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ABSTRACT 

The strategies to find optimal solutions can be broadly 

categorized into two: exploration and exploitation, but it has 

been shown in the literature that none can be claimed better 

than others in all the problems or all stages of the problems. In 

evolutionary approaches such as genetic algorithm, different 

operators used are inclined either towards exploration or 

exploitation but problems demand the operators having the 

blend of both. In this paper an annealed selection operator has 

been proposed, the behavior of which is controlled by the 

current generation i.e. in early cycle of evolution it is more 

like exploration and gradually it shifts towards exploitation. 

The experiments have been conducted using five different 

benchmark functions and implementation is carried out using 

MATLAB. Results show the improvement over existing 

selection operators. 
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1. INTRODUCTION 
Genetic algorithms are adaptive algorithms proposed by John 

Holland in 1975 [1] and were described as adaptive heuristic 

search algorithms [2] based on the evolutionary ideas of 

natural selection and natural genetics by David Goldberg. 

They are powerful optimization techniques that employ 

concepts of evolutionary biology to evolve optimal solutions 

to a given problem. Genetic algorithm works with a 

population of individuals represented by chromosomes. Each 

chromosome is evaluated by its fitness value as computed by 

the objective function of the problem. The population 

undergoes transformation using three primary genetic 

operators – selection, crossover and mutation which form new 

generation of population. This process continues to achieve 

the optimal solution. Basic algorithm of genetic algorithm is: 

 

Procedure GA(fnx, n, r, m,ngen) 

//fnx is fitness function to evaluate individuals in population  

// n is the population size in each generation (say 10) 

// r is fraction of population generated by crossover (say 0.7) 

// m is the mutation rate (say 0.01) 

//ngen is total number of generations 

P := generate n individuals at random  

 // initial generation is generated randomly 

   nogen:=1 //denotes current generation number 

   //define the next generation S  of size n 

    while nogen <=ngen do 

    {    //Selection step: 

       L:= Select(P,n,nogen)  

       // n/2 individuals of P selected using any selection method 

       //Crossover step:  

       S:= Crossover(L,n)  

      //  Generates n chromosomes using arithmetic crossover  

      //Mutation step: 

      Mutation(S,m)      

     //Inversion of chromosomes with  mutation rate m 

     //Replacement step: 

     P:=S 

     pb(i):=min(fitfn(P))  // store best individual in population 

     i:=i+1 

  } 

  best:=min(pb)            //finds best individual in all generations 

end proc 

 

Generally all the optimization techniques are influenced by 

two important issues - exploration and exploitation. 

Exploration is used to investigate new and unknown areas in 

the search space and generate new knowledge. Exploration is 

a metaphor for the procedure which allows search operations 

to find novel and maybe better solution structures. 

Exploitation makes use of the generated knowledge and 

propagation of the adaptations. Exploitation operations often 

incorporate small changes into already tested individuals 

leading to new, very similar solution candidates or try to 

merge building blocks of different promising individuals. 

Both techniques have their own merits and demerits. In 

common view, exploration of search space is done by search 

operators in evolutionary algorithms and exploitation is done 

by selection. Too strong selection would lead to sub-optimal 

highly fit individuals and too weak selection will result in too 

slow evolution [3]. It has been observed in previous 

researches that any one technique is not enough to obtain best 

optimal solution, especially with large TSPs [3,4]. So, many 

researches are being carried out to combine two or more 

algorithms in order to improve performance and obtain better 

results. Optimization algorithms that favor exploitation over 

exploration have higher convergence speed but run the risk of 

not finding the optimal solution and may get stuck at a local 

optimum. Generally, optimization algorithms should employ 

at least one search operation of explorative character and at 

least on which is able to exploit good solutions further.  

In this paper, a new selection operator is proposed, namely, 

the annealed selection operator that blends the two selection 

operators and generates a new selection operator to obtain 

perfect mix of exploration and exploitation. The proposed 

annealed selection operator was earlier implemented on 

Travelling Salesman Problem [5], but the authors feel that the 

proposed annealed selection operator should be tested on 

benchmark test functions and results should be verified. The 

paper focuses on comparing the effect of different selection 
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operators on benchmark test problems. The paper is organized 

in the following sections. In section 2, related literature 

review is given on different researches on selection operators 

and benchmark test problems. Selection methods, their 

computation formulae and their algorithms are described in 

section 3. Benchmark test functions considered for 

implementation are described in section 4. Implementation 

procedure and computational results are provided in section 5 

and concluding remarks are given in section 6. 

2. RELATED WORK 
Holland showed that both exploration and exploitation are 

used optimally by genetic algorithm at the same time using k-

armed bandit analogy [1]. This work is also described by 

David Goldberg [2]. It has been observed that due to certain 

parameters, stochastic errors occur in genetic algorithms and 

this may lead to genetic drift [6,7]. In certain cases, selection 

operation gets biased towards highly fit individuals. This can 

be avoided by use of Rank Selection technique. Rank scaling 

ranks the individuals according to their raw objective value 

[2]. Another problem that arises with genetic algorithms is 

premature convergence which occurs when the population 

reaches a state where genetic operators can no longer produce 

offspring that outperforms their parents [8]. This would likely 

trap the search process in a region containing a non-global 

optimum and would further lead to loss of diversity. Al jaddan 

et al.  compared the roulette wheel selection GA (RWS) and 

ranked based roulette wheel selection GA (RRWS), by 

applying them on eight test functions from the GA literature 

[9]. They concluded that RRWS outperformed the 

conventional RWS in convergence, time, reliability, certainty, 

and more robustness.  

 Wang et.al proposed a new hybrid of genetic algorithm and 

simulated annealing, referred to as GSA and then evaluated its 

performance against a standard set of benchmark functions 

[10]. Notably, there was remarkable improvement in 

performance of Multi-niche crowding PGSA and normal 

PGSA over conventional parallel genetic algorithm. Liu et.al. 

proposed a new heuristic algorithm for classical symmetric 

TSP and tested its performance against benchmark TSP 

problems [11]. They presented overlapped neighbourhood 

based local search algorithm to solve TSP and concluded that 

the proposed algorithm is superior in terms of average 

deviation and smallest deviation from optimal solutions. 

In order to improve the balance between the exploration and 

exploitation in differential evolution algorithm, Sa Angela et 

al. proposed a modification of the selection that was 

successful in avoiding entrapment in local optima and could 

be helpful in many real world optimization problems [12]. 

R.Thamilselvan and P.Balasubramanie presented a Genetic 

Tabu search Algorithm (GTA) for TSP and compared with 

Tabu search [13]. They concluded that GTA is better than GA 

and TS. Elhaddad and Sallabi proposed a new Hybrid Genetic 

and Simulated Annealing Algorithm (HGSAA) to solve the 

TSP [14]. The proposed hybrid algorithm combined both the 

SA and GAs, in order to help each other overcome their 

problems to obtain the best results in the shortest time. 

HGSAA improved the convergence rate of the algorithm with 

better solutions to TSP compared with other algorithms.  

3. SELECTION 
Selection is the first genetic operation in the reproductive 

phase of genetic algorithm. Its purpose is to choose the fitter 

individuals in the population that will create offsprings for 

next generation, commonly known as mating pool. The 

mating pool thus selected takes part in further genetic 

operations, advancing the population to the next generation 

and hopefully close to the optimal solution. Selection of 

individuals in the population is fitness dependent and is done 

using different algorithms [15]. Selection chooses more fit 

individuals in analogy to Darwin’s theory of evolution – 

survival of fittest [16]. Too strong selection would lead to 

sub-optimal highly fit individuals and too weak selection may 

result in too slow evolution [17].  There are many methods in 

selecting the best chromosomes. Some are roulette wheel 

selection, rank selection, steady state selection and many 

more. The paper focuses on roulette wheel, rank selection and 

compares their performance with the proposed annealed 

selection operator. 

Some of the symbols used in the algorithms are listed below: 

ngen     →  total number of generations 

nogen   →  current number of generation 

n           →  total population size 

Fj         →  fitness of jth individual in population 

rj          →  rank of jth individual in population 

mpool  →  number of chromosomes in mating pool 

Fbest      →  Best Fitness value i.e. minimum value of fn(x) 

Favg      →  Average Fitness of the population  

FXj      →  fitness of jth individual in Annealed Selection 

3.1 Roulette Wheel Selection 
Roulette wheel is the simplest selection approach. In this 

method all the chromosomes (individuals) in the population 

are placed on the roulette wheel according to their fitness 

value [2,15,18]. Each individual is assigned a segment of 

roulette wheel. The size of each segment in the roulette wheel 

is proportional to the value of the fitness of the individual - 

the bigger the value is, the larger the segment is. Then, the 

virtual roulette wheel is spinned. The individual 

corresponding to the segment on which roulette wheel stops is 

then selected. The process is repeated until the desired number 

of individuals is selected. Individuals with higher fitness have 

more probability of selection. This may lead to biased 

selection towards high fitness individuals. It can also possibly 

miss the best individuals of a population. There is no 

guarantee that good individuals will find their way into next 

generation. Roulette wheel selection uses exploitation 

technique in its approach.  

 

Algorithm of Roulette wheel selection is given below. Here, cj 

is variable storing cumulative fitness and r is random number 

generated between given interval. 

Roulette wheel selection 

    Set l=1, j=1, i=nogen, S=0 

        While j<=n   

   {  

      S=S+Fj  //calculates sum of fitness of all individuals 

            } 

    While l <= mpool 

    { 

      Generate random number r from interval (0,S) 

      Set j=1 

      While j <= n 

      { 

                        cj=cj-1+Fj      //computes cumulative fitness 

                     If r<=cj, Select the individual j 

      } 

      l=l+1 

      } 
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3.2 Rank Selection 

Rank Selection sorts the population first according to fitness 

value and ranks them. Then every chromosome is allocated 

selection probability with respect to its rank [19]. Individuals 

are selected as per their selection probability. Rank selection 

is an explorative technique of selection. Rank selection 

prevents too quick convergence and differs from roulette 

wheel selection in terms of selection pressure. Rank selection 

overcomes the scaling problems like stagnation or premature 

convergence. Ranking controls selective pressure by uniform 

method of scaling across the population. Rank selection 

behaves in a more robust manner than other methods [20,21]. 

In Rank Selection, sum of ranks is computed and then 

selection probability of each individual is computed as under: 

             rsumi = ∑N
i=1ri,j               (2)  

where  i varies from 1 to ngen and j varies from 1 to N. 

             PRANKi = ri,j / rsumi         (3)                          

Algorithm of Rank selection is given below. Here, ci is 

variable storing cumulative fitness and r is random number 

generated between given interval. 

Rank Selection 

    Set l=1, j=1, i=nogen,rsum=0 

        While j<=n 

        { rsum, =rsum+rj } 

    Set j=1 

    While j<=N 

    { PRANKj=rj/rsum } 

    While l <= mpool 

        { 

              Generate random number r from interval (0,rsum) 

          Set j=1, S=0 

       While j<=n 

               { 

                     cj=cj-1+PRANKj   //compute cumulative rank 

                                If r<=cj, Select the individual j 

           } 

            l=l+1 

         } 

3.3 Annealed Selection 

The proposed annealed selection approach is to gradually 

move the selection criteria from exploration to exploitation so 

as to obtain the perfect blend of the two techniques. In this 

method, fitness value of each individual is computed. 

Depending upon the current generation number of genetic 

algorithm, selection pressure is changed and new fitness 

contribution, FXj of each individual is computed. Selection 

probability of each individual is computed on the basis of FXj. 

As the generation of population changes, fitness contribution 

changes and selection probability of each individual also 

changes. The annealed selection operator computes fitness of 

individual depending on the current number of generation as 

under: 

           FXj = Fj / ((ngen+1) – nogen)          (4) 

Where ngen is total number of generations and nogen 

refers to current generation number. 

Algorithm of Proposed Annealed Selection is given below. 

Here, ci is variable storing cumulative fitness and r is random 

number generated between given interval. 

Proposed Annealed Selection 

   Set l=1, j=1, i=nogen 

       While j<=n 

       { 

            FXj = Fj / ((ngen+1)-nogen)  

            //compute fitness for annealed selection 

        } 

    Set j=1, S=0 

    While j<=n 

    {S=S+FXj } 

    While l <= mpool 

    { 

      Generate random number r from interval (0,S) 

      Set j=1, S=0 

      While j<=n 

       { 

          cj=cj-1+FXj 

           If r<=cj, Select the individual j 

       } 

        l=l+1    

     } 

 

4. TEST FUNCTIONS 
 Many researchers have used different function groups to 

analyse the performance of genetic algorithms. In this paper, 

we examine 5 different functions in order to study 

performance of genetic algorithms and effect of three 

selection operators. Table 1 lists the five test functions – their 

names, type and their description. 

 

Table 1: List of Benchmark Test Functions 

 

The first three test functions have been proposed by Dejong. 

All test functions reflect different degrees of complexity. Test 

functions F1–F3 are unimodal (i.e.,containing only one 

optimum), whereas the other test functions are multimodal 

(i.e. containing many local optima, but only one global 

optimum). 

 

 

 

 

Sphere [F1] is simple quadratic parabola. It is smooth, 

unimodal, strongly convex, symmetric [22,23]. 

 𝑓1 𝑥 =  𝑥𝑖
2𝑛

𝑖=0         -5.12 ≤ xi ≤ 5.12 

global minimum:  xi=0    fn(x)=0 

Function Name Type 

F1 Sphere Function Unimodal 

F2 Rosenbrock’s Function Unimodal 

F3 Continuous Step Function Unimodal 

F4 Rastrigin’s Function Multimodal 

F5 Ackley’s Function Multimodal 
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Figure 1: Function Graph for F1 for n=2 

 

Rosenbrock [F2] is considered to be difficult, because it has a 

very narrow ridge. The tip of the ridge is very sharp, and it 

runs around a parabola.  The global optimum is inside a long, 

narrow parabolic shaped flat valley [22,23].  

 𝑓2 𝑥 =  100.  𝑥𝑖+1 − 𝑥𝑖
2 2𝑛−1

𝑖=1 +  1 − 𝑥𝑖 
2                     

-2.048 ≤ xi ≤ 2.048 

 global minimum:   xi=1    fn(x)=0 

 

 

 

 

 

 

 

 

 

 

Figure 2: Function Graph for F2 for n=2 

c
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Continuous Step Function [F3] is the representative of the 

problem of flat surfaces. Function F3 is piecewise continuous 

step function [22,23].  

𝑓3 𝑥 =  𝑖𝑛𝑡 𝑥𝑖 
𝑛
𝑖=1                    

 -5.12 ≤ xi ≤5.12 

global minimum:  xi=0   fn(x)=0 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Function Graph for F3 for n=2 

 

The Rastrigin, Ackley [F4,F5] functions are typical examples 

of non-linear multimodal functions.   Rastrigin’s function [F4] 

is highly multimodal and has a complexity of O(nln(n)), 

where n is the number of the function parameters. This 

function contains millions of local optima in the interval of 

consideration. It has several local minima [22,23]. 

𝑓4 𝑥 =  (𝑥𝑖
2 − 10. cos 2.𝜋.𝑥𝑖 )

𝑛
𝑖=1         

 -5.12 ≤ xi ≤ 5.12 

global minimum:    xi=0            fn(x)=0  

  

 

 

 

 

 

 

 

 

Figure 4: Function Graph for F4 for n=2 

 

Ackley’s function [F5] is a widely used  multimodal test 

function. The Ackley Function is a continuous, multimodal 

function obtained by modulating an exponential function with 

a cosine wave of moderate amplitude. Its topology is 

characterized by an almost flat outer region and a central hole 

or peak where the modulations by the cosine wave become 

more and more influential [22,23]. 

 𝑓5 𝑥 = 𝑎 + 𝑒 − 𝑎. 𝑒
−𝑏 . 

 𝑥𝑖
2𝑛

𝑖=1
𝑛

− 𝑒
 cos  𝑐 .𝑥𝑖 
𝑛
𝑖=1

𝑛   

     a=20. b=0.2,  -30 ≤ xi ≤ 30 

     global minimum:      xi=0           fn(x)=0 

   

 

 

 

 

 

 

Figure 5: Function Graph for F5 for n=2 

5. IMPLEMENTATION AND 

OBSERVATION 
In this paper, MATLAB code has been developed to assess 

the performance of genetic algorithm by using three different 

selection techniques on the same population for its 

implementation using the same initial population. Except 

selection criteria, all other factors affecting the performance of 

genetic algorithm are kept constant. The code considers a set 

of 5 benchmark functions. Average and minimum value of 

fn(x) in each generation is computed over 50 and 100 

generations and plotted to compare the performance of three 

approaches.  

The purpose of this implementation is to measure the 

performance of proposed annealed selection in comparison to 

roulette wheel and rank selection. This section contains the 

results obtained from various runs of the code. The 

comparison of selection techniques is based on their 

respective performance estimated as the value of the function. 

The following parameters are used in this implementation: 

 Population size (N): 3,5,10 and 20 

 Number of generations (ngen) : 50 and 100 
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 Population selection method: Roulette Wheel 

Selection (RWS), Rank Selection (RS) and 

Proposed Annealed Selection (AS) 

 Crossover Operator: Simple arithmetic crossover 

 Mutation: Inversion with mutation probability 5% 

 Algorithm ending criteria: Execution stops on 

reaching ngen generations 

 Fitness Function: Objective value of function 

 

 

 

Average and Minimum value of evaluation of each function is 

recorded and examined for further analysis. 

 

 

Table 2 : Average and Minimum value of fn(x) in F1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6: Comparison of Average value of fn(x) in F1                          Figure 7: Comparison of Minimum value of fn(x) in F1 

 

 

 

 

 

 

 

 

 

N 3 5 10 20 

Gen=50 RWS Min 4.93E-37 3.09E-34 4.74E-33 1.46E-31 

Avg 0.628 1.179 2.162 5.262 

RS Min 5.73E-31 2.85E-30 5.54E-31 2.21E-30 

Avg 0.665 1.1346 2.176 5.122 

AS Min 8.89E-38 3.32E-35 2.44E-34 1.53E-32 

Avg 0.709 1.0545 2.482 5.155 

Gen=100 RWS Min 1.93E-72 1.67E-70 4.87E-66 4.32E-65 

Avg 0.408 0.46 1.374 2.816 

RS Min 1.18E-60 1.11E-64 5.20E-60 1.37E-60 

Avg 0.417 0.488 1.353 2.863 

AS Min 7.21E-74 8.01E-74 2.24E-69 1.51E-66 

Avg 0.411 0.455 1.314 2.71 
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Table 3 : Average and Minimum value of fn(x) in F2 

 

 

 

 

 

 

 

 

 

Figure 8: Comparison of Average value of fn(x) in F2       Figure 9: Comparison of Minimum value of fn(x) in F2 

Table 4 : Average and Minimum value of fn(x) in F3 

 

 

 

 

 

 

 

 

 

 

N 3 5 10 20 

Gen=50 RWS Min 1.8951 3.8781 8.9686 18.9999 

Avg 14.3878 34.5157 98.7727 267.7132 

RS Min 1.1274 3.9011 8.9738 18.9973 

Avg 14.3573 38.7858 110.1202 271.9678 

AS Min 1.9642 3.8918 8.8512 18.9502 

Avg 14.1299 35.7353 105.7585 257.652 

Gen=100 RWS Min 1.818 3.9329 8.9625 18.9913 

Avg 14.6431 41.0678 51.9153 118.785 

RS Min 1.9893 3.9999 9 18.9962 

Avg 14.8046 42.8148 54.4672 119.1835 

AS Min 1.9411 3.9258 8.9866 18.9985 

Avg 13.7012 39.6808 53.4466 119.699 

N 3 5 10 20 

Gen=50 RWS Min 1.09E-16 5.33E-17 5.14E-16 3.99E-15 

Avg 0.312 0.42393 0.98183 2.0637 

RS Min 6.57E-16 8.59E-16 9.35E-14 2.63E-13 

Avg 0.27969 0.49485 1.0676 2.065 

AS Min 1.52E-18 6.72E-18 3.11E-16 1.26E-15 

Avg 0.25408 0.40432 0.93658 1.986 

Gen=100 RWS Min 5.93E-35 2.02E-34 7.66E-33 1.60E-32 

Avg 0.11417 0.21006 0.47329 0.98294 

RS Min 1.14E-30 5.14E-31 4.02E-30 2.16E-31 

Avg 0.16419 0.25567 0.47437 0.94699 

AS Min 6.48E-37 3.13E-35 1.95E-33 1.22E-32 

Avg 0.13155 0.23074 0.5237 0.81515 
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Figure 10: Comparison of Average value of fn(x) in F3   Figure 11: Comparison of Minimum value of fn(x) in F3 

 

Table 5 : Average and Minimum value of fn(x) in F4 

 

 

 

 

 

       

 

 

 

 

 

                       
Figure 12: Comparison of Average value of fn(x) in F4   Figure 13: Comparison of Minimum value of fn(x) in F4 

 

 

N 3 5 10 20 

Gen=50 RWS Min 70 50 8.9813 -100 

Avg 73.4838 55.4561 99.8336 -78.1042 

RS Min 70 50 9 -100 

Avg 73.0887 56.7271 100.3791 -78.4591 

AS Min 70 50 8.9622 -100 

Avg 73.6985 56.8295 96.1036 -77.8765 

Gen=100 RWS Min 70 50 8.9813 -100 

Avg 72.0275 53.192 95.036 -87.6698 

RS Min 70 50 9 -100 

Avg 71.9712 53.0511 96.1081 -88.4613 

AS Min 70 50 8.9622 -100 

Avg 71.9692 52.7239 92.5329 -87.0142 
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Table 6 : Average and Minimum value of fn(x) in F5 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Comparison of Average value of fn(x) in F5            Figure 15: Comparison of Minimum value of fn(x) in F5 

 

Numerous research efforts have been made to study the 

performance of different selection operators. In order to study 

the effect of existing selection operators and proposed 

annealed selection operator, the implementation has been 

carried out by keeping the factors initial population, crossover 

type and its probability, mutation type and mutation rate 

constant in all the cases. Test runs are carried out for 50 

generations as well as 100 generations and four different 

population sizes. The results for the 5 benchmark functions in 

terms of average and minimum value are summarized in 

Table 2,3,4,5 and 6. Figures 6,7,8,9,10,11,12,13,14 and 15 

show the performance curves of the three selection operators 

in terms of average and minimum value of fitness function for 

population size 20 and 100 generations. 

It has been observed that in maximum cases proposed 

annealed selection has outperformed the roulette wheel 

selection and rank selection. It can be clearly seen that in early 

runs of generation, the annealed selection explores the search 

space and as the number of generations increases, there is 

increased selection pressure and the annealed selection uses 

exploitation mechanism in selecting the individual. In early 

generations, the behavior of proposed annealed selection is 

just like the rank selection and gradually it transforms into 

roulette wheel selection and elitism, this justifies that 

annealed selection is perfect blend of exploration and 

exploitation.  

6. CONCLUSION 

In maximum optimization problems, it has been observed and 

stated in the literature that there is no single cure for all the 

ills. Sometimes exploration techniques outsmart exploitation 

techniques and vice-versa. Influenced by these observations a 

number of selection operators have been proposed but they 

were either inclined towards exploitation or exploration. But 

generally requirements necessitate that in the beginning of 

evolution cycle exploration is better and in the last 

exploitation. The behavior of annealed selection operator can 

be easily modified as per requirement by changing the 

pressure. In this paper index variable representing the current 

N 3 5 10 20 

Gen=50 RWS Min 1.3684 1.0696 8.88E-16 -4.6708 

Avg 1.6662 1.4204 0.28187 -2.3732 

RS Min 1.3684 1.0696 8.88E-16 -4.6708 

Avg 1.6623 1.4429 0.29853 2.3372 

AS Min 1.3684 1.0696 8.88E-16 -4.6708 

Avg 1.6066 1.4558 0.27037 -2.2904 

Gen=100 RWS Min 1.3684 1.0696 8.88E-16 -4.6708 

Avg 1.4991 1.2506 0.27216 -3.563 

RS Min 1.3684 1.0696 8.88E-16 -4.6708 

Avg 1.51 1.2343 0.277 -3.433 

AS Min 1.3684 1.0696 8.88E-16 -4.6708 

Avg 1.5168 1.2449 0.2574 -3.6287 
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generation has been used to control the pressure and as it 

moves from 1 to last generation, the selection pressure 

increases accordingly and the same is reflected in the behavior 

of the annealed operator. The experiments have been 

conducted on five different benchmark functions and 

optimistic results are produced. 
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