
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.4, February 2012

23

An Innovative Approach for finding Frequent

Item sets using Maximal Apriori and Fusion

Process and its Evaluation

Shailendra
Chourasia

M.Tech, Scholar,
 Gyan Ganga

College of
Technology,

Jabalpur (M.P.) Pin-
482003, India

Rashmi
Vishwakarma
Lecturer, MCA

Department, Gyan

Ganga Institute Of

Technology&

Sciences, Jabalpur,

(M.P.)Pin-

482003,India

Neeraj Shukla

HOD, CSE
Department

Gyan Ganga College
of Technology,

Jabalpur,
(M.P.)Pin-482003 ,

India

Meghna Utmal
HOD, MCA

Gyan Ganga College
of Technology,

Jabalpur,
(M.P.)Pin-482003 ,

India

ABSTRACT

Frequent pattern mining is a vital branch of Data Mining that

supports frequent itemsets, frequent sequence and frequent

structure mining. Our approach is regarding frequent itemsets

mining. Frequent item sets mining plays an important role in

association rules mining. Many algorithms have been

developed for finding frequent item sets in very large

transaction databases. This paper proposes an efficient

SortRecursiveMine (Sorted and Recursive Mine) Algorithm

for finding frequent item sets. This proposed method reduces

the number of scans in the database by first finding the

maximal frequent itemsets in the database and then all its

subset consider as frequent according to Apriori property.

Then reduce the database by just considering only those

transactions which are 1-Itemset frequent but not contain in

frequent itemsets and then mine the remaining left frequent

itemsets. Our proposed SortRecursiveMine algorithm works

well based on recursive condition. Thus it reduces the

memory constraints and helps to efficiently mine frequent

itemsets in less time. At last we are evaluating this method,

and performed an experiment on a real dataset to test the run

time of our proposed algorithm.

Key words

Data Mining, Frequent Itemsets, Apriori Algorithm, FP-

Growth, SortRecursiveMine Algorithm.

1. INTRODUCTION
Today’s data mining research the association rule mining is a

broad area. It consists of two phases i.e., finding of frequent

itemsets and generation of rules from the revealed frequent

itemsets. Finding frequent itemsets is more popular because it

has many numbers of applications. A number of algorithms

for mining frequent item sets have been proposed after

Agrawal first introducing the problem of deriving categorical

association rule from transactional databases in [1]. These

existing algorithms uses the candidate generate-and-test

approach and the pattern growth approach. Apriori [2] and its

several variations belong to the first approach, while FP-

growth [7] is examples of the second. In Apriori[1, 2] as well

as many subsequent studies[3, 4], each iteration of the

candidate generate-and-test approach, pairs of frequent k-item

sets are joined to form candidate (k+1)-item sets, then scanned

the database to verify their supports. The Apriori algorithm

achieves good reduction on the size of candidate sets,

however, it takes many scans of the database to check the

candidate item supports as much as the most long length of

patterns. In addition another new algorithm has been

developed [6] which uses top down graph based approach. In

addition, many research have been developed algorithms

using tree structure, such as H-mine[3], FP-growth [7], AFP-

Tree[9].

This paper proposes an efficient SortRecursiveMine (Sorted

and Recursive Mine) Algorithm for finding frequent item sets.

This proposed method reduces the number of scans in the

database by first finding the maximal frequent itemsets in the

database and then reduce the database by just considering

only those transactions which are frequent 1-Itemset but not

include in frequent itemsets and then mine the remaining left

frequent itemsets. Our proposed SortRecursiveMine algorithm

reduces the memory constraints and helps to efficiently mine

frequent itemsets in less time.In Section 2, we put an insight

into the detailed problem description. In Section 3, we give a

detail of proposed SortRecursiveMine algorithm used for

generating all frequent itemsets. Example is given in Section

4. We end with our conclusion in Section 7.

2. PROBLEM DESCRIPTION
Let I = {M1, M2, ….Mn} be a set of items. Let R, the task

relevant data, be a set of transactions in a shop, where each

transaction T is a set of items, such that T I. Each

transaction is assigned an unique identifier called TID. Let A

be a set of items, a transaction T is said to contain A if and

only if A  T. An association rule is an implication of the

form A B, where A  I, B  I, and A∩B= . The rule A 

B holds in the transaction set R with support s, where s is the

percentage of transactions in R that contain A B (i.e., both A

and B). This is taken to be the probability P(A  B). The rule

A B has confidence c in the transaction set R if c is the

percentage of transactions in R containing A that also contain

B. This is taken to be the conditional probability, P(B|A). That

is, Support (A B) = P(AB) = s, Confidence (AB) =

P(B|A) =Support (A B)/Support (A) = c. Thus

association rules is composed of the following two steps:

(1) Find the large item sets that have transaction support

above a minimum support and

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.4, February 2012

24

(2) From the discovered large item sets generate the desired

association rules.

In this paper, we have developed a method to discover large

item sets from the transaction database, thus finding a solution

for the first sub problem.

3. PROPOSED METHOD
Input : Transactional Database D, minimum support count.

Step 1: Count the number of occurrences of each item to find

the candidate 1-itemset with their support count by scanning

the database.

Step 2: Generate frequent 1-itemset by removing the items

having less support count then minimum support count, from

candidate 1-itemset. Let the number of frequent 1-itemset be

“n”.

Step 3: Removes the infrequent items from each transaction.

Step 4: Counts the number of items in each transaction

(item_count).

Step 5: The transactions are sorted in descending order (i.e.

the name of sorted database is SDatabase) based on the

item_count.

Step 6: Call SortRecursiveMine(SDatabase).

Step 7: Stop.

3.1 SortRecursiveMine(SDatabase)

Procedure

Step 1: Make an array with 2-dimension; then put transaction

into and their respective count of repetition.

Step 2: Find maximal transactions (k-itemset) from the array

whose count is greater than or equal to the minimum support

known as maximal frequent itemsets or transactions. If k-

itemsts count is less than minimum support then look for k-

itemsets and (k-1)-itemsets jointly for next (k-1) maximal

itemsets and so on until no itemsets count found greater than

minimum support..

Step 3: The maximal frequent transaction are found, than

according to Apriori property consider each and every one its

non empty subsets are frequent.

Step 4: There may be itemsets left over which are not

included in maximal frequent itemset but they are frequent.

Consequently find all frequent 1-itemset and reduce the

database just consider only those transactions which contain

frequent 1-itemset element but not contain the maximal

frequent transaction.

Step 5: If no such transaction found then return otherwise go

to step 6.

Step 6: Call SortRecursiveMine(ReducedDatabase)

Procedure.

Output : Reduced Database and All frequent itemset

4. EXAMPLE
Suppose Table 1 is transactional database with Transactional

Identity (TID), List of items and item count in each

transaction. There are 9 transactions. Suppose the minimum

support is 2.

Table 1 : Transactional Database , D

TID List of item_IDs Item Count

T001 MILK, BREAD, TOAST, SUGAR 4

T002 BREAD, JAM 2

T003 BREAD, BUTTER, TEA 3

T004 MILK, BREAD, JAM 3

T005 MILK, BUTTER 2

T006 BREAD, BUTTER 2

T007 MILK, BUTTER 2

T008 MILK, BREAD, BUTTER, TOAST 4

T009 MILK, BREAD, BUTTER 3

Scan the transactional Database, D for count of each

Candidate items. It is shown in table 2.

Table 2 : Candidate items, C1

Item Set Support Count

{MILK} 6

{BREAD} 7

{BUTTER} 6

{JAM} 2

{TOAST} 2

{SUGAR} 1

{TEA} 1

Compare the candidate support count with minimum support

count and removes the infrequent items from Table 2 and the

result is shown in Table 3

Table 3 : Frequent 1-itemsets, L1

Item Set Support Count

{MILK} 6

{BREAD} 7

{BUTTER} 6

{JAM} 2

{TOAST} 2

Removing infrequent items from each transactions and update

item_count and sort the transactions and it is shown in Table

4.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.4, February 2012

25

Table 4 : Sorted Database

TID List of item_IDs Item Count

T008 MILK, BREAD, BUTTER, TOAST 4

T001 MILK, BREAD, TOAST ,SUGAR 4

T004 MILK, BREAD, JAM 3

T009 MILK, BREAD, BUTTER 3

T002 BREAD, JAM 2

T003 BREAD, BUTTER 3

T005 MILK, BUTTER 2

T006 BREAD, BUTTER 2

T007 MILK, BUTTER 2

Take 2-dimensional array; put the transaction into 2-

dimensional array with their count of repetition.

2 Item set Cou

nt

3 item set Count 4 item set Count

{MILK,

BUTTER}

2 {MILK,

BREAD,

TOAST}

1 {MILK,

BREAD,

BUTTER

, TOAST}

1

{BREAD,

BUTTER}

2 {MILK,

BREAD,

JAM}

1

{BREAD,

JAM}

1 {MILK,

BREAD,

BUTTER

}

1

Find the maximal 4-itemset its count is 1. In our case, which

is less then to given minimum support therefore this

transaction is not considered as maximal frequent therefore

now we scan 3-itemsets and 4-itemsets in array for maximal

3-itemsets jointly. This will result two maximal 3-itemsets

{MILK, BREAD, BUTTER} {MILK, BREAD, TOAST}

According to Apriori property subset of maximal frequent

itemsets is also considered as frequent all subsets are

{MILK, BREAD, BUTTER} {MILK, BREAD, TOAST}

{BREAD, BUTTER} {BREAD, TOAST} {MILK,

BREAD}{MILK, BUTTER} {MILK, TOAST} {MILK}

{BREAD}{BUTTER} {TOAST}.

Find the frequent 1-itemset from database it is found that

{JAM} which is frequent but not include in maximal itemsets

There are itemsets remaining which are not included in

maximal frequent itemset but they are frequent. Therefore

find all frequent 1-itemset and reduce the database just

consider only those transactions which contain frequent 1-

itemset element but not include the maximal frequent

transaction.

Reduce the database by considering only transaction which

contains {JAM} itemset

TID List of item_IDs

T002 BREAD, JAM

T004 MILK, BREAD, JAM

Go to next step because we have reduce database

By calling SortRecursiveMine (RediucedDatabase)

After scanning prune put items in 2-dimention array with the

count of repetition

2 Item set Count 3 item set Count

{BREAD,

JAM}

1 {MILK,

BREAD, JAM}

1

Find the maximal 3-itemset its count is 1. In our case, which

is less then to given support therefore this transaction is not

considered as maximal frequent therefore now we scan 2-

itemsets and 3-itemsets in array for maximal 2-itemsets

jointly. This will result one maximal 2-itemsets

{BREAD, JAM}

Then final result of the frequent itemsets ({MILK, BREAD,

TOAST} {BREAD, BUTTER, TOAST} {BREAD,

BUTTER} {BREAD, JAM} {BREAD, TOAST} {MILK,

BREAD} {MILK, BUTTER} {MILK, TOAST} {MILK}

{BREAD} {BUTTER} {JAM}{TOAST})

5. EVOLUTION OF SORTRECURSIVE

MINE ALGORITHM
As from reviewing the various techniques i.e. Apriori, FP-

Growth, SortRecursive Mine and many more, we are trying

to proposed differentiate them by the following

considerations:

Table 5. Comparison Of Apriori , Fp-Growth And

Sortrecursive Mine Algorithms

Algorithm

Parameter

Apriori

Algorithm

FP-Growth

Algorithm

SR Mine

Algorithm

Approach

Generate and

test method

Divide and

conquer

method

Recursive

method

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.4, February 2012

26

Technique

It constructs

an iterative

approach,

where

k-itemsets

are used to

explore

(k+1)-

itemsets.

It constructs

conditional

frequent

pattern tree

and

conditional

pattern base

from

database

which satisfy

the minimum

support.

It follows

recursive

approach to

find maximal

frequent

itemsets that

generates

frequent

subsets.

Memory

utilization

enormous

memory

space

required for

candidate set

in large

database.

Low as for

large

database

complete

Tree

structure

cannot fit

into main

memory

little memory

space

required for

two

dimensional

array in large

database.

Database Good for

dense

databases

Good for

dense

databases

Good for

dense as well

as for Sparse

databases.

Scanning Large

scanning of

database

Low

scanning of

database

Limited

scanning of

database as

compare to

Apripri

algorithm.

6. PROS & CONS OF ALGORITHM
This type of approach is much better than Apriori an FP-Tree

in terms of scanning and memory utilization because it does

not produce larger number of candidates and also does not

need to scan whole database again and again.

7. CONCLUSION
In this research work attempt has been made to develop an

algorithm which is improvement over Apriori using an

approach of improved SortRecursiveMine algorithm reduces

the repeated scan of the complete database like Apriori. In this

new algorithm only limited number of transactions are

scanned starting from the first to find frequent n-itemset. It

also uses the concept if the set is frequent, all its subsets are

frequent. It is implemented through the recursion based

approach. We have explained this new algorithm and

illustrated with examples and try to compare with other

methods. In our future work, we will try to implement,

compare and various complexity of existing pattern mining

algorithms.

8. REFERENCES
[1] Ashok Savasere, E. Omiecinski and S. Navathe, “An

efficient algorithm for mining association rules in large

databases”, Proceedings of the 21st International

Conference on Very large database, 1995, pp. 420-431.

[2] Jia Ling, Koh and Vi-Lang Tu, “ A Tree-based Approach

for Efficiently Mining Approximate Frequent Itemsets”,

IEEE International Conference on Research Challenges

in Information Science, 2010, pp. 25-36.

[3] Jian Pei ,J. Han, J. Lu, H. Nishio.S.and Tang, “H-Mine:

Hyper-Structure Mining of Frequent Patterns in Large

Databases”, ICDM International Conference on Data

Mining, ICDM, 2001, pp. 441-448.

[4] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining Frequent

Patterns without Candidate Generation”, Proceedings of

ACM SIGMOD Conference, Dallas, TX, 2000, pp.53-87.

[5] Jong Soo Park, M.S. Chen, and P.S. Yu, “An effective

hash based algorithm for mining association rules”,

Proceedings of the 1995 ACM SIGMOD International

Conference on Management of Data, San Jose,

California, May 22-25, 1995, pp. 175-188.

[6] Ramesh Agrawal and Ramakrishnan Srikant, “Fast

algorithms for mining association rules”, proceedings of

the 20th VLDB Conference Santiago,Chille, 1994, pp.

487-499.

[7] Ramesh Agrawal, Tomasz Imielinski, and A. Swami,

“Mining association rules between sets of items in large

databases”, ACM-SIGMOD Int. Conf. Management of

Data, Washington, D.C., May 1993, pp 207–216.

[8] Senthil Kumar A.V and R.S.D. Wahidabanu, “A

Frequent Item Graph Approach for Discovering Frequent

Itemsets“, Proceedings of 2008 IEEE International

Conference on Advanced Computer Theory, 2008,

pp.952-956.

[9] Yudho Giri Sucahyo and Gopalan.R, “Efficient Frequent

Item Set Mining using a Compressed Prefix Tree with

Pattern Growth”, Proceedings of 14th Australian

Database Conference, Adelaide, Australia, 2003, pp.95-

104

[10] J.R.Jeba,Dr S.P.Victor, “A Novel Approach for finding

Frequent Item Sets with Hybrid Strategies”,International

Journal of Computer Applications (0975 – 8887) Volume

17– No.5, March 2011.

[11] Bharat Gupta,Dr.Deepak Garg,Karun Verma, “A Novel

Approach to Mine Frequent Item Sets Using Maximal

Apriori and FP-Tree Method”,International Journal of

Advance Computing Volume 3,Issue 2,April 2011.

