
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

38

Effect of Annealing Selection Operators in Genetic

Algorithms on Benchmark Test Functions

Rakesh Kumar

DCSA, Kurukshetra University,

Kurukshetra, Haryana-136119, India

Jyotishree

DCSA, Guru Nanak Girls College,

Yamunanagar, Haryana - 135001, India

ABSTRACT

The strategies to find optimal solutions can be broadly

categorized into two: exploration and exploitation, but it has

been shown in the literature that none can be claimed better

than others in all the problems or all stages of the problems. In

evolutionary approaches such as genetic algorithm, different

operators used are inclined either towards exploration or

exploitation but problems demand the operators having the

blend of both. In this paper an annealed selection operator has

been proposed, the behavior of which is controlled by the

current generation i.e. in early cycle of evolution it is more

like exploration and gradually it shifts towards exploitation.

The experiments have been conducted using five different

benchmark functions and implementation is carried out using

MATLAB. Results show the improvement over existing

selection operators.

Keywords

Benchmark functions; genetic algorithm; rank selection;

roulette wheel; selection.

1. INTRODUCTION
Genetic algorithms are adaptive algorithms proposed by John

Holland in 1975 [1] and were described as adaptive heuristic

search algorithms [2] based on the evolutionary ideas of

natural selection and natural genetics by David Goldberg.

They are powerful optimization techniques that employ

concepts of evolutionary biology to evolve optimal solutions

to a given problem. Genetic algorithm works with a

population of individuals represented by chromosomes. Each

chromosome is evaluated by its fitness value as computed by

the objective function of the problem. The population

undergoes transformation using three primary genetic

operators – selection, crossover and mutation which form new

generation of population. This process continues to achieve

the optimal solution. Basic algorithm of genetic algorithm is:

Procedure GA(fnx, n, r, m,ngen)

//fnx is fitness function to evaluate individuals in population

// n is the population size in each generation (say 10)

// r is fraction of population generated by crossover (say 0.7)

// m is the mutation rate (say 0.01)

//ngen is total number of generations

P := generate n individuals at random

 // initial generation is generated randomly

 nogen:=1 //denotes current generation number

 //define the next generation S of size n

 while nogen <=ngen do

 { //Selection step:

 L:= Select(P,n,nogen)

 // n/2 individuals of P selected using any selection method

 //Crossover step:

 S:= Crossover(L,n)

 // Generates n chromosomes using arithmetic crossover

 //Mutation step:

 Mutation(S,m)

 //Inversion of chromosomes with mutation rate m

 //Replacement step:

 P:=S

 pb(i):=min(fitfn(P)) // store best individual in population

 i:=i+1

 }

 best:=min(pb) //finds best individual in all generations

end proc

Generally all the optimization techniques are influenced by

two important issues - exploration and exploitation.

Exploration is used to investigate new and unknown areas in

the search space and generate new knowledge. Exploration is

a metaphor for the procedure which allows search operations

to find novel and maybe better solution structures.

Exploitation makes use of the generated knowledge and

propagation of the adaptations. Exploitation operations often

incorporate small changes into already tested individuals

leading to new, very similar solution candidates or try to

merge building blocks of different promising individuals.

Both techniques have their own merits and demerits. In

common view, exploration of search space is done by search

operators in evolutionary algorithms and exploitation is done

by selection. Too strong selection would lead to sub-optimal

highly fit individuals and too weak selection will result in too

slow evolution [3]. It has been observed in previous

researches that any one technique is not enough to obtain best

optimal solution, especially with large TSPs [3,4]. So, many

researches are being carried out to combine two or more

algorithms in order to improve performance and obtain better

results. Optimization algorithms that favor exploitation over

exploration have higher convergence speed but run the risk of

not finding the optimal solution and may get stuck at a local

optimum. Generally, optimization algorithms should employ

at least one search operation of explorative character and at

least on which is able to exploit good solutions further.

In this paper, a new selection operator is proposed, namely,

the annealed selection operator that blends the two selection

operators and generates a new selection operator to obtain

perfect mix of exploration and exploitation. The proposed

annealed selection operator was earlier implemented on

Travelling Salesman Problem [5], but the authors feel that the

proposed annealed selection operator should be tested on

benchmark test functions and results should be verified. The

paper focuses on comparing the effect of different selection

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

39

operators on benchmark test problems. The paper is organized

in the following sections. In section 2, related literature

review is given on different researches on selection operators

and benchmark test problems. Selection methods, their

computation formulae and their algorithms are described in

section 3. Benchmark test functions considered for

implementation are described in section 4. Implementation

procedure and computational results are provided in section 5

and concluding remarks are given in section 6.

2. RELATED WORK
Holland showed that both exploration and exploitation are

used optimally by genetic algorithm at the same time using k-

armed bandit analogy [1]. This work is also described by

David Goldberg [2]. It has been observed that due to certain

parameters, stochastic errors occur in genetic algorithms and

this may lead to genetic drift [6,7]. In certain cases, selection

operation gets biased towards highly fit individuals. This can

be avoided by use of Rank Selection technique. Rank scaling

ranks the individuals according to their raw objective value

[2]. Another problem that arises with genetic algorithms is

premature convergence which occurs when the population

reaches a state where genetic operators can no longer produce

offspring that outperforms their parents [8]. This would likely

trap the search process in a region containing a non-global

optimum and would further lead to loss of diversity. Al jaddan

et al. compared the roulette wheel selection GA (RWS) and

ranked based roulette wheel selection GA (RRWS), by

applying them on eight test functions from the GA literature

[9]. They concluded that RRWS outperformed the

conventional RWS in convergence, time, reliability, certainty,

and more robustness.

 Wang et.al proposed a new hybrid of genetic algorithm and

simulated annealing, referred to as GSA and then evaluated its

performance against a standard set of benchmark functions

[10]. Notably, there was remarkable improvement in

performance of Multi-niche crowding PGSA and normal

PGSA over conventional parallel genetic algorithm. Liu et.al.

proposed a new heuristic algorithm for classical symmetric

TSP and tested its performance against benchmark TSP

problems [11]. They presented overlapped neighbourhood

based local search algorithm to solve TSP and concluded that

the proposed algorithm is superior in terms of average

deviation and smallest deviation from optimal solutions.

In order to improve the balance between the exploration and

exploitation in differential evolution algorithm, Sa Angela et

al. proposed a modification of the selection that was

successful in avoiding entrapment in local optima and could

be helpful in many real world optimization problems [12].

R.Thamilselvan and P.Balasubramanie presented a Genetic

Tabu search Algorithm (GTA) for TSP and compared with

Tabu search [13]. They concluded that GTA is better than GA

and TS. Elhaddad and Sallabi proposed a new Hybrid Genetic

and Simulated Annealing Algorithm (HGSAA) to solve the

TSP [14]. The proposed hybrid algorithm combined both the

SA and GAs, in order to help each other overcome their

problems to obtain the best results in the shortest time.

HGSAA improved the convergence rate of the algorithm with

better solutions to TSP compared with other algorithms.

3. SELECTION
Selection is the first genetic operation in the reproductive

phase of genetic algorithm. Its purpose is to choose the fitter

individuals in the population that will create offsprings for

next generation, commonly known as mating pool. The

mating pool thus selected takes part in further genetic

operations, advancing the population to the next generation

and hopefully close to the optimal solution. Selection of

individuals in the population is fitness dependent and is done

using different algorithms [15]. Selection chooses more fit

individuals in analogy to Darwin’s theory of evolution –

survival of fittest [16]. Too strong selection would lead to

sub-optimal highly fit individuals and too weak selection may

result in too slow evolution [17]. There are many methods in

selecting the best chromosomes. Some are roulette wheel

selection, rank selection, steady state selection and many

more. The paper focuses on roulette wheel, rank selection and

compares their performance with the proposed annealed

selection operator.

Some of the symbols used in the algorithms are listed below:

ngen → total number of generations

nogen → current number of generation

n → total population size

Fj → fitness of jth individual in population

rj → rank of jth individual in population

mpool → number of chromosomes in mating pool

Fbest → Best Fitness value i.e. minimum value of fn(x)

Favg → Average Fitness of the population

FXj → fitness of jth individual in Annealed Selection

3.1 Roulette Wheel Selection
Roulette wheel is the simplest selection approach. In this

method all the chromosomes (individuals) in the population

are placed on the roulette wheel according to their fitness

value [2,15,18]. Each individual is assigned a segment of

roulette wheel. The size of each segment in the roulette wheel

is proportional to the value of the fitness of the individual -

the bigger the value is, the larger the segment is. Then, the

virtual roulette wheel is spinned. The individual

corresponding to the segment on which roulette wheel stops is

then selected. The process is repeated until the desired number

of individuals is selected. Individuals with higher fitness have

more probability of selection. This may lead to biased

selection towards high fitness individuals. It can also possibly

miss the best individuals of a population. There is no

guarantee that good individuals will find their way into next

generation. Roulette wheel selection uses exploitation

technique in its approach.

Algorithm of Roulette wheel selection is given below. Here, cj

is variable storing cumulative fitness and r is random number

generated between given interval.

Roulette wheel selection

 Set l=1, j=1, i=nogen, S=0

 While j<=n

 {

 S=S+Fj //calculates sum of fitness of all individuals

 }

 While l <= mpool

 {

 Generate random number r from interval (0,S)

 Set j=1

 While j <= n

 {

 cj=cj-1+Fj //computes cumulative fitness

 If r<=cj, Select the individual j

 }

 l=l+1

 }

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

40

3.2 Rank Selection

Rank Selection sorts the population first according to fitness

value and ranks them. Then every chromosome is allocated

selection probability with respect to its rank [19]. Individuals

are selected as per their selection probability. Rank selection

is an explorative technique of selection. Rank selection

prevents too quick convergence and differs from roulette

wheel selection in terms of selection pressure. Rank selection

overcomes the scaling problems like stagnation or premature

convergence. Ranking controls selective pressure by uniform

method of scaling across the population. Rank selection

behaves in a more robust manner than other methods [20,21].

In Rank Selection, sum of ranks is computed and then

selection probability of each individual is computed as under:

 rsumi = ∑N
i=1ri,j (2)

where i varies from 1 to ngen and j varies from 1 to N.

 PRANKi = ri,j / rsumi (3)

Algorithm of Rank selection is given below. Here, ci is

variable storing cumulative fitness and r is random number

generated between given interval.

Rank Selection

 Set l=1, j=1, i=nogen,rsum=0

 While j<=n

 { rsum, =rsum+rj }

 Set j=1

 While j<=N

 { PRANKj=rj/rsum }

 While l <= mpool

 {

 Generate random number r from interval (0,rsum)

 Set j=1, S=0

 While j<=n

 {

 cj=cj-1+PRANKj //compute cumulative rank

 If r<=cj, Select the individual j

 }

 l=l+1

 }

3.3 Annealed Selection

The proposed annealed selection approach is to gradually

move the selection criteria from exploration to exploitation so

as to obtain the perfect blend of the two techniques. In this

method, fitness value of each individual is computed.

Depending upon the current generation number of genetic

algorithm, selection pressure is changed and new fitness

contribution, FXj of each individual is computed. Selection

probability of each individual is computed on the basis of FXj.

As the generation of population changes, fitness contribution

changes and selection probability of each individual also

changes. The annealed selection operator computes fitness of

individual depending on the current number of generation as

under:

 FXj = Fj / ((ngen+1) – nogen) (4)

Where ngen is total number of generations and nogen

refers to current generation number.

Algorithm of Proposed Annealed Selection is given below.

Here, ci is variable storing cumulative fitness and r is random

number generated between given interval.

Proposed Annealed Selection

 Set l=1, j=1, i=nogen

 While j<=n

 {

 FXj = Fj / ((ngen+1)-nogen)

 //compute fitness for annealed selection

 }

 Set j=1, S=0

 While j<=n

 {S=S+FXj }

 While l <= mpool

 {

 Generate random number r from interval (0,S)

 Set j=1, S=0

 While j<=n

 {

 cj=cj-1+FXj

 If r<=cj, Select the individual j

 }

 l=l+1

 }

4. TEST FUNCTIONS
 Many researchers have used different function groups to

analyse the performance of genetic algorithms. In this paper,

we examine 5 different functions in order to study

performance of genetic algorithms and effect of three

selection operators. Table 1 lists the five test functions – their

names, type and their description.

Table 1: List of Benchmark Test Functions

The first three test functions have been proposed by Dejong.

All test functions reflect different degrees of complexity. Test

functions F1–F3 are unimodal (i.e.,containing only one

optimum), whereas the other test functions are multimodal

(i.e. containing many local optima, but only one global

optimum).

Sphere [F1] is simple quadratic parabola. It is smooth,

unimodal, strongly convex, symmetric [22,23].

 𝑓1 𝑥 = 𝑥𝑖
2𝑛

𝑖=0 -5.12 ≤ xi ≤ 5.12

global minimum: xi=0 fn(x)=0

Function Name Type

F1 Sphere Function Unimodal

F2 Rosenbrock’s Function Unimodal

F3 Continuous Step Function Unimodal

F4 Rastrigin’s Function Multimodal

F5 Ackley’s Function Multimodal

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

41

Figure 1: Function Graph for F1 for n=2

Rosenbrock [F2] is considered to be difficult, because it has a

very narrow ridge. The tip of the ridge is very sharp, and it

runs around a parabola. The global optimum is inside a long,

narrow parabolic shaped flat valley [22,23].

 𝑓2 𝑥 = 100. 𝑥𝑖+1 − 𝑥𝑖
2 2𝑛−1

𝑖=1 + 1 − 𝑥𝑖
2

-2.048 ≤ xi ≤ 2.048

 global minimum: xi=1 fn(x)=0

Figure 2: Function Graph for F2 for n=2

c

t

Continuous Step Function [F3] is the representative of the

problem of flat surfaces. Function F3 is piecewise continuous

step function [22,23].

𝑓3 𝑥 = 𝑖𝑛𝑡 𝑥𝑖
𝑛
𝑖=1

 -5.12 ≤ xi ≤5.12

global minimum: xi=0 fn(x)=0

Figure 3: Function Graph for F3 for n=2

The Rastrigin, Ackley [F4,F5] functions are typical examples

of non-linear multimodal functions. Rastrigin’s function [F4]

is highly multimodal and has a complexity of O(nln(n)),

where n is the number of the function parameters. This

function contains millions of local optima in the interval of

consideration. It has several local minima [22,23].

𝑓4 𝑥 = (𝑥𝑖
2 − 10. cos 2.𝜋.𝑥𝑖)

𝑛
𝑖=1

 -5.12 ≤ xi ≤ 5.12

global minimum: xi=0 fn(x)=0

Figure 4: Function Graph for F4 for n=2

Ackley’s function [F5] is a widely used multimodal test

function. The Ackley Function is a continuous, multimodal

function obtained by modulating an exponential function with

a cosine wave of moderate amplitude. Its topology is

characterized by an almost flat outer region and a central hole

or peak where the modulations by the cosine wave become

more and more influential [22,23].

 𝑓5 𝑥 = 𝑎 + 𝑒 − 𝑎. 𝑒
−𝑏 .

 𝑥𝑖
2𝑛

𝑖=1
𝑛

− 𝑒
 cos 𝑐 .𝑥𝑖
𝑛
𝑖=1

𝑛

 a=20. b=0.2, -30 ≤ xi ≤ 30

 global minimum: xi=0 fn(x)=0

Figure 5: Function Graph for F5 for n=2

5. IMPLEMENTATION AND

OBSERVATION
In this paper, MATLAB code has been developed to assess

the performance of genetic algorithm by using three different

selection techniques on the same population for its

implementation using the same initial population. Except

selection criteria, all other factors affecting the performance of

genetic algorithm are kept constant. The code considers a set

of 5 benchmark functions. Average and minimum value of

fn(x) in each generation is computed over 50 and 100

generations and plotted to compare the performance of three

approaches.

The purpose of this implementation is to measure the

performance of proposed annealed selection in comparison to

roulette wheel and rank selection. This section contains the

results obtained from various runs of the code. The

comparison of selection techniques is based on their

respective performance estimated as the value of the function.

The following parameters are used in this implementation:

 Population size (N): 3,5,10 and 20

 Number of generations (ngen) : 50 and 100

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

42

 Population selection method: Roulette Wheel

Selection (RWS), Rank Selection (RS) and

Proposed Annealed Selection (AS)

 Crossover Operator: Simple arithmetic crossover

 Mutation: Inversion with mutation probability 5%

 Algorithm ending criteria: Execution stops on

reaching ngen generations

 Fitness Function: Objective value of function

Average and Minimum value of evaluation of each function is

recorded and examined for further analysis.

Table 2 : Average and Minimum value of fn(x) in F1

 Figure 6: Comparison of Average value of fn(x) in F1 Figure 7: Comparison of Minimum value of fn(x) in F1

N 3 5 10 20

Gen=50 RWS Min 4.93E-37 3.09E-34 4.74E-33 1.46E-31

Avg 0.628 1.179 2.162 5.262

RS Min 5.73E-31 2.85E-30 5.54E-31 2.21E-30

Avg 0.665 1.1346 2.176 5.122

AS Min 8.89E-38 3.32E-35 2.44E-34 1.53E-32

Avg 0.709 1.0545 2.482 5.155

Gen=100 RWS Min 1.93E-72 1.67E-70 4.87E-66 4.32E-65

Avg 0.408 0.46 1.374 2.816

RS Min 1.18E-60 1.11E-64 5.20E-60 1.37E-60

Avg 0.417 0.488 1.353 2.863

AS Min 7.21E-74 8.01E-74 2.24E-69 1.51E-66

Avg 0.411 0.455 1.314 2.71

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

43

Table 3 : Average and Minimum value of fn(x) in F2

Figure 8: Comparison of Average value of fn(x) in F2 Figure 9: Comparison of Minimum value of fn(x) in F2

Table 4 : Average and Minimum value of fn(x) in F3

N 3 5 10 20

Gen=50 RWS Min 1.8951 3.8781 8.9686 18.9999

Avg 14.3878 34.5157 98.7727 267.7132

RS Min 1.1274 3.9011 8.9738 18.9973

Avg 14.3573 38.7858 110.1202 271.9678

AS Min 1.9642 3.8918 8.8512 18.9502

Avg 14.1299 35.7353 105.7585 257.652

Gen=100 RWS Min 1.818 3.9329 8.9625 18.9913

Avg 14.6431 41.0678 51.9153 118.785

RS Min 1.9893 3.9999 9 18.9962

Avg 14.8046 42.8148 54.4672 119.1835

AS Min 1.9411 3.9258 8.9866 18.9985

Avg 13.7012 39.6808 53.4466 119.699

N 3 5 10 20

Gen=50 RWS Min 1.09E-16 5.33E-17 5.14E-16 3.99E-15

Avg 0.312 0.42393 0.98183 2.0637

RS Min 6.57E-16 8.59E-16 9.35E-14 2.63E-13

Avg 0.27969 0.49485 1.0676 2.065

AS Min 1.52E-18 6.72E-18 3.11E-16 1.26E-15

Avg 0.25408 0.40432 0.93658 1.986

Gen=100 RWS Min 5.93E-35 2.02E-34 7.66E-33 1.60E-32

Avg 0.11417 0.21006 0.47329 0.98294

RS Min 1.14E-30 5.14E-31 4.02E-30 2.16E-31

Avg 0.16419 0.25567 0.47437 0.94699

AS Min 6.48E-37 3.13E-35 1.95E-33 1.22E-32

Avg 0.13155 0.23074 0.5237 0.81515

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

44

Figure 10: Comparison of Average value of fn(x) in F3 Figure 11: Comparison of Minimum value of fn(x) in F3

Table 5 : Average and Minimum value of fn(x) in F4

Figure 12: Comparison of Average value of fn(x) in F4 Figure 13: Comparison of Minimum value of fn(x) in F4

N 3 5 10 20

Gen=50 RWS Min 70 50 8.9813 -100

Avg 73.4838 55.4561 99.8336 -78.1042

RS Min 70 50 9 -100

Avg 73.0887 56.7271 100.3791 -78.4591

AS Min 70 50 8.9622 -100

Avg 73.6985 56.8295 96.1036 -77.8765

Gen=100 RWS Min 70 50 8.9813 -100

Avg 72.0275 53.192 95.036 -87.6698

RS Min 70 50 9 -100

Avg 71.9712 53.0511 96.1081 -88.4613

AS Min 70 50 8.9622 -100

Avg 71.9692 52.7239 92.5329 -87.0142

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

45

Table 6 : Average and Minimum value of fn(x) in F5

Figure 14: Comparison of Average value of fn(x) in F5 Figure 15: Comparison of Minimum value of fn(x) in F5

Numerous research efforts have been made to study the

performance of different selection operators. In order to study

the effect of existing selection operators and proposed

annealed selection operator, the implementation has been

carried out by keeping the factors initial population, crossover

type and its probability, mutation type and mutation rate

constant in all the cases. Test runs are carried out for 50

generations as well as 100 generations and four different

population sizes. The results for the 5 benchmark functions in

terms of average and minimum value are summarized in

Table 2,3,4,5 and 6. Figures 6,7,8,9,10,11,12,13,14 and 15

show the performance curves of the three selection operators

in terms of average and minimum value of fitness function for

population size 20 and 100 generations.

It has been observed that in maximum cases proposed

annealed selection has outperformed the roulette wheel

selection and rank selection. It can be clearly seen that in early

runs of generation, the annealed selection explores the search

space and as the number of generations increases, there is

increased selection pressure and the annealed selection uses

exploitation mechanism in selecting the individual. In early

generations, the behavior of proposed annealed selection is

just like the rank selection and gradually it transforms into

roulette wheel selection and elitism, this justifies that

annealed selection is perfect blend of exploration and

exploitation.

6. CONCLUSION

In maximum optimization problems, it has been observed and

stated in the literature that there is no single cure for all the

ills. Sometimes exploration techniques outsmart exploitation

techniques and vice-versa. Influenced by these observations a

number of selection operators have been proposed but they

were either inclined towards exploitation or exploration. But

generally requirements necessitate that in the beginning of

evolution cycle exploration is better and in the last

exploitation. The behavior of annealed selection operator can

be easily modified as per requirement by changing the

pressure. In this paper index variable representing the current

N 3 5 10 20

Gen=50 RWS Min 1.3684 1.0696 8.88E-16 -4.6708

Avg 1.6662 1.4204 0.28187 -2.3732

RS Min 1.3684 1.0696 8.88E-16 -4.6708

Avg 1.6623 1.4429 0.29853 2.3372

AS Min 1.3684 1.0696 8.88E-16 -4.6708

Avg 1.6066 1.4558 0.27037 -2.2904

Gen=100 RWS Min 1.3684 1.0696 8.88E-16 -4.6708

Avg 1.4991 1.2506 0.27216 -3.563

RS Min 1.3684 1.0696 8.88E-16 -4.6708

Avg 1.51 1.2343 0.277 -3.433

AS Min 1.3684 1.0696 8.88E-16 -4.6708

Avg 1.5168 1.2449 0.2574 -3.6287

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

46

generation has been used to control the pressure and as it

moves from 1 to last generation, the selection pressure

increases accordingly and the same is reflected in the behavior

of the annealed operator. The experiments have been

conducted on five different benchmark functions and

optimistic results are produced.

7. REFERENCES
[1] Holland J. 1975. Adaptation in natural and artificial

systems. University of Michigan Press, Ann Arbor.

[2] Goldberg D.E. 1989. Genetic algorithms in search,

optimisation, and machine learning. Addison Wesley

Longman, Inc. ISBN 0-201-15767-5.

[3] Merz P. and Freisleben B. 1977. Genetic Local Search

for the TSP: New results. In Proceedings of IEEE

International Conference on Evolutionary Computation,

IEEE Press, 159-164.

[4] Ray S., Bandyopadhyay S. and Pal S.K. 2007. Genetic

operators for combinatorial optimization in TSP and

microarray gene ordering. SpringerScience + Business

Media, LLC.

[5] Kumar R. and Jyotishree. 2011. Blending roulette wheel

selection & rank selection in genetic algorithms. In

Proceedings of 3rd International conference on machine

learning and computing, V4, IEEE catalog number

CFP1127J-PRT, ISBN 978-1-4244-9252-7, 197-202.

[6] Goldberg D.E. and Segrest P. 1987. Finite Markov chain

analysis of genetic algorithms. In Proceedings of the the

Second International Conference on Genetic Algorithms.

Lawrence Erlbaum Associates, 1-8.

[7] Booker L. 1987. Improving search in genetic algorithms.

Genetic Algorithms and Simulated Annealing. Pitman,

chapter 5, 61-73.

[8] Fogel D. 1994. An introduction to simulated

evolutionary optimization, IEEE Trans. Neural Networks

5 (1), 3-14.

[9] Al jaddan O., Rajamani L. and Rao C.R. 2005. Improved

Selection Operator for GA. Journal of Theoretical and

Applied Information Technology, 269–277.

[10] Wang Z.G., Rahman M., Wong Y.S. and Neo K.S. 2007.

Development of Heterogeneous Parallel Genetic

Simulated Annealing Using Multi-Niche Crowding.

International Journal of Information and Mathematical

Sciences 3:1, 55-62.

[11] Liu S.B., Ng K.M. and Ong H.L. 2007. A New Heuristic

Algorithm for the Classical Symmetric Travelling

Salesman Problem. International Journal of

Computational and Mathematical Sciences. Volume 1,

Number 4, 234-238.

[12] Sa Angela A.R., Andrade A.O., Soares A.B. and Nasuto

S.J. 2008. Exploration vs. Exploitation in Differential

Evolution. Volume 11: In Proceedings of the AISB 2008

Symposium on Swarm Intelligence Algorithms and

Applications, ISBN 1 902956 70 2, 57-63.

[13] Thamilselvan R. and Balasubramanie P. 2009. A Genetic

Algorithm with a Tabu Search (GTA) for Travelling

Salesman Problem. International Journal of Recent

Trends in Engineering. Issue I, Vol I, 607 – 610.

[14] Elhaddad Y. and Sallabi O. 2010. A New Hybrid Genetic

and Simulated Annealing Algorithm to Solve the

Traveling Salesman Problem. In Proceedings of the

World Congress on Engineering 2010. Vol. I, ISBN:

978-988-17012-9-9, ISSN: 2078-0958 (Print); ISSN:

2078-0966 (Online), 11-14.

[15] Golberg D.E. and Deb K. 1991. A comparative analysis

of selection schemes used in genetic algorithms.

Foundations of Genetic Algorithms. San Mateo, CA,

Morgan Kaufmann, 69-93.

[16] Fogel D. 1995. Evolutionary Computation, IEEE Press.

[17] Mitchell M. 1996. An Introduction to genetic algorithms.

Prentice Hall of India, New Delhi, ISBN-81-203-1358-5.

[18] De Jong K.A. 1975. An Analysis of the behavior of a

class of genetic adaptive systems (Doctoral dissertation,

University of Michigan). Dissertation Abstracts

International 36(10), 5140B University Microfilms No.

76/9381.

[19] Baker J.E. 1985. Adaptive selection methods for genetic

algorithms. In Proceedings of an International

Conference on Genetic Algorithms and their

applications, 101-111.

[20] Whitley D. 1989. The GENITOR algorithm and selection

pressure: why rank-based allocation of reproductive trials

is best. In Proceedings of the Third International

Conference on Genetic Algorithms, Morgan Kaufmann,

116-121.

[21] Back T. and Hoffmeister F. 1991. Extended Selection

Mechanisms in Genetic Algorithms. ICGA4, 92-99.

[22] Digalakis J.G. and Margaritis K.G. 2002. An

Experimental Study of Benchmarking Functions for

Genetic Algorithms. International Journal of Computer

Mathematics, 79:4, 403-416.

[23] Salomon R. 1996. Re-evaluating genetic algorithm

performance under coordinate rotation of benchmark

functions: A survey of some theoretical and practical

aspects of genetic algorithms, Elsevier:BioSystems, 39,

263-278.

