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ABSTRACT 

In this paper, we propose novel techniques for feature 

parameter extraction based on MFCC and feature recognition 

using dynamic time warping algorithm for application in 

speaker-independent isolated digits recognition. Using the 

proposed Weighted MFCC (WMFCC), we achieve low 

computational overhead for the feature recognition stage since 

we use only 13 weighted MFCC coefficients instead of the 

conventional 39 MFCC coefficients including the delta and 

double delta features. In order to capture the trends or patterns 

that a feature sequence presents during the alignment process, 

we compute the local and global features using Improved 

Features for DTW algorithm (IFDTW), rather than using the 

pure feature values or their estimated derivatives. The 

experiments based on TI-Digits corpus demonstrate the 

effectiveness of proposed techniques leading to higher 

recognition accuracy of 98.13%. 
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1. INTRODUCTION 
The objective of automatic speech recognition (ASR) systems 

is to recognize the human speeches, such as words and 

sentences, using algorithms evaluated by a computer without 

the interference of humans. ASR is essentially a pattern 

recognition task, the goal is to take one pattern, i.e. the speech 

signal, and classify it as a sequence of previously learned 

patterns, e.g. words or sub-word units such as phonemes [1]. 

Speech recognition systems can be characterized by many 

parameters, such as speaking model, speaking style, 

vocabulary, etc. An isolated-word speech recognition system 

requires that the speaker pause briefly between words, 

whereas a continuous speech recognition system does not. 

Spontaneous, or extemporaneously generated, speech contains 

disfluencies, and is much more difficult to recognize than 

speech read from script. Some ASR systems require speaker 

enrollment, a user must provide samples of his or her speech 

before using them, whereas other systems are speaker-

independent, in that no enrollment is necessary. Speech 

recognition is the process of converting an acoustic signal 

captured by a microphone to a set of words. The recognized 

words can be the final result, as for applications such as 

commands and control, data entry and document preparation. 

They can also serve as the input to further linguistic 

processing in order to achieve speech understanding [2]. 

Speech recognition techniques are often seen as an alternative 

to typing on a keyboard or touching smart phones or tablet. 

They help people with a variety of disabilities to 

communicate with a computer.  

There are two main phases in a speech recognition system: 

training and recognition. During the training phase, a training 

vector is generated from the speech signal of each word 

spoken by the user. The training vectors extract the spectral 

features for distinguishing different classes of words. Each 

training vector can serve as a template for a single word or a 

word class. These training vectors (patterns) are stored in a 

database for subsequent use in the recognition phase. During 

the recognition phase, the user speaks any word for which the 

system was trained. A test pattern is generated for that word 

and the corresponding text string is displayed as the output 

using a pattern comparison technique. The system block 

diagram is shown in Fig. 1. 

 

Fig. 1: Speech recognition system block diagram 

Several different techniques for feature extraction exists, the 

most common being linear predictive coding (LPC) and Mel 

frequency cepstral coefficients (MFCC). LPC is a time-

domain technique and suffers from variations in the amplitude 

of the speech signal due to noise [3, 4]. The preferred 

technique for feature extraction is MFCC [5, 6, 7] wherein the 

features are generated by transforming the signal into 

frequency domain. In general, cepstral features are more 

compact, discriminable, and most importantly, nearly 

decorrelated and therefore, they can provide higher baseline 

performance over filter bank features [8]. 

For feature recognition stage, several techniques are available 

including analysis methods based on Bayesian discrimination 

[9], Hidden Markov Models (HMM) [10], Dynamic Time 

Warping (DTW) based on dynamic programming [11, 12, 

13], Support Vector Machines [14], Vector Quantization [15], 

and Neural Networks [16]. DTW is an algorithm developed 

by the speech recognition community to handle the matching 

of non-linearly expanded or contracted speech signals. In this 

work, we use DTW because of its simplicity in hardware 

implementation and it is also widely used in small-scale 

embedded systems (e.g. cell phones, mobile applications, 

etc.). 
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The paper is organized as follows. Section 2 explains the pre-

processing done on spoken speech digits followed by Section 

3 which details the procedure of conventional MFCC feature 

extraction and the proposed Weighted MFCC (WMFCC) 

technique. Section 4 explains the feature recognition 

technique using conventional DTW and the proposed 

Improved Features for DTW (IFDTW) algorithm. Section 5 

demonstrates the experimental results followed by 

conclusions in Section 6. 

2. PRE-PROCESSING OF SPEECH 
Accurate detection of speech in the presence of background 

noise is important to constrain the amount of processing that 

is needed for recognition. An endpoint detection algorithm 

[17] is applied to the speech signal to find the beginning and 

end of each spoken digit, and to remove the silence and noise 

region. The algorithm uses signal features based on energy 

level and zero-crossing rate. Fig. 2 shows the result of 

endpoint detection algorithm for spoken digit “2” along with 

its energy and zero-crossing rate plots. The solid vertical lines 

in the top plot indicate the portion of resultant speech void of 

silence regions. 

 

Fig. 2: Result of Endpoint Detection for spoken digit “2” 

3. WEIGHTED MFCC 
     The first step of speech recognition process is to extract 

the features from the speech signal. The purpose of feature 

extraction is two-fold: first is to compress the speech signal 

into features, and second is to use features that are insensitive 

to speech variations, changes of environmental conditions and 

independent of speaker. The procedural steps of MFCC 

feature extraction is described as follows: 

3.1 Pre-emphasis 
The speech signal spectrum is pre-emphasized by 

approximately 20 dB per decade to flatten the spectrum of the 

speech signal [5]. The pre-emphasis filter is used to offset the 

negative spectral slope of the speech signal to improve the 

efficiency of the spectral analysis [18].  

 

Fig. 3: Spectrum before (left) and after Pre-emphasis 

(right) 

The filter transfer function is given by 1( ) 1H z az  , where 

„a‟ is between 0.9 and 1. Fig. 3 shows the effect of pre-

emphasis on the spectrum of a speech signal with the value of 

0.97 for a. 

3.2 Framing 
Since the human speech signal is slowly time varying, it can 

be treated as a stationary process when considered under a 

short time duration [5]. Therefore, the speech signal is usually 

separated into small duration blocks, called frames, and the 

spectral and cepstral analysis is performed on these frames. 

Typically, the frame length is kept as 25 milliseconds and the 

neighboring frames are overlapped by 10 milliseconds. The 

frame shift is the frame length minus the frame overlap.  

3.3 Windowing 
After being partitioned into frames, each frame is multiplied 

by a window function prior to the spectral analysis to reduce 

the discontinuity introduced by the framing process by 

attenuating the values of the speech samples at the beginning 

and end of each frame. Typically, Hamming window is used 

[19]. 

3.4 Spectral Estimation 
The spectral coefficients of the speech frames are estimated 

using the Fast Fourier Transform (FFT) algorithm. These 

coefficients are complex numbers containing both magnitude 

and phase information. However, for speech recognition, the 

phase information is usually discarded and only the 

magnitude of the spectral coefficients is retained [19]. 

3.5 Mel Filtering 
The spectrum of speech signal is then filtered by a group of 

triangular bandpass filters as shown in Fig. 4 that simulate the 

characteristics of human‟s ear. The purpose of Mel filtering is 

to model the human auditory system that perceives sound in a 

nonlinear frequency binning [5].  

 

Fig. 4: Triangular bandpass Mel filter bank 

The ears analyze the spectrum of the sound in groups 

according to a series of overlapped critical bands. The critical 

bands are distributed in a way that the frequency resolution is 

high in low frequency region and low in high frequency 

region. The bandwidth of the window is narrow in low 

frequency and gradually increases for high frequency. The 

edge of the window is arranged so that it coincides with the 

center of the neighboring window [20]. To decide the location 

of the Mel frequency of the center of the windows, the Mel 

frequencies for minimum and maximum linear frequency are 

first calculated using:  

                           Mel 102595 log 1 / 700f f              (1) 

where fMel is the Mel frequency corresponding to the linear 

frequency f. The windows are linearly distributed in the Mel 

frequency scale, but when converted back to linear frequency, 

the center frequencies of the windows are logarithmically 

distributed. 

3.6 Logarithmic Compression 
While the Mel filtering approximates the non-linear 

characteristics of the human auditory system in frequency, the 

Speech Signal 

Energy 

ZC Rate 
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natural logarithm deals with the loudness non-linearity. It 

approximates the relationship between the human‟s 

perception of loudness and the sound intensity [21]. Besides 

this, it converts the multiplication relationship between 

parameters into addition relationship [19]. The convolutional 

distortions, such as the filtering effect of microphone and 

channel, and the multiplication in frequency domain, become 

simple addition after the logarithm. The log Mel filter bank 

coefficients are computed from the filter outputs as: 

1

10

0

( ) 20log ( ) ( ) , 0
N

k

S m X k H k m M




 
   

 
        (2) 

where M is the number of Mel filters (20 to 40), X(k) is the N-

point FFT of the specific window frame of the input speech 

signal, and H(k) is the Mel filter transfer function [19]. 

3.7 Discrete Cosine Transform (DCT) 
The cepstrum is defined as the inverse Fourier transform of 

the log magnitude of Fourier transform of the signal. Since 

the log Mel filter bank coefficients are real and symmetric, 

the inverse Fourier transform operation can be replaced by 

DCT to generate the cepstral coefficients [22]. This step is 

crucial in speech recognition as it can separate the vocal tract 

shape function from the excitation signal of the speech 

production model. The lower order cepstral coefficients 

represent the smooth spectral shape or vocal tract shape, while 

the higher order coefficients represent the excitation 

information [18]. The cepstral coefficients are the DCT of the 

M filter outputs obtained as:  

         1

0

1/ 2
( ) ( )cos

M

m

n m
c n S m

M





 
  

 
             (3) 

Typically, the first 13 cepstral coefficients are used. Another 

benefit of DCT is that the generated MFCC coefficients c(n) 

are less correlated than the log Mel filter bank coefficients.  

3.8 Log Energy 
In addition to the above MFCC features, the energy of the 

speech frame is also used as a feature [19]. The log energy, 

denoted as logE, is calculated directly from the time-domain 

signal of a frame as: 

        2

1

log E log ( )
N

n

x n


                                   (4) 

where x(n) is the speech sample and N is the length of the 

frame. In this work, the cepstral coefficient c(0) is replaced by 

logE to give a more accurate energy feature. 

3.9 Liftering 
The higher order cepstral coefficients tend to be numerically 

small so that there is a large variation of cepstral coefficients 

between the low-order and high-order coefficients [23]. To re-

scale the coefficients, a raised sine window bandpass liftering 

(filtering in cepstral domain) is used as follows: 

          ( ) 1 sin ( )
2

L n
c n c n

L

  
    

  

                       (5) 

Typically, L is 12 for a 12-order cepstral vector. 

3.10 Cepstral Mean Normalization (CMN) 
This step ensures that all the features contribute equally. 

Without normalization, the feature with large dynamic range, 

such as the log energy feature, may dominate the distance 

metric in the feature recognition stage. CMN reduces the 

influence of additive white noise [5]. By subtracting the 

estimated mean of every channel noise in the cepstral domain, 

the average value of noisy speech can be reduced to almost 

zero. Assuming that the speech signal is divided into K 

frames, the normalized cepstral coefficients for frame k are 

calculated as  

  

1

1
( ) ( ) ( )

K

k k k

k

c n c n c n
K 

                 (6) 

3.11 Delta and Double Delta Features 
The trend of the speech signals in time is lost in the frame-by-

frame analysis. To recover the trend information, the time 

derivatives (delta) and accelerations (double delta) are used 

[5]. For speaker-independent speech recognition system, these 

features are especially important. Although the location of the 

formant of the speech varies from person to person, the time 

trend of the formant is quite constant among different 

speakers. The trend information, represented by delta and 

double delta features, is important for improving the 

robustness of the recognition. The delta Δc(n) features are 

calculated as follows: 

2 1

1

1
( ) ( ( ) ( ))

D

D
i

i

c n i c n i c n i

i 



     


            (7) 

where c(n) are the MFCC coefficients for each frame, and D 

is typically set to 2. The double delta features ΔΔc(n) are 

calculated similarly from the delta features. These derived 

features are concatenated to the original cepstral features, thus 

giving us a 39-dimensional MFCC feature vector for each 

frame, which are 12 MFCC, 1 energy, 12 delta MFCC, 1 delta 

energy, 12 double delta MFCC, and 1 double delta energy 

features. 

3.12 Proposed Weighted MFCC 

(WMFCC) 
The delta and double delta features improve the overall 

accuracy of the speech recognition system; however, this 

approach increases the dimension of the feature vector leading 

to higher computational complexity overhead in the 

recognition stage. Several modifications to MFCC feature 

extraction have been reported in the literature [24, 25]. 

However, to reduce the dimensions of feature vector while 

still retaining the advantages of delta and double delta 

features, we propose a simple technique of weighted MFCC 

(WMFCC) feature vector as follows: 

( ) ( ) ( ) ( )wc n c n p c n q c n               (8)  

where the delta and double features are weighted according to 

p and q, respectively. Since these derivative features 

contribute slightly less than c(n), the weights are constrained 

to be q<p<1. The final feature vector wc(n) is 13-dimensional 

thus reducing the complexity overhead of the recognition 

stage. Also as shown in Fig. 5, we note that WMFCC and 

conventional MFCC have similar amplitude curves and thus 

can be effective in speech recognition as demonstrated in 

Section 5. 



International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.3, February 2012 

9 

 

Fig. 5: Weighted MFCC (13-dimensional) of a speech 

frame 

4. IMPROVED FEATURES FOR DTW 

4.1 Conventional Dynamic Time Warping 
    Unlike Linear Time Warping (LTW) which compares two 

time series based on linear mapping of the two temporal 

dimensions, Dynamic Time Warping (DTW) allows a non-

linear warping alignment of one signal to another by 

minimizing the distance between the two as shown in Fig. 6.  

 
Fig. 6: DTW non-linear alignment of two time series 

This warping between two signals can be used to determine 

the similarity between them and thus it is very useful for 

feature recognition. In a speech waveform, the duration of 

each spoken digit can vary but the overall speech waveforms 

are similar for the same digit. DTW is a pattern matching 

algorithm with a non-linear time optimization effect based on 

Bellman‟s principle of optimality [19], which states that given 

an optimal path from A to B and a point C lying somewhere 

along this path, the path segments AC and CB are optimal 

paths from A to C and C to B respectively. The DTW 

problem can be formulated as follows: Given two time series 

X and Y of lengths |X| and |Y|, 

            1 2, | |

1 2, | |

, , ,

, , ,

i X

j Y

X x x x x

Y y y y y





 

 
                         (9) 

construct a warp path W: 

1 2,, , max(| |,| |) | | | |KW w w w X Y K X Y       (10) 

where K is the length of the warp path and the kth element of 

warp path is wk = (i, j), where i is an index from time series X, 

and j is an index from time series Y. The warp path must start 

at the beginning of each time series at w1 = (1, 1) and finish at 

the end of both time series at wK = (|X|, |Y|). This ensures that 

every index of both time series is used in the optimal warping 

path. There is also a constraint on the warp path that forces i 

and j to be monotonically increasing and every index of each 

time series must be used. 

1( , ), ( ', ') ' 1, ' 1k kw i j w i j i i i j j j         (11) 

    The optimal warp path is the warp path with the minimum 

distance, where the normalized distance of a warp path W is: 

   
1

( ) ( , ) | | | |
K

ki kj

k

Dist W Dist w w X Y


          (12) 

where Dist(wki, wkj) is the distance metric, either Euclidean or 

City-block [26], between the two data point indices (one from 

X and one from Y) in the kth element of the warp path. Instead 

of attempting to find the minimal distance all at once, a 

dynamic programming approach is used by finding solutions 

to sub-problems and using this repeatedly to find solutions to 

a slightly larger problem until the final minimum distance is 

obtained [5, 19]. A two-dimensional cost matrix D is 

constructed where the value at D(i, j) is the distance of the 

warp path. Fig. 7 shows an example of a cost matrix and a 

minimum-distance optimal warp path traced through it. 
 

 
Fig. 7: Minimum-distance warping path for two time 

series 

    The rationale behind dynamic programming approach is 

that since the value at D(i, j) is the minimum warp distance, 

then if the minimum distances are already known for smaller 

portions that are a single data point away from i and j, then 

D(i, j) is the minimum distance of all possible warp paths for 

time series that are one data point smaller than i and j, plus the 

distance between the two points xi and yj. Thus, the distance 

can be evaluated recursively as: 

( , ) ( , ) min[ ( 1, ), ( 1, 1), ( , 1)]D i j Dist i j D i j D i j D i j       (13)  

    The slope constraint condition on DTW states that the warp 

path should not be too steep or too shallow [5]. This prevents 

very short sub-sequences to match very long ones. This slope 

is expressed as a/b, where b is the number of steps in x 

direction and a is the number of steps in y direction. After b 

steps in x, the path must take a step in y, and vice-versa. 

Further, there is a constraint on adjustment window to speed 

up the calculations since an intuitive alignment path is 

unlikely to drift very far from the diagonal. The distance that 

the warp path is allowed to wander is limited to a window or 

band of size R, directly above and to the right of the diagonal. 

Fig. 8 illustrates the two window bands widely used in DTW. 
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Fig. 8: Adjustment window constraints: Sakoe-Chiba 

band (left) [11] and Itakura Parallelogram (right) [27] 

    In application to speech recognition, the two time series 

corresponds to the two numCoefficients x numFrames MFCC 

feature vectors of different speech signals. A two-dimensional 

cost matrix is computed that stores the minimum distance 

between two feature vectors xi and yj. The spoken digit‟s 

feature vector is compared to the template feature vectors 

using DTW and the one with the minimum distance is chosen 

as recognition output. 

4.2 Derivative Dynamic Time Warping 
    The fundamental flaw of conventional DTW is that the 

numerical value of a data point in a time series does not 

represent the complete picture of the data point in relation to 

the entire sequence. In [28], derivative DTW was proposed in 

which each data point is replaced by its first derivative. This 

estimated derivative serves as the local feature of a point that 

expresses its relationship with two adjacent neighboring data 

points. The derivative estimates for MFCC feature vector X 

are computed as: 

   1 1 1 / 2
( ) , 1

2

i i i i

i

x x x x
D x i K

    
        (14)   

where K is the number of frames. This estimate is not defined 

for the first and last vectors of the feature sequence. Similarly, 

derivative estimates are computed for the feature vector Y and 

conventional DTW algorithm is applied to these derivative 

features. Fig. 9 illustrates the alignment by conventional 

DTW and derivative DTW where we note that the 

conventional DTW produces multiple singularities. 
 

 
Fig. 9: Alignment produced by conventional DTW (left) 

and derivative DTW (right) [adapted from 28] 

4.3 Proposed Improved Features for 

Dynamic Time Warping (IFDTW) 
    Several refinements exist in the literature for improving the 

performance of DTW algorithm [29, 30, 31]. In this work, we 

propose improved features for dynamic time warping instead 

of using absolute feature value or derivative estimates since 

an absolute value or local feature is not sufficient to identify 

and match common trends and patterns in the feature vectors. 

We use both local and global features of each data point to 

track more accurately their contribution towards pattern 

matching. For MFCC feature vector X, we compute the local 

and global features as: 

1 1
local

1

1 1
global

( )
2

1
( )

2

i i
i i

K i
k k

k i k
i i

x x
f x x

x x

K i i
f x x

 



  

 
   

 

 
 

 
  
 
 
 

 
       (15) 

The local feature is simply the feature value minus the slope 

of the line through its left and right neighbors. The global 

feature should reflect the position of a feature value in the 

global shape of the feature sequence. The derivative features 

in (14) contain no global information and so we propose a 

global feature which is computed as the feature value minus 

the difference between the average values of the last K-i 

points and the average value of the first i-1 points in the 

feature vector X. Similarly, local and global features are 

computed for the feature vector Y. These local and global 

features are not defined for the first and last vectors of the 

sequences.  

    Based on the local and global features, we compute the 

distance between feature vectors X and Y as follows: 

  

local global

local local local

global global global

( , ) ( , ) ( , )

( , ) ( ) ( )

( , ) ( ) ( )

i j i j i j

i j i j

i j i j

dist x y dist x y dist x y

dist x y f x f y

dist x y f x f y

 

 

 

  (16) 

Note that the time complexity of the proposed IFDTW is 

same as that of conventional DTW and derivative DTW, i.e. 

O(N2). Fig. 10 illustrates the alignment between two feature 

vectors for the same digit spoken by two different speakers 

where we can observe the advantage of the proposed IFDTW 

technique since it has fewer singularities compared to 

conventional DTW and derivative DTW. 
 

 
Fig. 10: Alignment by various DTW techniques with 

minimum distance by DTW: 116, DDTW: 108, IFDTW: 

94 

    In this work, we also modify the adjustment window 

constraint by considering the different slopes of Itakura 

parallelogram. Itakura proposed the window constraint using 

slope 2 and 1/2 [27], however, our experiments indicate that 

using constrained slope of 3 and 1/3 gives the minimum 

matching distance using IFDTW. Table I illustrates the 

minimum matching distance for same digits spoken by 
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different speakers corresponding to different slopes of the 

parallelogram.  

TABLE I. Slopes for Adjustment Window Constraint 

 Matching distance for digit 

Slope “2” “4” “9” 

5 ~ 1/5 138 132 123 

4 ~ 1/4 126 125 106 

3 ~ 1/3 95 102 82 

2 ~ 1/2 112 118 97 
 

The matching distance is minimum at the constrained path 

slope of 3 and 1/3 and accordingly, our adjustment window 

constraint is the shaded region as shown in Fig. 11. R is the 

width of the Sakoe-Chiba band which is typically 10% of 

max(|X|, |Y|) [11]. 
 

 
 

Fig. 11: Adjustment window constraints for IFDTW 

 

5. EXPERIMENTAL RESULTS 
    Conventional speech recognition systems consist of feature 

extraction based on MFCC followed by feature recognition 

using DTW algorithm. We test the effectiveness of our 

proposed Weighted MFCC (WMFCC) features and Improved 

Features for DTW (IFDTW) algorithm for speaker-

independent isolated spoken digits 0 to 9. The entire 

recognition system is implemented using MATLAB. The 

training and test speech data are taken from TI-Digits 

database [32] from which we have used samples from 10 male 

and 10 female speakers. Each digit is spoken twice by each 

speaker and total 400 utterances are collected in our 

experiments. We have used 240 utterances (60%) for training 

and 160 utterances (40%) for testing. In all our experiments, 

the speech signals are sampled at 16 kHz and represented by 

16 bits. The speech signal is divided into frames of duration 

25 ms with 10 ms overlap between adjacent frames. The 

number of Mel filters used for feature extraction is 40 and 

512-point FFT is used for WMFCC feature extraction stage. 

    Fig. 12 shows the recognition accuracy by the proposed 

techniques for each digit, Table II shows the confusion matrix 

for 16 test utterances of each digit from 0 to 9 and Table III 

compares the recognition accuracy obtained by various 

techniques. 

 

Fig. 12: Recognition accuracy of different spoken digits 

using WMFCC and IFDTW 

TABLE II. Confusion Matrix 

 0 1 2 3 4 5 6 7 8 9 

0 16 0 0 0 0 0 0 0 0 0 

1 0 16 0 0 0 0 0 0 0 0 

2 0 0 16 0 0 0 0 0 0 0 

3 0 0 0 14 0 0 0 0 2 0 

4 0 0 0 0 16 0 0 0 0 0 

5 0 0 0 0 0 16 0 0 0 0 

6 0 0 0 0 0 0 16 0 0 0 

7 0 0 0 0 0 0 0 16 0 0 

8 0 0 0 0 0 0 0 0 16 0 

9 0 1 0 0 0 0 0 0 0 15 
 

TABLE III. Overall Recognition Accuracy (%) 

 #Features DTW DDTW IFDTW 

MFCC 13 86.68 88.95 90.72 

MFCC + Delta 26 92.65 94.28 95.40 

MFCC + Delta 

+ Double Delta 
39 94.25 96.75 97.42 

Weighted 

MFCC 
13 95.30 96.15 98.13 

 

    The above results indicate that the proposed WMFCC 

feature extraction and IFDTW feature recognition techniques 

are superior to the existing techniques for isolated spoken 

digits recognition. With a smaller number of cepstral 

coefficients by taking into account both delta and acceleration 

coefficients, WMFCC surpass the recognition accuracy 

relative to conventional MFCC and also have the benefit of 

low computational overhead to the recognition stage. In all 

cases, using the Improved Features for DTW gives us more 

accuracy compared to conventional DTW and derivative 

DTW. 

6. CONCLUSION 
    In this paper, we proposed an improved technique for 

feature extraction using Weighted MFCC that considers both 

the voiceprint and the dynamic characteristics of the spoken 

digit, and an enhanced technique for feature recognition using 

Improved Features for DTW (IFDTW). The experimental 

results demonstrate that the recognition system with WMFCC 

can achieve higher recognition rate than the systems using 

MFCC and its delta and double delta coefficients, thus leading 

to a lower computational overhead on the DTW algorithm. 

Also, by improving the WMFCC features considering their 

local and global trend over the entire spoken speech signal in 

IFDTW, we achieve higher accuracy compared to using the 

conventional DTW (pure value based) and derivative DTW 
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(local feature based) algorithms. Our future focus will be to 

improve the recognition speed of IFDTW without 

compromising its recognition accuracy.  
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