
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

13

Evaluating Robustness of Resource Allocation in

Uniprocessor Real Time System

Pratibha Zunjare
Department of Computer Sc. and Engineering

National Institute of Technology, Rourkela
Rourkela, India

Bibhudatta Sahoo
Department of Computer Sc. and Engineering

National Institute of Technology, Rourkela
Rourkela, India

ABSTRACT

Real time systems (RTS) operate in an unpredictable changing

environment that causing certain system performance features

to degrade. Such systems need robustness to guarantee limited

degradation despite variations in environmental parameters.

EDF (Earliest Deadline First) scheduling has been used to

evaluate the robustness of uniprocessor system with makespan

as performance parameter. Robustness of real time system is

directly proportional to the makespan of the resource

allocation. EDF produces the optimal schedule that

maximizes the robustness in the system.

Keywords

Robustness, QoS, Resource Allocation, Real Time System.

1. INTRODUCTION
Real Time systems are widely used in our daily life and

production industry such as the robotic control,

telecommunications, chemical plant control, satellite control,

flight control systems, military systems, multimedia systems,

and so on. A real-time system is the one whose logical

correctness is based on correctness of outputs as well as

timeliness. It consists of a controlling system (computer) and

a controlled system (environment). Real time systems

guarantee that all the timing requirements can be met by the

real time scheduling and schedulability analysis. Real time

systems may operate in an environment where certain system

performance features degrades due to unpredictable

circumstances, such as sudden machine failures, higher than

expected system load, or inaccuracies in the estimation of

system performance parameters like makespan, slack etc [15,

16].

Resource allocation is very important to achieve a given

level of QoS (Quality of Service). The resource allocation is

defined as the act of assigning (matching) each task to a

machine and ordering (scheduling) the execution of the tasks

on each machine. Resource allocation is generally performed

based on estimated computation time of each task on each

class of machines. A resource allocation is said to be robust

with respect to specified system performance features against

perturbations in given system parameters if degradation in

these features is within acceptable limits when certain

perturbations occur [2]. For example, if a resource allocation

has been declared to be robust with respect to satisfying a

makespan requirement against perturbations in the estimated

execution time, then the system configured under that

allocation should continue to operate without a makespan

violation when the actual execution time is greater than

estimated execution time. Makespan (the completion time for

an entire set of tasks) is mostly used as the performance

feature that requires to be optimized in such systems.

Robustness has been defined in different ways by different

researchers. According to [5] robustness is the degree to

which a system can function correctly in the presence of

inputs different from those assumed. In a more general sense a

robust system continues to operate correctly across a wide

range of operating conditions. Robustness guarantees the

maintenance of certain desired system characteristics despite

variations in the behavior of its component parts or its

environment [4]. A robust system is one that continues to

perform at desired level of service in spite of perturbations in

some components that constitute the system. In this paper

resource allocation and scheduling are synonymous for

uniprocessor system.

The rest of the paper is organized as follows. Section 2

describes system model and defines the resource allocation

problem. Section 3 provides the work dealing with robustness

and some robustness metrics. Section 4 presents some

experiments and their results that highlight the usefulness of

the robustness metric. Related work is given in section 5.

Section 6 concludes the paper.

2. SYSTEM MODEL
It is based on periodic real-time tasks characterized by

environment dependent execution time functions, as opposed

to the traditional model with hard periodic real time tasks

characterized by worst case execution times. In this paradigm,

occasional deadline misses could be tolerated when

unpredictable environmental factors drive a demand on

resources beyond their limits. This section begins the system

model with a traditional model; then necessary extensions are

made to incorporate environmental factors.

The system model used in this work is derived from the

standard real-time periodic task model by Liu (2000), where a

software system consists of a set of n periodic tasks S = {T1,

T2... Tn}. Each Ti is released periodically with a period of pi

and has a deadline equal to its period. The execution time of

each task Ti Є S is a constant ei that represents the worst case

execution time of Ti executed on a set of m identical

processors H ={P1, P2 ,..., Pm}.

Workload Model

The traditional model does not capture dynamic and

unpredictable environment since the execution times are

modeled as constants. It is inadequate for some real-time

systems operating in these environments. For instance, a

general control system can have filter, analysis, action

planning, and actuation tasks, and one or more of the tasks

may contain algorithms and execution times that are affected

by unpredictable environmental factors. Systems with these

properties include air defense, surveillance, and intelligent

vehicles. All periodic tasks arrive at the system having

different period and are ready to execute any time within each

period. We further assume that all periodic tasks have

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

14

deadlines greater than its period and execution time and their

deadlines have to be met even in the presence of uncertainties

in execution time.

We considered each task Ti Є S is represented by a tuple (pi, ti,
di) where Ti is released periodically with a period of pi and

has a deadline di and has an estimated worst case execution

time ti. The perturbation environmental parameters that affect

a system are modeled as pp = {pp1, pp2,…., ppn}. Each task Ti

has actual execution time ei that is the function of

environmental variable pp i.e. ei = f(pp). Generally, the basic

parameter used for performance metric is utilization, given as

U(pp) = ∑n
i=1 (ei/ pi).

Robust Resource Allocation Problem: A set of n periodic

tasks to be allocated on uniprocessor, such that all tasks

should meet their deadlines and maximizes the robustness.

3. ROBUSTNESS TECHNIQUES

3.1 Deterministic Robustness Metric
This section contains a general procedure, called FePIA, for

deriving a general robustness metric for any desired

computing environment [1, 2]. The name for the above

procedure stands for identifying the performance features, the

perturbation parameters, the impact of perturbation

parameters on performance features, and the analysis to

determine the robustness. Specific examples illustrating the

application of the FePIA procedure to sample systems are

given in the next section. Each step of the FePIA procedure

[1, 2] is now described.

1) Describe quantitatively the requirement that makes the

system robust. Based on this robustness requirement,

determine the QoS performance features like throughput,

response time, makespan etc. that should be limited in

variation to ensure that the robustness requirement is met.

Consider an example makespan (the total time it takes to

complete the execution of a set of applications) for a given

resource allocation, the acceptable variation is up to δ % of

the makespan that was calculated using estimated execution

times of applications on the machines they are assigned,

and the uncertainties in system parameters are inaccuracies

in the estimates of these execution times. δ is user defined

parameter for allowing variation, for example the

acceptable variation is up to 35% of the makespan.

Mathematically, let P be the set of system performance

features that should be limited in variation. For each

element Pi Є P, quantitatively describe the tolerable

variation in Pi. Let <bi
min, bi

max > be a tuple that gives the

bounds of the tolerable variation in the system feature Pi.

For the makespan example, Pi is the time the ith machine

finishes its assigned applications, and its corresponding

<bi
min, bi

max > could be <0, 135*(estimated makespan

value) >.

2) Identify all of the system and environment parameters

whose values may impact the QoS(Quality of Service)

performance features selected in Step1. These are called the

perturbation parameters for example machine failure,

higher than expected system load, execution time exceed

than the calculated execution time, inaccuracies in the

estimation of system parameters etc., and the performance

features are required to be robust with respect to these

perturbation parameters. For the makespan example above,

the resource allocation where it is desired that the

makespan be robust (stay within 135 percent of its

estimated value) with respect to uncertainties in these

estimated execution times. Mathematically, let Q be the set

of perturbation parameters. It is assumed that the elements

of Q are vectors. Let Qj be the jth element of Q. For the

makespan example, Qj could be the vector composed of the

actual application execution times, i.e., the ith element of Qj

is the actual execution time of the ith application on the

machine it was assigned. In general, representation of the

perturbation parameters as separate elements of Q would be

based on their nature or kind (e.g., message length variables

in Q1 and computation time variables in Q2).

3) Identify the impact of the perturbation parameters in Step 2

on the system performance features in Step1. For the

makespan example, the sum of the actual execution times

for all of the applications assigned a given machine is the

time when that machine completes its applications. Note

that Step1 implies that the actual time each machine finish

its applications must be within the acceptable variation.

Mathematically, for every Pi Є P, determine the

relationship Pi = fij(Qj), if any, that relates Pi to Qj. In this

expression, fij is a function that maps Pi to Qj. For the

makespan example, Pi is the finishing time for machine mi,

and fij would be the sum of execution times for applications

assigned to machine Mi. The rest of this discussion will be

developed assuming only one element in Q. The case where

multiple perturbation parameters can affect a given Pi

simultaneously will be examined in Section 3.

4) The last step is to determine the smallest collective

variation in the values of perturbation parameters

identified in Step 2 that will cause any of the performance

features identified in Step 1 to violate its acceptable

variation. This will be the degree of robustness of the given

resource allocation. For the makespan example, this will be

some quantification of the total amount of inaccuracy in the

execution times estimates allowable before the actual

makespan exceeds 135 percent of its estimated value [1].

Let Qj
orig be the value of Qj at which the system is

originally assumed to operate. However, due to

inaccuracies in the estimated parameters or changes in the

environment, the value of the variable Qj might differ from

its assumed value. Let the distance || Qj*(Pi) – Qj
orig ||2 be

called the robustness radius, rω(Pi ,Qj) , of Pi against Qj..

 rω(Pi ,Qj) = MIN || Qj*(Pi) – Qj
orig ||2

3.2 Stochastic Robustness Metric
A stochastic robustness metric for a given distributed

computing environment should reasonably predict the

performance of the system. This is based on a mathematical

model where the relationship between uncertainty in system

parameters and its impact on system performance are

described stochastically. This stochastic model is then used to

derive a quantitative evaluation of the robustness of a given

resource allocation as the probability that the resource

allocation will satisfy the ex-pressed QoS constraints.

Assume that M copies of a application arrive at computing

node at wall clock time t, and nj is the number of applications

pending execution or being executed by computing node j at

that time. Let t0 denote the wall-clock start time of execution

for the query being processed by computing node j at time t.

The functional dependence between the uncertainty

parameters and the performance characteristic at time t,

denoted as δ (t), is

})({(t)
1

,01

1,2,..Mj
max 




jn

i

jij TttT

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

15

Due to its functional dependence on the uncertainty

parameters Tij, the performance characteristic in above

equation is itself a random variable. Let the QoS constraints

be quantitatively described by the values βmin and βmax

limiting the acceptable range of possible variation in system

performance, i.e.,

βmin ≤ δ ≤βmax.

The stochastic robustness metric, denoted as θ, is the

probability that the performance characteristic of the system is

confined to the interval [βmin , βmax] i.e.

θ=P[βmin ≤ δ ≤βmax]

The stochastic robustness quantitatively measures the

probability that the generated system performance will satisfy

the stipulated QoS constraints. Clearly, unity is the most

desirable stochastic robustness metric value, i.e., there is zero

probability that the system will violate the established QoS

constraints [3]. There are different methods of computing the

robustness metric like Fast Fourier Transform, Bootstrap

method etc. by assuming functional independence among set

of local uncertainty parameters [Tij |1 ≤ i ≤ nij] and local

performance parameter δ.

Existing robust allocation approaches such as Gertphol et al.

(2002), Ali et al. (2003), Juedes et al. (2004) and Gu et al.

(2005) have the shortcoming that they employ coarse

robustness metrics, which can result in poor allocations. The

robustness metric of Ali et al. (2003) was based on the L2

norm. It measures the radius of maximum environment

perturbation environment without violating feasible

boundaries. However, the metric only partially characterizes

feasible regions with an inner tangent sphere, and no

algorithm was developed to optimize it. The max-of-min

component of a workload vector among all feasible points

was adopted as robustness metric in Gertphol et al. (2002),

Juedes et al. (2004), Gu et al. (2005). But it only partially

characterizes feasible regions with an inner tangent rectangle.

In addition, many existing approaches do not emphasize real-

time scheduling and feasibility. For instance, CPUs were

assumed to be fair-shared in Gertphol et al. (2002). A special

scheduler based on tightness was assumed by Shestak et al.

(2005), but no feasibility guarantee was made. Gu et al.

(2007) introduced a new robustness metric is accurately

characterized the complete space of a feasible region. The

robustness of allocation M is defined to be the volume of the

entire feasible space of environmental variable w. Since each

environmental variable is discrete, the volume can be

expressed

mathematically as

 













01 02 0

2,1))..((..)(
w w wl

lm wwwfMR

3.3 Other robustness Metrics
Distributed real time system must operate in an environment

replete with uncertainty while proving a required level of

quality of service (QoS). The System undergoes unpredictable

changes causing certain system performance features to

degrade. Such system needs robustness to guarantee limited

degradation despite fluctuation in the behavior of its

components or environment. The robustness gives an idea of

the stability of the solution with regards to another

performance metric such as schedule length, load balance of

an application, queue waiting time of batch scheduler etc.

Some required definitions used in robustness metrics:

i. Makespan (M): The total execution time of application.

ii. Slack of task (S) : A time window within which the task can

be delayed without affecting the makespan

iii. Entropy of schedule: It is based on the probability of an

execution path that will become critical.

iv. Expected makespan (E(M)): The average value of the

makespan.

Based on these definitions we define the following robustness

metrics [15].

Makespan standard deviation. The standard deviation of the

makespan distribution tells how narrow this distribution is.

The narrower the distribution, the smaller the standard

deviation is. This metric related to robustness because when

there are two schedules the one for which the standard

deviation is the smaller is the one for which realizations are

more likely to have makespan close to the average value.

Mathematically

22)()(MEMEM 

Makespan Differential entropy. The differential entropy of

distribution of a distribution measures the uncertainty of that

distribution. If there is less uncertainty there is more chance

than two realizations give a close result hence that schedule is

robust.





 dxxfxfMh)(log)()(

Average slack. The slack gives the sum of space time in the

schedule. It is related to robustness of makespan as a schedule

with large slack is able to absorb a lot of uncertainty. For

deterministic schedule the slack is defined as





Vi

iTliBlMs)()(

Where Bl(i) is the bottom level of task i (the length of the

longest path from i to an exit node including i) and Tl(i) is

the top level of node i (the length of the longest path from

entry node to node i excluding i).

Slack standard deviation. Each task has its own slack. Some

tasks have a very large slack and other a slack of zero. As

shown in [24] only task with non-zero slack can absorb

uncertainty without delaying the makespan. Hence the

standard deviation of all slack needs to be as small as

possible. For computing the standard deviation of all slack,

we use average slack S as shown above and slack of every

node i є V : si=M-Bl(i)-Tl(i).

Then we have standard deviation of the slack:





Vi

is Ss 2)(

Average lateness. A schedule is said late if its makespan

exceeds the average makespan. The average lateness as

defined in [24] is the average of the difference between the

makespan of the late realization and the average makespan. If

this metric is large this means that the makespan tends to be

far from the average and then that the robustness is low. It is

defined as:

L=E(M’)-E(M)

where M’ is the random variable describing the realization

that have makespan larger than E(M).

Probabilistic metric. This metric has been defined in [15]

and gives the probability that the makespan is within two

bounds. If this probability is high, this means that the

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

16

makespan of a given realization is likely to be close to the

average makespan and hence that the robustness is high. An

absolute probabilistic metric [15] that measures the

probability of the makespan to be within [E(M)-δ, E(M)+δ]

where δ a positive constant given by the user. The absolute

probabilistic metric is defined as:

 A(δ)=P(E(M) - δ ≤m ≤ E(M)+ δ)

The relative probabilistic metric [15] that measure the

probability of the makespan to be within [E(M)/ γ, E(M) * γ]

where γ is a real number greater than 1. The relative

probabilistic metric is defined as:

))(
)(

()(MEm
ME

PR 


 

4. EXPERIMENTS

4.1 Robust EDF Algorithm

The scheduling problem is to find the schedule S that is

feasible (meets all task deadlines) and maximizes robustness.

Liu and Layland [21] presented a necessary and sufficient

schedulability condition for EDF(Earliest Deadline First)

scheduling under the assumption that all tasks' relative

deadlines are equal to their periods, the schedulability

condition is that the total utilization of the task set is less than

or equal to 1. It has been proven to be optimal among all

scheduling algorithms on a uniprocessor, in the sense that if a

real-time task set cannot be scheduled by EDF, then this task

set cannot be scheduled by any algorithm. We have

considered, arrival time for all tasks is same. Each task is

characterized by arrival time, Estimated Time to Compute

(ETC), deadline and actual execution time. EDF generates the

schedule for tasks according to their closest deadline first.

EDF produces the optimal schedule that maximizes the

robustness metric R(M). The basic idea of the algorithm (Alg.

1) generates a feasible schedule S which represents sequence

of tasks. S is used to derive the robustness of the system.

Algorithm 1 Robust Resource Allocation for Uniprocessor

Input: MaxTask, P, T = [T1 T2 . . . TMaxTask]

Output: Robustness

1: for i = 1 to MaxTask do

2: Compute Utilization  


MaxTask

i
i

i

p

t
U

1

3: if U ≥1 then

4: Tasks are not schedulable

5: else

6: Sort Tasks according to Earliest Deadline First

7: Make Schedule S= [1:MaxTask]

8:  


MaxTask

i itM
1

 // Compute Makespan M for S

9: // Compute a tuple that gives the bounds of the tolerable

variation in M

10: vM = [0, 1.35* M]

11: Compute Finishing time F of Processor

12: Compute Robustness

13: end if

14: end for

ETC and deadline for each task is uniformly distributed. The

task arrival pattern follows Poisson’s distribution with ETC.

The simulation study has been performed with the simulator

designed using Matlab 7.0.1. Performance of EDF has been

studied with averaging 10 instances of the allocation. The

robustness value for each sample was given point to plane

formula. Here robustness requirement is that the makespan M

of the resource allocation should not increase more than 35%

beyond its predicted value which is computed based on the

expected execution times of tasks [1].

Figure 4.1(a) Performance of EDF with makespan for

1000 tasks

Figure4.1(b) Performance of EDF with makespan for 2000

tasks

Figure 4.2(a) Performance of EDF with 1000 tasks

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

17

Figure 4.2(b) Performance of EDF with 2000 tasks

Figure 4.1(a, b) shows the performance of EDF with

uniformly distributed service time of the different task set on

single processor. The simulations indicates the dependency of

robustness on makespan; as makespan increases the

corresponding robustness also increases. The dependency of

robustness on no of the tasks arrived with Poisson distribution

is shown in Figure 4.2(a, b).

Figure 4.3(a) Robustness for EDF and RM with 1000 tasks

Figure 4.3(b) Robustness for EDF and RM with 2000

tasks

Figure 4.3(c) Robustness for EDF and RM with 3000

tasks

Robustness of EDF on different task sets is compared with the

Rate Monotonic (RM) Scheduling on uniprocessor system.

The simulation results indicates on better performance of EDF

over RM when the no of task on the system greater than 600

or above. A dependency of makespan with no of task can also

be observed.

5. RELATED WORK
A universal framework for defining robust resource

allocations in heterogeneous computing systems was

addressed in [2]. This work referred to a resource allocations

tolerance to uncertainty as the robustness of that resource

allocation. In [1, 2], a four-step procedure is established for

deriving a deterministic robustness metric. The first step is

defining robustness metric requires quantitatively describing

what makes the system robust. This description establishes the

required QoS level that must be delivered to refer to the

system as robust essentially bounding the acceptable variation

in system performance. In the second step, all modeled system

and environmental parameters perturbation parameters that

may impact the system’s ability to deliver acceptable QoS are

identified.

In stochastic approach [11], each perturbation parameter, or

uncertainty parameter, is modeled as a random variable fully

described by a probability mass function (pmf). Our second

approach differs from that in [1], where a single deterministic

estimated value for each of the identified perturbation

parameters is used. In the third step, the impact of the

identified perturbation parameters on the systems performance

features is defined. This requires identifying a function that

maps a given vector of perturbation parameters to a value for

the performance feature of the system. Similarly in [12]

stochastic environment, this involves defining the functional

dependence between the input random variables and the given

performance feature. However, the model this involves more

complex computations to combine random variables. Finally,

in the fourth step, the previously identified relation is

evaluated to quantify the robustness.

As a measure of robustness, the authors in [1] use the

minimum robustness radius that relies on a deterministic

performance characteristic so used in a deterministic worst-

case analysis.

In stochastic model [5, 6, 11, 12], more information regarding

the variation in the perturbation parameters is assumed

known. Representing the uncertainty parameters of the system

as stochastic variables enables the robustness metric in the

stochastic model to account for all possible outcomes for the

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.3, February 2012

18

performance of the system. The stochastic robustness metric

[9, 11, 12] requires more information and is far more complex

to calculate than its deterministic counterpart. To handle the

computational complexity, [3] considered the FFT and

bootstrap approximation methods that greatly simplify the

required calculations. The scheduling problem in real time

systems has been explained in [8, 13, 14]. A heuristic

dynamic scheduling scheme for parallel real-time jobs,

modeled by directed acyclic graphs (DAG) where parallel real

time jobs arrive at a heterogeneous system following a

Poisson process, in a heterogeneous system is presented in

[12, 15].

6. CONCLUSION
A robust schedule can absorb some degree of uncertainty in

tasks duration while maintaining a stable solution. This paper

discussed the different type of robustness metrics in real time

system. The robustness of real time system becomes the

vibrant research issue to provide the stability of system in

presence of unpredictable operational environments. A

number of experiments were conducted to examine the

performance and scalability of the robust allocation algorithm

by using EDF. From the experiment results we can conclude

that robustness of real time system is directly proportional to

the makespan. The Majority of real time system operates on

multiprocessor system those used in applications like

chemical plant control, satellite control, flight control systems,

military systems etc. The performance of EDF can tested for

the multiprocessor system on different real time system.

7. REFERENCES
[1] S. Ali, A. A. Maciejewski, H. J. Siegel, and J. K. Kim.

Measuring the robustness of a resource allocation. IEEE

Transactions on Parallel and Distributed Systems,vol. 15,

no. 7, pp. 630641, Jul.2004.

[2] S. Ali, A. A. Maciejewski, H. J. Siegel, and J. K. Kim.

Definition of robustness metric for resource allocation.

Proceedings of International Parallel and Distributed

Processing Symposium, page 10, 2003.

[3] Dazhang Gu , Lonnie Welch, Frank Drews, Klaus

Ecker. Characterizing robustness in dynamic real time

systems. The Journal of Systems and Software 80, pp

1005-1014, Nov 2007.

[4] S. Ali, J.K. Kim, H. J. Siegel, A. A. Maciejewski, Y. Yu,

S. B. Gundala, S. Gertphol, and V. Prasanna. Greedy

Heuristics for Resource Allocation in Dynamic

Distributed Real-Time Heterogeneous Computing

Systems. In-ternational conference on Parallel and

Distributed Processing Techniques and Applications

(PDPTA 02),Vol II,Pages 519-530, June 2002.

[5] Z. Shi, E. Jeannot, and J. Dongarra, Robust task

scheduling in non-deterministic heterogeneous

computing systems, in Proceedings of the IEEE

International Conference on Cluster Computing, Sep.

2006, pp.135-143.

[6] D. Juedes, L. Welch, F. Drews, and D. Fleeman.

Resource allocation algorithms for maximizing allowable

workload in dynamic, distributed real-time systems.

Technical report, Center for Intelligent, Distributed, and

Dependable Systems, Ohio University, 2003.

[7] D. Gu, F. Drews, and L. Welch. A characterization of

task allocation problems for dynamic distributed real-

time sys-tems. IASTED International Conference on

Parallel and Distributed Computing and Systems,

Cambridge, M A, 2004.

[8] C.M. Krishna and Kang G. Shin. Real Time Systems.

McGrawHill, 1997.[cited at p. 5, 17, 57, 63, 64, 66]

[9] F. Drews, L. Welch, D. Juedes, and D. Fleeman Utility-

Function based Resource Allocation for Adaptable

Applications in Dynamic, Distributed Real Time

Systems Proceedings of the 18th International Parallel

and Dis-tributed Processing Symposium (IPDPS04)

2004.

[10] Sethavidh Gertphol a nd Viktor K. Prasanna Iterative

Integer Programming Formulation for Robust Resource

Allocation in Dynamic Real-Time Systems Proceedings

of the 18th International Parallel and Distributed

Processing Symposium (IPDPS04)2004.

[11] Jay Smith, Luis D. Brice, Anthony A. Maciejewski,

Howard Jay Siegel Measuring the Robustness of

Resource Allocations in a Stochastic Dynamic

Environment IEEE Transaction on Parallel and

Distributed System 2007.

[12] Vladimir Shestak, Jay Smith, Howard Jay Siegel, and

Anthony A. Maciejewski. A Stochastic Approach to

Measuring the Robustness of Resource Allocations in

Distributed Systems. Proceedings of the International

Conference on Parallel Processing (ICPP06), pages 459-

470, Columbus, Ohio, USA, August 2006.

[13] A. Burns. Scheduling hard real-time systems: a review.

Software Engineering, 6(3):116-128, May 1991.

[14] J. Goossens, Shelby Funk, and Sanjoy Baruah. Priority-

driven scheduling of periodic task systems on

multiprocessors. Technical Report TR01-024, 14 2001.

[cited at p. 5]

[15] L. Canon, E. Jeannot. A comparison of Robustness

Metrics for Scheduling DAGs on Heterogeneous

Systems. Proceedings of the IEEE International

Conference on Cluster Computing, pages 558-567, 2007.

[16] Z. Shi E. Jeannot. Robust task scheduling in

nondeterministic heterogeneous computing systems.

Proceedings of IEEE International Conference on Cluster

Computing, pages 630-641, 2006.

