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ABSTRACT 

Real time systems (RTS) operate in an unpredictable changing 

environment that causing certain system performance features 

to degrade. Such systems need robustness to guarantee limited 

degradation despite variations in environmental parameters. 

EDF (Earliest Deadline First) scheduling has been used to 

evaluate the robustness of uniprocessor system with makespan 

as performance parameter.  Robustness of real time system is 

directly proportional to the makespan of the resource 

allocation.   EDF produces the optimal schedule that 

maximizes the robustness in the system. 
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1. INTRODUCTION 
Real Time systems are widely used in our daily life and 

production industry such as the robotic control, 

telecommunications, chemical plant control, satellite control, 

flight control systems, military systems, multimedia systems, 

and so on. A real-time system is the one whose logical 

correctness is based on correctness of outputs as well as 

timeliness. It consists of a controlling system (computer) and 

a controlled system (environment). Real time systems 

guarantee that all the timing requirements can be met by the 

real time scheduling and schedulability analysis. Real time 

systems may operate in an environment where certain system 

performance features degrades due to unpredictable 

circumstances, such as sudden machine failures, higher than 

expected system load, or inaccuracies in the estimation of 

system performance parameters like makespan, slack etc [15, 

16].  

 

Resource allocation is very important to achieve a given 

level of QoS (Quality of Service). The resource allocation is 

defined as the act of assigning (matching) each task to a 

machine and ordering (scheduling) the execution of the tasks 

on each machine. Resource allocation is generally performed 

based on estimated computation time of each task on each 

class of machines. A resource allocation is said to be robust 

with respect to specified system performance features against 

perturbations in given system parameters if degradation in 

these features is within acceptable limits when certain 

perturbations occur [2].  For example, if a resource allocation 

has been declared to be robust with respect to satisfying a 

makespan requirement against perturbations in the estimated 

execution time, then the system configured under that 

allocation should continue to operate without a makespan 

violation when the actual execution time is greater than 

estimated execution time. Makespan (the completion time for 

an entire set of tasks) is mostly used as the performance 

feature that requires to be optimized in such systems.  

Robustness has been defined in different ways by different 

researchers. According to [5] robustness is the degree to 

which a system can function correctly in the presence of 

inputs different from those assumed. In a more general sense a 

robust system continues to operate correctly across a wide 

range of operating conditions. Robustness guarantees the 

maintenance of certain desired system characteristics despite 

variations in the behavior of its component parts or its 

environment [4]. A robust system is one that continues to 

perform at desired level of service in spite of perturbations in 

some components that constitute the system. In this paper 

resource allocation and scheduling are synonymous for 

uniprocessor system. 

 

The rest of the paper is organized as follows. Section 2 

describes system model and defines the resource allocation 

problem. Section 3 provides the work dealing with robustness 

and some robustness metrics. Section 4 presents some 

experiments and their results that highlight the usefulness of 

the robustness metric. Related work is given in section 5.  

Section 6 concludes the paper.  

 

2. SYSTEM MODEL 
It is based on periodic real-time tasks characterized by 

environment dependent execution time functions, as opposed 

to the traditional model with hard periodic real time tasks 

characterized by worst case execution times. In this paradigm, 

occasional deadline misses could be tolerated when 

unpredictable environmental factors drive a demand on 

resources beyond their limits. This section begins the system 

model with a traditional model; then necessary extensions are 

made to incorporate environmental factors.  

The system model used in this work is derived from the 

standard real-time periodic task model by Liu (2000), where a 

software system consists of a set of n periodic tasks S = {T1, 

T2... Tn}. Each Ti is released periodically with a period of pi 

and has a deadline equal to its period. The execution time of 

each task Ti Є S is a constant ei that represents the worst case 

execution time of Ti executed on a set of m identical 

processors H ={P1, P2 ,..., Pm}.  

Workload Model  

 

The traditional model does not capture dynamic and 

unpredictable environment since the execution times are 

modeled as constants. It is inadequate for some real-time 

systems operating in these environments. For instance, a 

general control system can have filter, analysis, action 

planning, and actuation tasks, and one or more of the tasks 

may contain algorithms and execution times that are affected 

by unpredictable environmental factors. Systems with these 

properties include air defense, surveillance, and intelligent 

vehicles. All periodic tasks arrive at the system having 

different period and are ready to execute any time within each 

period. We further assume that all periodic tasks have 
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deadlines greater than its period and execution time and their 

deadlines have to be met even in the presence of uncertainties 

in execution time. 

We considered each task Ti Є S is represented by a tuple (pi, ti, 
di ) where Ti is released periodically with a period of pi and 

has a deadline di and has an estimated worst case execution 

time ti. The perturbation environmental parameters that affect 

a system are modeled as pp = {pp1, pp2,…., ppn}. Each task Ti 

has actual execution time ei that is the function of 

environmental variable pp i.e. ei = f(pp). Generally, the basic 

parameter used for performance metric is utilization, given as 

U(pp) = ∑n
i=1 (ei/ pi).   

Robust Resource Allocation Problem: A set of n periodic 

tasks to be allocated on uniprocessor, such that all tasks 

should meet their deadlines and maximizes the robustness.  
 

3. ROBUSTNESS TECHNIQUES 
 

3.1 Deterministic Robustness Metric  
This section contains a general procedure, called FePIA, for 

deriving a general robustness metric for any desired 

computing environment [1, 2]. The name for the above 

procedure stands for identifying the performance features, the 

perturbation parameters, the impact of perturbation 

parameters on performance features, and the analysis to 

determine the robustness. Specific examples illustrating the 

application of the FePIA procedure to sample systems are 

given in the next section. Each step of the FePIA procedure 

[1, 2] is now described. 

1)  Describe quantitatively the requirement that makes the 

system robust. Based on this robustness requirement, 

determine the QoS performance features like throughput, 

response time, makespan etc. that should be limited in 

variation to ensure that the robustness requirement is met. 

Consider an example makespan (the total time it takes to 

complete the execution of a set of applications) for a given 

resource allocation, the acceptable variation is up to δ % of 

the makespan that was calculated using estimated execution 

times of applications on the machines they are assigned, 

and the uncertainties in system parameters are inaccuracies 

in the estimates of these execution times. δ is user defined 

parameter for allowing variation, for example the 

acceptable variation is up to 35% of the makespan. 

Mathematically, let P be the set of system performance 

features that should be limited in variation. For each 

element Pi   Є P, quantitatively describe the tolerable 

variation in Pi. Let <bi
min, bi

max > be a tuple that gives the 

bounds of the tolerable variation in the system feature Pi. 

For the makespan example, Pi is the time the ith machine 

finishes its assigned applications, and its corresponding 

<bi
min, bi

max > could be <0, 135*(estimated makespan 

value) >. 

 

2) Identify all of the system and environment parameters 

whose values may impact the QoS(Quality of Service) 

performance features selected in Step1. These are called the 

perturbation parameters for example machine failure, 

higher than expected system load, execution time exceed 

than the calculated execution time, inaccuracies in the 

estimation of system parameters etc., and the performance 

features are required to be robust with respect to these 

perturbation parameters. For the makespan example above, 

the resource allocation where it is desired that the 

makespan be robust (stay within 135 percent of its 

estimated value) with respect to uncertainties in these 

estimated execution times. Mathematically, let Q be the set 

of perturbation parameters. It is assumed that the elements 

of Q are vectors. Let Qj be the jth element of Q. For the 

makespan example, Qj could be the vector composed of the 

actual application execution times, i.e., the ith  element of Qj 

is the actual execution time of the ith application on the 

machine it was assigned. In general, representation of the 

perturbation parameters as separate elements of Q would be 

based on their nature or kind (e.g., message length variables 

in Q1 and computation time variables in Q2). 

 

3) Identify the impact of the perturbation parameters in Step 2 

on the system performance features in Step1. For the 

makespan example, the sum of the actual execution times 

for all of the applications assigned a given machine is the 

time when that machine completes its applications. Note 

that Step1 implies that the actual time each machine finish 

its applications must be within the acceptable variation. 

Mathematically, for every Pi Є P, determine the 

relationship Pi = fij(Qj), if any, that relates Pi  to Qj. In this 

expression, fij is a function that maps Pi to Qj. For the 

makespan example, Pi is the finishing time for machine mi, 

and fij would be the sum of execution times for applications 

assigned to machine Mi. The rest of this discussion will be 

developed assuming only one element in Q. The case where 

multiple perturbation parameters can affect a given Pi 

simultaneously will be examined in Section 3. 

 

4) The last step is to determine the smallest collective 

variation in the values of perturbation parameters 

identified in Step 2 that will cause any of the performance 

features identified in Step 1 to violate its acceptable 

variation. This will be the degree of robustness of the given 

resource allocation. For the makespan example, this will be 

some quantification of the total amount of inaccuracy in the 

execution times estimates allowable before the actual 

makespan exceeds 135 percent of its estimated value [1]. 

Let Qj
orig   be the value of Qj at which the system is 

originally assumed to operate. However, due to 

inaccuracies in the estimated parameters or changes in the 

environment, the value of the variable Qj might differ from 

its assumed value. Let the distance || Qj*( Pi) – Qj
orig ||2  be 

called the robustness radius, rω(Pi ,Qj) , of Pi against Qj.. 

 

 rω(Pi ,Qj) = MIN || Qj*( Pi) – Qj
orig ||2   

3.2 Stochastic Robustness Metric 
A stochastic robustness metric for a given distributed 

computing environment should reasonably predict the 

performance of the system. This is based on a mathematical 

model where the relationship between uncertainty in system 

parameters and its impact on system performance are 

described stochastically. This stochastic model is then used to 

derive a quantitative evaluation of the robustness of a given 

resource allocation as the probability that the resource 

allocation will satisfy the ex-pressed QoS constraints. 

Assume that M copies of a application arrive at computing 

node at wall clock time t, and nj is the number of applications 

pending execution or being executed by computing node j at 

that time. Let t0 denote the wall-clock start time of execution 

for the query being processed by computing node j at time t. 

The functional dependence between the uncertainty 

parameters and the performance characteristic at time t, 

denoted as δ (t ), is 

})({(t)
1

,01

1,2,..Mj
max 




jn

i

jij TttT  
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Due to its functional dependence on the uncertainty 

parameters Tij, the performance characteristic in above 

equation is itself a random variable. Let the QoS constraints 

be quantitatively described by the values βmin and βmax 

limiting the acceptable range of possible variation in system 

performance, i.e., 

βmin  ≤ δ  ≤βmax. 

  

The stochastic robustness metric, denoted as θ, is the 

probability that the performance characteristic of the system is 

confined to the interval [βmin , βmax] i.e. 

  

θ=P[βmin  ≤ δ  ≤βmax] 

 

The stochastic robustness quantitatively measures the 

probability that the generated system performance will satisfy 

the stipulated QoS constraints. Clearly, unity is the most 

desirable stochastic robustness metric value, i.e., there is zero 

probability that the system will violate the established QoS 

constraints [3]. There are different methods of computing the 

robustness metric like Fast Fourier Transform, Bootstrap 

method etc. by assuming functional independence among set 

of local uncertainty parameters [Tij |1 ≤ i ≤ nij] and local 

performance parameter δ.  

Existing robust allocation approaches such as Gertphol et al. 

(2002), Ali et al. (2003), Juedes et al. (2004) and Gu et al. 

(2005) have the shortcoming that they employ coarse 

robustness metrics, which can result in poor allocations. The 

robustness metric of Ali et al. (2003) was based on the L2 

norm. It measures the radius of maximum environment 

perturbation environment without violating feasible 

boundaries. However, the metric only partially characterizes 

feasible regions with an inner tangent sphere, and no 

algorithm was developed to optimize it. The max-of-min 

component of a workload vector among all feasible points 

was adopted as robustness metric in Gertphol et al. (2002), 

Juedes et al. (2004), Gu et al. (2005). But it only partially 

characterizes feasible regions with an inner tangent rectangle. 

In addition, many existing approaches do not emphasize real-

time scheduling and feasibility. For instance, CPUs were 

assumed to be fair-shared in Gertphol et al. (2002).  A special 

scheduler based on tightness was assumed by Shestak et al. 

(2005), but no feasibility guarantee was made. Gu et al. 

(2007) introduced a new robustness metric is accurately 

characterized the complete space of a feasible region. The 

robustness of allocation M is defined to be the volume of the 

entire feasible space of environmental variable w. Since each 

environmental variable is discrete, the volume can be 

expressed  

mathematically as 

 













01 02 0

2,1 ))..((..)(
w w wl

lm wwwfMR  

3.3 Other robustness Metrics 
Distributed real time system must operate in an environment 

replete with uncertainty while proving a required level of 

quality of service (QoS). The System undergoes unpredictable 

changes causing certain system performance features to 

degrade. Such system needs robustness to guarantee limited 

degradation despite fluctuation in the behavior of its 

components or environment. The robustness gives an idea of 

the stability of the solution with regards to another 

performance metric such as schedule length, load balance of 

an application, queue waiting time of batch scheduler etc. 

Some required definitions used in robustness metrics: 

i. Makespan (M): The total execution time of application. 

ii. Slack of task (S) : A time window within which the task can 

be delayed without affecting the makespan 

iii. Entropy of schedule: It is based on the probability of an 

execution path that will   become critical. 

iv. Expected makespan (E(M)): The average value of the 

makespan. 

Based on these definitions we define the following robustness 

metrics [15]. 

Makespan standard deviation. The standard deviation of the 

makespan distribution tells how narrow this distribution is. 

The narrower the distribution, the smaller the standard 

deviation is. This metric related to robustness because when 

there are two schedules the one for which the standard 

deviation is the smaller is the one for which realizations are 

more likely to have makespan close to the average value. 

Mathematically       

 
22 )()( MEMEM     

Makespan Differential entropy. The differential entropy of 

distribution of a distribution measures the uncertainty of that 

distribution. If there is less uncertainty there is more chance 

than two realizations give a close result hence that schedule is 

robust. 

 





 dxxfxfMh )(log)()(  

Average slack. The slack gives the sum of space time in the 

schedule. It is related to robustness of makespan as a schedule 

with large slack is able to absorb a lot of uncertainty. For 

deterministic schedule the slack is defined as 

 





Vi

iTliBlMs )()(  

Where Bl(i) is the bottom level of task i (the length of the 

longest path from i to an exit node    including i) and Tl(i) is 

the top level of node i (the length of the longest path from 

entry node to  node i excluding i). 

 

Slack standard deviation. Each task has its own slack. Some 

tasks have a very large slack and other a slack of zero. As 

shown in [24] only task with non-zero slack can absorb 

uncertainty without delaying the makespan. Hence the 

standard deviation of all slack needs to be as small as 

possible. For computing the standard deviation of all slack, 

we use average slack S as shown above and slack of every 

node i є V : si=M-Bl(i)-Tl(i). 

Then we have standard deviation of the slack: 

 





Vi

is Ss 2)(  

 

Average lateness. A schedule is said late if its makespan 

exceeds the average makespan.  The average lateness as 

defined in [24] is the average of the difference between the 

makespan of the late realization and the average makespan. If 

this metric is large this means that the makespan tends to be 

far from the average and then that the robustness is low. It is 

defined as:  

L=E(M’)-E(M)   

where M’ is the random variable describing the realization 

that have makespan larger than E(M). 

 

Probabilistic metric. This metric has been defined in [15] 

and gives the probability that the makespan is within two 

bounds. If this probability is high, this means that the 
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makespan of a given realization is likely to be close to the 

average makespan and hence that the robustness is high. An 

absolute probabilistic metric [15] that measures the 

probability of the makespan to be within [E(M)-δ, E(M)+δ] 

where δ a positive constant given by the user. The absolute 

probabilistic metric is defined as: 

 A(δ)=P(E(M) - δ ≤m ≤ E(M)+ δ) 

The relative probabilistic metric [15] that measure the 

probability of the makespan to be within [E(M)/ γ, E(M) * γ] 

where γ is a real number greater than 1. The relative 

probabilistic metric is defined as: 

))(
)(

()( MEm
ME

PR 


   

4. EXPERIMENTS 

4.1 Robust EDF Algorithm  
 

The scheduling problem is to find the schedule S that is 

feasible (meets all task deadlines) and maximizes robustness. 

Liu and Layland [21] presented a necessary and sufficient 

schedulability condition for EDF(Earliest Deadline First) 

scheduling under the assumption that all tasks' relative 

deadlines are equal to their periods, the schedulability 

condition is that the total utilization of the task set is less than 

or equal to 1. It has been proven to be optimal among all 

scheduling algorithms on a uniprocessor, in the sense that if a 

real-time task set cannot be scheduled by EDF, then this task 

set cannot be scheduled by any algorithm. We have 

considered, arrival time for all tasks is same. Each task is 

characterized by arrival time, Estimated Time to Compute 

(ETC), deadline and actual execution time. EDF generates the 

schedule for tasks according to their closest deadline first. 

EDF produces the optimal schedule that maximizes the 

robustness metric R(M). The basic idea of the algorithm (Alg. 

1) generates a feasible schedule S which represents sequence 

of tasks. S is used to derive the robustness of the system. 

 

Algorithm 1 Robust Resource Allocation for Uniprocessor 

  

Input: MaxTask, P, T = [T1 T2 . . . TMaxTask] 

Output: Robustness 

1: for i = 1 to MaxTask do 

2: Compute Utilization   


MaxTask

i
i

i

p

t
U

1

 

3:  if U ≥1 then 

4:  Tasks are not schedulable 

5:      else 

6:       Sort Tasks according to Earliest Deadline First 

7:       Make Schedule S= [1:MaxTask] 

8:  


MaxTask

i itM
1

  // Compute Makespan M for S 

9:  // Compute a tuple that gives the bounds of the tolerable 

variation in M 

10:  vM = [0, 1.35* M] 

11:  Compute Finishing time F of Processor 

12:  Compute Robustness  

13:       end if 

14: end for 

 

ETC and deadline for each task is uniformly distributed.   The 

task arrival pattern follows Poisson’s distribution with ETC. 

The simulation study has been performed with the simulator 

designed using Matlab 7.0.1.  Performance of EDF has been 

studied with averaging 10 instances of the allocation. The 

robustness value for each sample was given point to plane 

formula.  Here robustness requirement is that the makespan M 

of the resource allocation should not increase more than 35% 

beyond its predicted value which is computed based on the 

expected execution times of tasks [1]. 

 

 
 

Figure 4.1(a) Performance of EDF with makespan for 

1000 tasks 

 

 
Figure4.1(b) Performance of EDF with makespan for 2000 

tasks 

 

 
Figure 4.2(a) Performance of EDF with 1000  tasks 
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Figure 4.2(b) Performance of EDF with 2000 tasks 

 

Figure 4.1(a, b) shows the performance of EDF with 

uniformly distributed service time of the different task set on 

single processor. The simulations indicates the dependency of 

robustness on makespan; as makespan increases the 

corresponding robustness  also increases.  The dependency of 

robustness on no of the tasks arrived with Poisson distribution 

is shown in Figure 4.2(a, b). 

 

 
Figure 4.3(a) Robustness for EDF and RM with 1000 tasks 

 

 
Figure 4.3(b) Robustness for EDF and RM  with 2000 

tasks 

 

 
Figure 4.3(c) Robustness for EDF and RM  with 3000 

tasks 
 

Robustness of EDF on different task sets is compared with the 

Rate Monotonic (RM) Scheduling on uniprocessor system. 

The simulation results indicates on better performance of EDF 

over RM when the no of task on the system greater than 600 

or above. A dependency of makespan with no of task can also 

be observed. 

 

5. RELATED WORK 
A universal framework for defining robust resource 

allocations in heterogeneous computing systems was 

addressed in [2]. This work referred to a resource allocations 

tolerance to uncertainty as the robustness of that resource 

allocation. In [1, 2], a four-step procedure is established for 

deriving a deterministic robustness metric. The first step is 

defining robustness metric requires quantitatively describing 

what makes the system robust. This description establishes the 

required QoS level that must be delivered to refer to the 

system as robust essentially bounding the acceptable variation 

in system performance. In the second step, all modeled system 

and environmental parameters perturbation parameters that 

may impact the system’s ability to deliver acceptable QoS are 

identified.  

In stochastic approach [11], each perturbation parameter, or 

uncertainty parameter, is modeled as a random variable fully 

described by a probability mass function (pmf). Our second 

approach differs from that in [1], where a single deterministic 

estimated value for each of the identified perturbation 

parameters is used. In the third step, the impact of the 

identified perturbation parameters on the systems performance 

features is defined. This requires identifying a function that 

maps a given vector of perturbation parameters to a value for 

the performance feature of the system. Similarly in [12] 

stochastic environment, this involves defining the functional 

dependence between the input random variables and the given 

performance feature. However, the model this involves more 

complex computations to combine random variables. Finally, 

in the fourth step, the previously identified relation is 

evaluated to quantify the robustness. 

As a measure of robustness, the authors in [1] use the 

minimum robustness radius that relies on a deterministic 

performance characteristic so used in a deterministic worst-

case analysis. 

In stochastic model [5, 6, 11, 12], more information regarding 

the variation in the perturbation parameters is assumed 

known. Representing the uncertainty parameters of the system 

as stochastic variables enables the robustness metric in the 

stochastic model to account for all possible outcomes for the 
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performance of the system. The stochastic robustness metric 

[9, 11, 12] requires more information and is far more complex 

to calculate than its deterministic counterpart. To handle the 

computational complexity, [3] considered the FFT and 

bootstrap approximation methods that greatly simplify the 

required calculations. The scheduling problem in real time 

systems has been explained in [8, 13, 14]. A heuristic 

dynamic scheduling scheme for parallel real-time jobs, 

modeled by directed acyclic graphs (DAG) where parallel real 

time jobs arrive at a heterogeneous system following a 

Poisson process, in a heterogeneous system is presented in 

[12, 15]. 

 

6. CONCLUSION 
A robust schedule can absorb some degree of uncertainty in 

tasks duration while maintaining a stable solution. This paper 

discussed the different type of robustness metrics in real time 

system.  The robustness of real time system becomes the 

vibrant research issue to provide the stability of system in 

presence of unpredictable operational environments. A 

number of experiments were conducted to examine the 

performance and scalability of the robust allocation algorithm 

by using EDF. From the experiment results we can conclude 

that robustness of real time system is directly proportional to 

the makespan. The Majority of real time system operates on 

multiprocessor system those used in applications like 

chemical plant control, satellite control, flight control systems, 

military systems etc. The performance of EDF can tested for 

the multiprocessor system on different real time system. 
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