal to lattice

depth. Values for this parameter can be fixed for all the

three database sizes.

 Composition Depth- It is the maximum number of

nesting levels of composition. It can also be less than or

equal to lattice depth. Values for this parameter have to

be fixed for all the three database sizes.

 Association Depth- It is the maximum number of

associations chained among group of classes in the class

diagram. It can also be less than or equal to lattice depth.

Values for this parameter have to be fixed for all the

three database sizes.

 Maximum degree class – It is the class which has

maximum number of relationships with other classes.

Values for this parameter have to be fixed for all the

three database sizes.

 Number of instances for maximum degree class- This is

the maximum number of instances that can be created for

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.5, February 2012

45

class that is maximum related to other classes. Parameter

values for all three database sizes are to be fixed.

 Maximum in-degree class- It is the class which is derived

from maximum number of classes. Value is to be fixed

for all database sizes.

 Maximum out-degree class - It is the class from which

from maximum number of classes is derived.. Value is to

be fixed for all database sizes.

3.3 Test cases
The test cases are to be defined separately for single user and

multi user environment. In single user environment, the

sufficiency of operations or query support is tested. For this

queries for all the operations mentioned in section 2.1 are

tested. The runtime operations are tested on the classes which

are inherited or composed or associated maximum from other

classes. When runtime transaction requests a base class

instance, it is enough to lock the base class instance alone. But

when a runtime transaction requests a sub class object, it is

required to lock the associated base class objects that access

the same record also to preserve database consistency. So

consistency bugs of the database can be checked. This is

applicable to aggregation and association also. In aggregation,

the component objects are locked with composite objects. In

association, associated objects are locked with associative

objects.

The design time operations are tested on the base classes or

component classes or associative classes as any change in

these classes will affect all the derived classes.

For multi user environment, concurrency is tested for all the

three cases mentioned in 3.1. The design time transactions can

be tested and equal weightage is given to all the three

structural modifications in section 2.1.

4. CONCLUSION
In this paper, the need for exploiting the object oriented

features of object oriented database product while testing it, is

emphasized. The lacuna in the existing benchmarks is

identified. The existing benchmarks are either too generic or

too narrowed down for usability. In this paper, the genericness

of the structure is supported. At the same time the design

expectations from a good object oriented bench mark

quantitatively as well as qualitatively are listed. Parameters

and test cases are defined for both single and multi-user

environments.

The 007 benchmark provides the basic structure of an

OODBMS benchmark. If it is extended to support the features

listed in this paper, it can be used more effectively.

5. REFERENCES
[1] Anon et al. 1985. A measure of Transaction Processing

Power, Datamation, 31(7):112-118.

[2] Anderson et al. 1990. The HyperModel Benchmark,

Proc. of the Int. Conference on Extending Database

Technology.

[3] Ashutosh Tiwary, Vivek R. Narasayya, Henry M. Levy:

1995. Evaluation of OO7 as a system and an application

benchmark, In OOPSLA Workshop on Object Database

Behavior, Benchmarks and Performance, Austin, Texas.

[4] Banerjee et al. 1987. Semantics and Implementation of

Schema evolution in Object–Oriented Databases, In

Proceedings of ACM SIGMOD conference.

[5] Carey et al. 1993. The OO7 Benchmark, In

Proceedings of the ACM SIGMOD Conference.

[6] Carey et al. 1994. A Status Report on the OO7

OODBMS Benchmarking Effort, In proceedings of the

ACM OOPSLA Conference.

[7] Cattell R. G.G and Skeen. J. 1992. Object Operations

Benchmark, ACM Transactions on Database Systems. 17

(1):1-31.

[8] Cattell R.G.G. 1993. An Engineering Database

Benchmark, In: The Benchmark Handbook for Database

and Transaction Processing Systems 2nd ed., J. Gray ed.,

Morgan Kaufmann.

[9] Darmont. J, Petit.B and Schneider. M. 1998. OCB: A

generic benchmark to evaluate the performances of

object-oriented database systems, Proceedings of 6th

International Conference on Extending Database

Technology Valencia, Spain, LNCS.

[10] Darmont Jerome, and Michel Schneider. 2002. Object-

Oriented Database Benchmarks, Advanced Topics in

Database Research, Volume 1. IGI Global, 34-57.

[11] DeWitt et al. 1990. A study of three alternative

workstation-server architectures for object oriented

database systems. Proceedings of the Sixteenth Very

Large Data Bases Conference, Brisbane, Australia, pp.

107-121.

[12] Gray.J. 1993. The Benchmark Handbook for Database

and Transaction Systems (2nd Edition), Morgan

Kaufmann.

[13] Geetha. V and Sreenath. N. 2011. A Multi-Granularity

Lock Model for Object Oriented Databases using

Semantics, International Conference on Distributed

Computing and Internet Technologies, Bhubaneshwar,

India, Proceedings in LNCS.

[14] Geetha. V and Sreenath. N. 2011. Semantic Based

Concurrency Control in OODBMS, International

Conference on Recent Trends in Information

Technology, Chennai, India, in Proceedings in IEEE

Computer Society.

[15] Jun, W. And Gruenwald. L 1997. Experiences with the

007 Benchmark for Concurrency Control Technique

Performance Evaluations, ACM Object-Oriented

Programming Systems, Languages, and Applications

(OOPSLA '97) Workshop on Experiences Using Object

Data Management, pp. 1-5.

[16] Karey M.J. et al. 1997. The BUCKY Object-Relational

Benchmark, In proceedings of the 1997 ACM –

SIGMOD International Conference on Management of

Data, Tuscon, Arizona.

[17] Kim.W, Bertino,E and Garza.J.F.1990. Composite

Objects revisited, Object oriented Programming,

systems, Languages and Applications, pp 327-340.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.5, February 2012

46

[18] Lakey. B. 1989. Developing benchmarks for comparing

relational and object-oriented database systems. Master’s

Thesis, Oregon Graduate Center, Beaverton, Oregon.

[19] Lee. S.H et al. 2000. The BORD Benchmark for Object-

Relational Databases, Springer-Verilag Lecture Notes in

Computer Science.

[20] Riehle.D, Stephen P. Berczuk. 2000. Properties of

Member Functions in C++, Report.

[21] H.Schreiber, Justitia:. A Generic Benchmark for the

OODBMS Selection, Proc. of the Fourth International

Conference of Data and Knowledge Systems for

Manufacturing and Engineering, (1994)

[22] Schreiber and Justitia. 1994. A Generic Benchmark for

the OODBMS Selection, Proc. of the Fourth

International Conference of Data and Knowledge

Systems for Manufacturing and Engineering.

[23] Shanely.K 1998. History and overview of the TPC,

Transaction Processing Performance Council, http://

tpc.org.

[24] Stonebraker. M. 1996. Object – Relational Database

Systems: the next wave, Morgan Kaufmann.

