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ABSTRACT

This paper presents the profit analysis of a system of two non-
identical units in which one unit is original which is initially
operative and the other is duplicate kept in cold standby. The
units may fail completely directly from normal mode. There is
a single server who visits the system immediately when
required. The original unit undergoes for repair upon failure
while only replacement of the duplicate unit is made by
similar new one. The original unit does not work as new after
repair and so called degraded unit. The system is considered
in up-state if any one of new/duplicate/degraded unit is
operative. The server inspects the degraded unit at its failure
to see the feasibility of repair. The failure time of the units are
exponentially distributed whereas the distributions of
inspection time, replacement time of the duplicate unit and
repair time of the original/duplicate/degraded unit are taken as
arbitrary with different probability density functions. Some
reliability characteristics of the system model are evaluated
using semi-Markov process and regenerative point technique.
The numerical results for a particular case are also obtained to
depict the behavior of Mean Time to System Failure (MTSF),
availability and profit function graphically.
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1. INTRODUCTION

In many industrial processes the provision of a standby unit is
necessary for very high reliability. But it is not always
possible to keep a high cost unit on standby. Therefore, to
improve the reliability of a system, an ordinary unit (called
duplicate) unit may be kept as spare which is capable of
performing the same nominal system function but with
different degree of reliability and desirability. An example, of
this situation is a system comprised of an electrical device and
a battery operated device. The battery device is switched on as
and when the electrical device is failed.

The reliability models of standby systems have widely been
studied by the engineers and scholars including Gopalan and
Naidu (1984), Chung (1987) and Singh and Mishra (1994)
under the assumptions that

i) The unit works as new after repair.
ii) Repair of the unit is always feasible.

Infect, these assumptions cannot be imposed always on every
system. Because the working capacity and efficiency of a
repaired unit depends on the skilled knowledge of the repair
facility used. In case of being repaired by an ordinary server,
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the chances of its failure may be high and thus such a unit
may be considered as degraded. Malik et al. (2008) analyzed a
system with inspection considering the concept of degradation
of the unit after repair.

In view of the above facts and observations, we in this paper
analyzed a system of non-identical units- one unit is original
which is initially operative and other is its duplicate kept in
cold standby. There is a single server who visits the server
immediately when required. The original unit undergoes for
repair upon failure while the duplicate unit is replaced by
similar new one. The original unit does not work as new after
repair and so called degraded unit. The system is considered
in up-state if any one of new/duplicate/degraded unit is
operative. The server inspects the degraded unit at its failure
to see the feasibility of repair. If repair of the degraded unit is
not feasible, it is replaced by new one similar to the original
unit in negligible time. The failure time of the units are
exponentially distributed whereas the distributions of
inspection time, replacement time of the duplicate unit and
repair time of the original/duplicate/degraded unit are taken as
arbitrary with different probability density functions. The
random variables are mutually independent and uncorrelated.
The expressions for some reliability characteristics such as
mean sojourn times, Mean Time to System Failure,
availability, busy period of the server, expected number of
visits by the server and profit function are derived using semi-
Markov process and regenerative point technique. The
numerical results considering a particular case are also
obtained to depict the graphically behavior of Mean Time to
System Failure (MTSF), availability and profit of the system
model.

2. NOTATIONS

E :Set of regenerative states

No :The unit is new and operative

DUo :The unit is duplicate and operative
Do :The unit is degraded and operative
Ncs /DUcs/Dcs ‘The new/duplicate/degraded unit in

cold standby

p/q :Probability that repair of degraded
unit is feasible/not feasible

AN, :Constant failure rate of new/duplicate
/degraded unit

9(t)/G(), :pdficdf  of  repair time for
01(£)/G1(t) new/degraded unit
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w(t)/W(t) :pdf/cdf of replacement time of the
duplicate unit
h(t)/H(t) :pdficdf of inspection time of the

degraded unit

:New unit is failed and under
repair/under continuous repair from
previous state/waiting for repair.

Nfur/NFUR/war

DUfure/DUFURe
D Ufwre/D u FWRe

:Duplicate unit is failed and under/
replacement/under continuous
replacement from previous state/
waiting for replacement/continuously
waiting  for  replacement  from
previous state.

Diu/Deur :Degraded unit is failed and under
repair/under repair continuously from
previous state.

Dt,i/Diwi IDrui :Degraded unit is failed and under
inspection/waiting for
inspection/under inspection

continuously from the previous state.

0ii(1),Qii(t) :pdf and cdf of first passage time from
regenerative state i to a regenerative
state j or to a failed state j without
visiting any other regenerative state
in (0,t].

:pdf and cdf of first passage time from
regenerative state i to a regenerative
state j or to a failed state j visiting
state k,r oncein (0,t].

Gijkr (1. Qi (1)

M;(t) :Probability of system up initially in
state S;eE is up at time t without
visiting to  any other regenerative
sate

W;(t) :Probability of server is busy in the
state S; up to time t without making
any transition to any other
regenerative state or returning to the
same via one or more non-
regenerative states.

m;; :Contribution to mean sojourn time in
state S;eE and non regenerative state
if occurs before transition to S;eE.

®/I© :Symbols for Stieltjes convolution/
Laplace convolution

~|s :Symbols  for Laplace Stieltjes
Transform (LST)/Laplace Transform
(LT

'(dash) :Symbol for derivative of the function

The following are the possible transition states of the system
model

So = (No, DUcs)

S2 = (DUswre ;Nrur)
S; = (Do DUfy)
S¢ = (Do DUcs)

Sg = (DUo0 Dyy)

S1 = (DUo, Ngy)
S;=(DUo, Dcs)
S5 = (Dtwi» DUFure)
S;=(DUo0,Dgy)
Sg = (DUtwre, Drui)
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SlO = (DUO, NCS)
S12= (DUfwres Drur)
S14 = (Nfwr, DUryre)

The states Sy, Si, Ss, Ss4 Sg S7, Ss, Sio and Sy; are
regenerative states while S,, Ss, Sg, S1p, S13 and Sy, are non-
regenerative states. Thus E = {Sq, Si1, Sa, Sa4 Se, S7, Ss, S10
S11}+.The possible transition between states along with
transition rates for the model is shown in fig.1.

3. TRANSITION PROBABILITIES AND
MEAN SOJOURN TIMES

Simple probabilistic  considerations yield the
following expressions for the non-zero elements

P = Qij (o0) = .[qij (t)dt as

S11 = (No, DUfyre)
S15=(DUrwre:Dsur)

Por = Q34 = Pe7 =Pio1s P, :1_9*0"1) =Py
Pss= w’ (}\‘2)

Pr10= Qh* (7"1)

P13 = g*(}\q)
P45 =1-w’ (}"2) =Pys

p78=ph*0"1) p79:1_h*(7"1)

P7110 = [1_ h*(}\‘l)] q P74013= p[l_ h*(7"1)]

Pgs = gIOH) Ps1- :1_91(7"1) =Ps 412

Piio = w’ \) Pii11a= 1-w' W)= Pi114 (1)
For these transition probabilities, it can be verified that

Po1 =P34 =Pe7 = P1o11 = P12 + P13 = P42 + P13 = Pas + Pas
=Pass t Pa75 =P710 + Prg + P79 =P710 t P78 + P7110 + P74913

=Pgs + Pg12 =Pss + Pga12 =P11o + Pr11a =Pro +Prra1s =1 )

The mean sojourn times y; in state S; are given by

o= " =xi1[1—g*(x1)]
932%1:“10 H4:7L_12[1_W*0‘2)]
" :%2 n, =%1[1—h*(xl>]

" =%l[1—gz )] b= - ()] @)

The unconditional mean time taken by the system to transit
from any state S; when time is counted from epoch at entrance
into state S; is stated as:

m, =[tdQ, (t) =—a; (0) and

0, :E(T):IP(T>t)dt=Zmij 0)
0 i

where T denotes the time to system failure.
Thus
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Moy =K, My, + My =1,
my;+my,, = ui(say) My, =Hs

Mys+Mye =H, Mye +M, 75 = K (SaY)
Mg, =g Mg+ Myt Mg =4,

Myg+Myio+Myg09 +Myyg15= “% (say)

Mgz +Mg 41 = H; (say)

Myg11 =My My + My =1y

Mo+ Mgy = Hil(saY) (5)

4, MEAN TIME TO SYSTEM FAILURE
Let ¢;(t) be the cdf of the first passage time from regenerative
state i to a failed state. Regarding the failed state as absorbing
state, we have the following recursive relations for ¢;(t) :

¢i(t)=ZQi,j(t)®¢j(t)+ZQi,k(t) (6)

where j is an operative regenerative state to which the given
regenerative state i can transit and k is a failed state to which
the state i can transit directly.

Mgs + Mg, = Hg

Taking L.S.T. of relations (6) and solving for $ o(8)-

Using this, we have

R(8) = (- ,(5))/s )

The reliability R(t) can be obtained by taking Laplace inverse
transform of (7).

The mean time to system failure can be given by
MTSF(Tl):IimR*(s):& 8)
50 D11
where
N,y = Pysltg + 15 + 1y + Pas{(Me +17) + Prghls + P 10(Ho + Hy1)}]
—PraPesPas (Mo + 1Y)

and

D11 =1- p7‘10p46p13p11.0 — P7gP4ePss

5. AVAILABILITY ANALYSIS

Let Ai(t) be the probability that the system is in up state at
instant t given that the system entered regenerative state i at
t=0. The recursive relations for A;(t) are given by :

Ai(t)=M;i(t)+ Zqi(f})(t)©Aj(t) )

where j is any successive regenerative state to which the
regenerative state i can transit through n>1 (natural number)
transitions.

We have,

M, (t)=e™ M, (t) =e™'G(t)

My (1) =™ = My,(0) M, () =e™*W(1)
M, () =€ M, () =e“H()

M,(t) =7 G,(t) M,,(t) =e “W(t), (10)
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Taking LT of relations (9) and solving for Ay*(s).

The steady-state availability of the system can be given by

. * N
Ag(0)= lim sAy(s)= D—iz (11)

where

Ny, = (0710 + Pra10) (HoPryo + Hy + Hyy) + [k, + Paglts + 17 + P gh
P 10t 0] +15[P15(P7.10 + P10 + PrgPssl

D,,= (p7,10 + p7,119)[“0p110 + 3P+ Hi + “11] + p78(“zls + Pgatls)

+M§1 +p46“’6+“'§ +P710tho
6. BUSY PERIOD ANALYSIS FOR

SERVER

Let B;(t) be the probability that the server is busy at an
instant t given that the system entered regenerative state i at
t= 0. The following are the recursive relations for B;(t)

B,(1)=Wi(t)+ >_al} (tloB;(1) (12)

where j is a subsequent regenerative state to which state i
transits through n>1 (natural number) transitions.

We have,
W, () =[e™ + (he ™ ©D]IG(t)
W, (t) =[e7 +(h,e " ©DIW(t)
W, () =e ' H(t) + [(he " ©DIH(Y)
+(1,e ' ©ph(t)C1)G, (t)
W, (t) =e™'G, (t) +[(L e )]G, (1)
W, (1) =[e™ + (h,e ™ ODTW(1) . (13)

Taking LT of relations (12) and solving for By*(s) and using
this, we can obtain the fraction of time for which the
repairman is busy in steady state

. . N
B, =LimsB,(s) =— 14
o =Lims, ) =5 (14)

Nys = (P710+ Pr110) (\N: )+ \N1*1(0)) + W:(O) + W;(O)
+P7sW (0)
and Dy, is already mentioned.

7. EXPECTED NUMBER OF VISITS BY
SERVER

Let N;j(t) be the expected number of visits by the server
in (0,t] given that the system entered the regenerative state i at
t=0. We have the following recursive relations for Ny(t) :

Ni(t):ZQi,j(t)®[6j +Nj(t)] (15)
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where j is any regenerative state to which the given
regenerative state i transits and §; =1, if j is the regenerative

state where the server does job afresh otherwise §; = 0.
Taking LST of relations (15) and solving for N(s) -

The expected number of visits per unit time are given by

. ~ N
Ng=limsN,(s)=—4 16
0=imsNo(s)=* (16)

where Ny, = (P10 +P7110)(P110 + P13) + Pas + PeaPrg +Pro

and Dy, is already specified.

8. PROFIT ANALYSIS

Profit incurred to the system model in steady state is given by
P1=K1A—K;Bo—K3 Ng

Where K = Revenue per unit up time of the system
K, = Cost per unit time for which server is busy

K3 = Cost per visit by the server

9. PARTICULAR CASE
Let us take g(t)=0e™, g,()=0e*, h(t)=ae™ and
w(t)=pe™.

By using the non-zero elements pj, we get the following
results:

MTSF(T1)=N/Dy; , Availability(Ag)=N1,/D;,

Busy Period(Bg)=N13/D1,,Expected no. of visits(Ng)=N14/D1»

where

D, =2 A[0+ A ) (o +A) (A, +6,)(B+A,)(B+A)

~qBaB* (A, +6,) — pO,ctB(2, +B)(B+1)]

N, =0[{(A, + M )(B+A,) + 2 Jh, (a+ X)) (A, +6,)(B+A)
+O+ A )M, B+ ){(A, + o+ 2,)(A, +6,) +por,}
+h,0q(h, +0,)(B+A+A)H
A 0,0pBO+A, +X)(B+A)

D,, = gA,0, (ot +A,) (A, +6,)(B+2,)[A, (0+1,){B%0
+(B+0)(B+A)A}+2ABO (B+A)]+ pordA BA, (A, +6,)
+071(0+A,)(B+A,)(B+A1)+29,0(0+1A,)(A, +6,)
(B2, (B+ 2, )0, 1+ AB) (0 + 1) + P}
B, (o + )]

N,, =06, [gA (o +A)(A +6,)B+A,)B+A) (A, +0+A)
+AO+21) B+ (o +A) (A +6,) +{A (po+2A, +6,)
+qou(0, + A )3, 1+ 2, (B+A,)(B+A)[a6(a+ A, ) (X, +6,)
+pad, (0+21,)]]

Ny =202, 0+ (h, +6,)B+2,)B+1)[0, (o +1,)
[a(6+P) +6(+pB)]+poof]
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N,, =, 2,00,B(c+A))(A, +0,)B+A,) +[B(O+2,)
+0(B+A)]+pad, (O+A)B+A,)B+A)+((a+2,)B
+qou(h, +B)O+A ) (A, +6,)(B+A)

A=[[g(a+2,)* +a’plad, +qaf(6, +o)(c+A,)?

- (o +0, +A)/[6,0° (o +2,)°]

B=[0,(c.+0,)(0, +1,) +a’pr,1/[0,0(ct +0,)(0, +A,)] .

10. CONCLUSION

From fig.2, fig.3 and fig.4, it is concluded that mean time to
system failure (MTSF), availability and profit function
decrease with the increase of failure rates A and A, for fixed
values of other parameters including p=.7 and g=.3, However,
their values increase if repair rate (0) and replacement rate ()
of duplicate unit increase. It is interesting to note that the
system becomes more profitable by interchanging the values
of pand q.

Hence, on the basis of the results obtained for a particular
case, it is suggested that replacement of the failed degraded
unit by original unit should be preferred over the repair to
increase of a system of non-identical units.
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State Transition Diagram (Fig.1)

w(t)

N ah(t)

50
@ : Transition point D : Degraded-State
() :Up-State [ ] : Failed-State
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_\
MTSF vs FAILURE RATE(.) (Fig.2)
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AVAILABILITY vs FAILURE RATE(}) (Fig.3)
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PROFIT vs FAILURE RATE()) (Fig.4)
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