
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

43

Transformation of Sequential Program to KPN -

An Overview

Danish Ather
Sr. Lecturer

Department Of Computer Applications
Teerhanker Mahaveer University

Raghuraj Singh
Professor,

Computer Science & Engineering
Department,

H.B.T.I., Kanpur

Vinodani Katiyar
Professor
SRCET

Computer Science & Engineering
Department, Lucknow

ABSTRACT
This paper describes a general transformation theory in

transforming a sequential C application to Kahn Process

Network. It briefly describes in detail the two major

transformation steps namely task partitioning and channel

generation. We also discuss the previous approaches which

automate the transformation from sequential model to parallel

model and compare these with our approach.

Keywords
Kahn Process Network, Matlab, Partition Analysis, Channel

Placement Analysis, Optimizations, loop parallelization, loop

outlining, Unparsing

1. INTRODUCTION
Transformation converts an application specified in sequential

model of computation (in imperative language such as C,

Matlab and so on) to parallel model of computation (Kahn

Process Network). The transformation can be manual or

automatic. Transformation involves identification of section

of code, which can be transformed as tasks of KPN. A task

defines the minimal computation unit that is mapped to a

processing element. Once transformation into tasks is done,

appropriate channels are introduced between the tasks. Figure

2shows a transformed KPN for the sequential program of

Figure 1. Function “main” is transformed into task “Task

main”, function “x” is transformed into task “Task x” and

function “y” is transformed into task “Task y”. The global

“variable” global in sequential C source is now local to all

tasks and therefore channels are introduced between tasks. As

global variable “global” is written in “main” and read in

function “x” and “y”, channels are added from “main” to “x”

and “main” to “y” in final KPN. Channels are also introduced

for function parameters “m” and “n” in the generated KPN.

Two major steps required in transforming a sequential

application to a Kahn Process Network are task partitioning

and channel generation. Irrespective of the type of source

language in which sequential application is written, these two

steps must be performed to realize the required KPN.

Below we give an overview of these two major steps:

 Function based Partitioning

 Loop based Partitioning

intint_global

main()

-

for(i=1;i<=100;i++)

-

int_global=sub();

a=sub1();

b= sub2();

x(a);

y(b);

}

}

void x(int a)

-

intlocal_x

.…….…………

……..…………

local_x = sub4(

) * int_global

………………..

.………………

………………..

}

void y(int b)

-

intlocal_y

………………l

ocal_y=sub5()*

int_global

………………

………………

………………

………………

}

Figure 1 A Sequential C program

Figure 2A transformed KPN for Figure 1

Task_main()
{
intint_global
for(i=1;i<=100;i++)
{
int_global=sub();
write(Channel1,int_gl
obal)
write(Channel
2,int_global)
a=sub1();
b= sub2();
write(Channel 3,a);
write(Channel 3,b);
}
}

Task_Y()
{
intint_global
int b;
intlocal_y;
while(1)
{
…………
…………
read(channel2,int_glo
bal);
read(channel4,x);
……………
……………
}
}

Task_X()
{
intint_global
int a;
intlocal_x;
while(1)
{
read(channel1,int_glo
bal);
read(channel3,x);
……………
……………
}
}

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

44

2. FUNCTION BASED PARTITIONING
Partitions the source application at function boundaries into

tasks. It means that each function or a set of functions in the

input application can constitute a single task. Function based

partitioning achieves function parallelism from the program.

Figure 3 shows a layout of a program where functions

partitioned into tasks are bounded in a box. Functions “main”,

“functionG” and “functionF” belong to Task 1. Functions

“functionA” , “functionB” , “functionC” and “functionD”

belong to Task 2 and function “functionE” belongs to Task 3.

3. LOOP BASED PARTITIONING
Partition loop into separate tasks by dividing the iteration

space of the loop into set of iteration spaces where each

iteration space is a separate task. This type of partitioning

achieves data parallelism from the program. Figure 1.4 shows

a loop partitioned into 4 tasks. Loop for i =1 to 100 is

partitioned into 4 sub loops where each loop iteration is one

fourth of original loop. Each of the 4 sub loops can transfer

and receive data through communication channel.

Figure 3 Function Based Task Partitioning

4. CHANNEL GENERATION
Once the input application is partitioned into tasks,

appropriate communication channels are added between the

tasks. A communication channel is FIFO channels that are

connected to exactly two processes through read and write

ports. One process acts as the producer and writes data

elements to the channel and other process acts as the receiver

and receives data tokens.

Variable/data needs to be identified for communication

between separate tasks. Also the direction of channel needs to

be determined based on flow of data from one task to another.

Channels are generated as a result of existence of global

shared data, function call parameters and updation of array in

loop parallelization.

Figure 4 Loop Based Task Partitioning for i=1 to 100

5. “EFFECTIVENESS” OF

TRANSFORMATION
A transformation is “effective” if it is correct and it leads to an

efficient KPN. Correctness and efficiency are the two most

important factors that need to be taken care of in

transformation. The resulting KPN functionally match the

original program and also achieve higher throughput when

implemented on a multiprocessor platform.

5.1 Correctness of Transformation
Following are the cases where the resulting KPN is incorrect:

 The output generated by executing KPN does not

match with the output generated by executing its

sequential counterpart. An incorrect output can

occur because of passing of incorrect values from

one task to another at different points in program

execution.

 Whenever there is a read of a data token by a task

that is written by another task, a channel is added

between those tasks. Addition of a channel can lead

to incorrect output by KPN if channel is not added

at the point of read and last write of that data token.

In such a case reading task will not get new updated

value of the data token.

 A task gets blocked pre-maturely (without giving

the required output) as a result of reading a token

from an empty channel (this is a property of KPN

Task1

Task2

Task3

Main

FunctionG

FunctionF

FunctionG

FunctionA

FunctionB

FunctionC

FunctionD

FunctionG

FunctionE

for i = 1
to 25

for i = 26
to 50

for i = 51
to 75

for i = 75
to 100

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

45

Call sequence

graph +Contol

flow graph

Modified AST

User information

report

Abstract syntax

tree

C source code

Call sequence

graph +Contol

flow graph

Modified AST

Analysis results

Output KPN form

that if the channel has no token then read from an

empty channel blocks the task at that point where

read is being done).

 A task gets blocked pre-maturely as a result of full

channel (if a channel is full then write action cannot

write more tokens into the channel which will block

the task).

 KPN runs into an infinite execution without getting

terminated. This case occurs when no task gets

blocked or there is no exit condition for the KPN.

5.2 Efficiency of KPN
The resulting KPN is efficient if it is not sequential. As an

example We take Figure which is a partial KPN generated

after task partitioning but without channels generation. Figure

also displays the layout of sequential program. Function

“main” calls “functionF” and then “functionG”. Function

“functionG” calls “functionA” and then “functionE”. Function

“functionA” calls in turn calls “functionB” , “functionD” and

“functionC” . Suppose there are two global shared variables

“G1” and “G2”. “G1” is updated in function “main” and read

in function “functionB”. “G2” is updated in function

“functionD” and read in function “functionF”. As “main” and

“functionB” belong to different task a channel will be added

for shared variable “G1” and as “functionD” and “functionF”

are in different tasks a channel will be added for shared

variable “G2” .Channels can be added in two different ways as

shown in Figure and Figure 1.6 which are the two KPNs for

the same case and are functionally correct. In Figure let the

write of “G1” be positioned in “functionG” and read for “G1”

be positioned in “functionA” before calls to “functionB”,

“functionC” and “functionD”. Also let the write of “G2” be

positioned in “functionA” after calls to “functionB” ,

“functionC” and “functionD” and read of “G2” be positioned

in “functionG” after write statement of “G1”. The KPN of

Figure is inefficient KPN and is almost sequential. As Task 2

remain blocked until control reaches “functionG” in Task 1

and thereafter Task 1 remain blocked until control reaches

back to “functionA” in Task 2. In Figure 5 let write of “G1”

be positioned in “main” and read for “G1” be positioned in

“functionB”. Also let write of “G2” be positioned in function

“functionD” and read be positioned in function “functionF”.

So in this case channel access statements are added just before

and after the updation and read of global variable. This

generated KPN is efficient as duration for which tasks gets

blocked is considerably less.

5.3 Overall Flow in Existing Approaches
In this section we discuss the general flow in transforming

sequential C programs to Kahn Process Networks. As C is

widely used as a language of choice for writing programs and

most of the code for streaming and signal processing

programs is also specified in C, We concentrate on

transforming applications written in C to KPN. Most of the

previous researches like Sprint and Harmonic have chosen

applications written in C as the source applications on which

transformations are done. Figure 7 shows the flow chart for

transforming a sequential C application to a Kahn Process

Network and gives a brief description of each action in the

flow process. We briefly describe each action given in the

flow chart to show why it is used as a part of transformation.

Figure 5A Complete Sequential KPN

Figure 7Transformation of sequential C application to

KPN

Task1 Main

FunctionG Task 2
FunctionA

FunctionB

FunctionC

FunctionD
Task 3

Functionf
FunctionE

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

46

Figure 6 An efficient KPN

5.4 Parsing
Parsing action generates an abstract syntax tree (AST) data

structure of the input C application’s source code. AST is the

tree representation of the abstract syntactic structure of the

source code. Each node of the tree denotes a construct

occurring in the source code. Any modification to the source

code implies modifying the attributes of the specific node of

the AST and then un-parsing the AST to generate the

modified source code. AST generation is an important step in

source code analysis as it makes source code available in the

form of tree like data structure which is easier to modify based

on program semantics.

5.5 Control Flow Traversal
Control flow traversal takes the AST data as input and

traverses the AST in the pattern similar to the flow of control

of the program when it is executed. For a C program, control

flow traversal starts from “main” function and on

encountering a function call, gets its associated function

definition and continues traversal from that definition

recursively. Control flow traversal is used to generate a call

sequence graph and control flow graph of the whole program .

In a call sequence graph vertices denote functions. An edge

between two vertices u and v denotes a call from u to v in the

program. In a control flow graph the basic blocks of the

program denote vertices and edges denote control transfers.

5.6 Task Partitioning
Task partitioning divides the program into a set of tasks where

each task is a process in a KPN. Each task has a set of

instructions that execute sequentially on a processing element.

Task Partitioning can be done at function boundaries where

each function or a set of functions is made a task or

partitioning can be done by transforming loop into tasks by

parallelizing them. In Compaan [2] task partitioning is done

by dividing loops into tasks. In Sprint [12] and Harmonic [13]

task partitioning is done at function boundaries. Task

partitioning can be automatic or user directed where user

annotates the beginning of the function with a directive to

indicate that this function needs to be made a task or part of

the task. This user directive strategy for task partitioning is

used in [12]. In Compaan [2] task partitioning is automatic

where each loop is partitioned into more than one task. To

partition loops into task Compaan uses integer linear

programming approach to calculate dependence between

iterations of a loop.

As task partitioning modifies the AST of the program, control

flow traversal is performed on this modified AST to generate a

fresh call graph and control flow graph.

5.7 Intermediate Analysis
Intermediate analysis action mainly includes two types of

analysis:

• Pointer analysis

• Global shared data analysis

Such analysis is required for insertion of appropriate

communication channels for concurrent tasks generated

during task partitioning step. Communication channels are

added between tasks if they read/update any shared global

data in the program or there are variable in the parameters of

the parent function of the task. As a pointer may point to a

shared variable in a program, it is necessary to get accurate

points to information for all pointer variables in a program.

The global shared data analysis gets a list of all global shared

variables in a program so that appropriate channels can be

added between tasks sharing a particular global variable.

5.8 Channel Generation
The transformation tools automatically detect the need for a

communication channel and insert them between tasks

generated in previous step. The tasks interact with the

channels through interface functions read and write. These

interface functions separate computation in the tasks from

communication in the channels thus interleaving computation

and communication. Two classes of communications channels

are used, one for communicating scalar data and other for

communicating vector data. For communicating a scalar data

the read and write interface have the channel information and

variable name as the parameters. For communicating a vector

data the read and write interface have the channel information,

variable name and number of tokens to be passed as the

parameters.

In case of Sprint [12] channels are generated for variables that

are shared between tasks and variables that occur in the

parameter of a function that separate the task boundary. In

case of Compaan [2] channels are generated for variables

inside a loop as a result of loop being divided into tasks.

Channel generation for a C program takes program AST, call

graph, control flow graph and intermediate analysis results as

input information. Based on this information this steps

identifies the variables and their types between which

channels will be inserted. Once variable identification is done

appropriate scalar or vector channel is inserted.

Task1 Main

FunctionG Task 2
FunctionA

FunctionB

FunctionC

FunctionD
Task 3

Functionf
FunctionE

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

47

C source code

Abstract syntax

tree

Call

sequence

graph

+

Contol flow

graph

Analysis

results

Channel

placement

information

Partitioning

result

User

information

report

Modified AST

Call sequence

graph

+

Contol flow

graph

Modified AST

Extensions

Output KPN form

5.9 Generate User Information
Among all existing approaches discusses here, user

information report is generated by only Sprint [12]. Such user

information is reported when the transformation tool is not

able to perform partitioning or channel generation because of

the violation of some constraint. For example Sprint requires

that there is only one entry and one exit statement for a given

task. If this condition is violated a user report is generated so

that user can manually modify the source code.

5.10 Unparse
The unparse step simply performs unparsing of the AST to

generate the modified source code.

6. OVERALL FLOW IN SUGGESTED

APPROACH

In this section we describe the flow involved in suggested

approach for transformation of a sequential application to

KPN model. suggested methodology is based on the flow

described in Figure 7 and extends it at different stages of the

flow. Figure 8 shows the transformation flow we have

implemented in our approach which is the extension of the

basic flow described in previous section.

Figure 8 Flow chart: The extended transformation flow

for Figure 7

The boxes shown in gray color in Figure 8 are the parts that

we have extended in the general flow of Figure 7. Some boxes

which are white signify that this generated data exists in both

original flow and the modified flow in our approach but our

approach generates some additional information that is not

present in the existing ones. As shown in the Figure 7we have

extended the flow by implementing the following:

 Partition Analysis

 Channel Placement Analysis

 Optimizations:Includes function inlining, loop

parallelization and loop outlining

 Generate user information: Generation of graphical

output of Tasks and channels of resulting KPN

 Unparsing: Generation of .c and .h file for each task

of KPN

6.1 Partitioning analysis
The partitioning analysis gives feedback to the user on the

quality of task partitioning as good partitions can result in

higher throughput of the program. The partitioning analysis

outputs if the partitioning is good or bad. A partitioning is

good if tasks can run in parallel. A partitioning is termed as

bad if it may result in sequential execution of some of the

tasks of the KPN i.e. task i executes after task j has completed

its execution . Such partitioning is reported to the user so that

user can modify the partitioning candidates so that inter task

execution is not sequential.

6.2 Channel placement analysis
Channel placement analysis modifies the placement of read

and writes channel interface statements during the channel

generation stage. Such analysis is necessary to make resulting

KPN functionally correct as well as efficient. As our approach

can take any arbitrary C program as input, some cases may

occur during channel generation stage which may make

resulting KPN incorrect. Channel placement analysis is

required to prevent such cases where read and write are

moved to a different location in the source code. The details of

the cases and their solution are discussed in next paper. Apart

from correctness, channel analysis can improve KPN efficient

by moving the channel access statements. Such improvement

can occur as a result of reduction in waiting time of a task for

the data by providing the required data much before in the

execution sequence.

6.3 Optimizations
The optimizations include function inlining, loop

optimization and loop outlining. Function inlining is useful to

reduce the context switch time between function calls in a task

by placing the function body in place of its call in some other

function. Function inlining implemented in our approach

works within a task and not across tasks. Loop parallelization

divides loops into tasks by dividing the iteration space of a

loop into different tasks where each sub iteration space can

run concurrently. Like functions, loops are the computation

intensive parts of the program and need to be partitioned into

tasks. Loop parallelization was implemented in our approach

to provide data parallelism along with function parallelism.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

48

6.4 Generate user information
To provide information to the user for task and channels

generated from the tool we have provided a graphical output

of tasks and channels in generate user information. This

output provides sufficient information to the user regarding

the parts of the program that were made tasks and also provide

information regarding the variables for which channels were

added and also the location of read and write channel interface

statements. Such graphical information can also help user to

identify the locations where partitioning can be modified so as

to make final KPN more efficient. Such output is not included

in any of the existing tools.

The Unparsing action generates a .c and .h file for each task.

Such kind of output is useful for testing the KPN as well as

implementing the KPN on multiple processor platform as each

.c and .h file acts as a single unit that can be converted to a

form to be run by KPN scheduler. As an example, to test the

generated KPN from our tool on YAPI [6] which is a c++

library to run programs transformed as KPN , We just need to

modify each .c file into a class . Such kind of output is not

generated in any of the existing approaches.

7. CONCLUSION
suggestedmethodology implements the basic overall flow but

extends it to provide certain benefits which are not present in

existing approaches. Here we compare characteristics of our

approach with existing ones in order to mark the

improvements provided with our approach. We have

differentiated suggested approach from previous approaches

on following basis:

 Directly transform sequential C source: This

describes if manual modification is required to the

input source to be accepted by the target tool or can

it be directly accepted as-it-is without any manual

modification. For example, in Compaan the

sequential C source first needs to be converted to

MATLAB source manually.

 Perform partitioning analysis: Analysis of task

partitioning to suggest if partitioning was good or

bad. Partitioning is good if it does not result in

sequential execution of tasks.

 Channel placement analysis: Modify placement of

read and write channel interface statements to

improve correctness and efficiency of resulting

KPN.

 Uses KPN computational model: Describes if the

transformed application is a Kahn process Network

model of computation.

 Provide data parallelism: Describes if the tool

handles loops by transforming a loop into some K

tasks.

 Provide functional parallelism: Describes if the tool

handles functions by distributing functions across

different tasks.

 Code inlining: Refers to replacing function call with

the body of the associated function definition. Code

inlining is used to reduce context switch time

between functionsby reducing the number of

functions in source.

 Generate task and channel report: Describes if the

tool generates some kind of descriptive output in

terms of task and channels to give some

understanding to the user regarding the generated

final KPN.

Parameters Compaan Sprint Harmonic

Sugge

stedT

ool

Directly

transform

sequential source

No Yes Yes Yes

Perform Code

profiling
No No No Yes

Perform

Partitioning

analysis

No No No Yes

Channel

Placement

Analysis

No No No Yes

Use KPN

computational

model

Yes Yes No Yes

Provide

functional

parallelism

No Yes Yes Yes

Code Inlining No No No Yes

Generates task

and channel

report

No No No Yes

Table 1 Table of Comparison

8. REFERENCES
[1] Bharath, N., and Nandy, S. A runtime mechanism for

detection of artificial deadlocks in process networks. In

Circuits and Systems, 2004. MWSCAS '04. The 2004

47th Midwest Symposium on (25-28 2004), vol. 2, pp.

II-437 - II-440 vol.2.

[2] B.Kienhauis, E., and E.F.Deprettere. Compaan :

Driving processnetworks from matlab for embedded

signal processing architecture. In proceedings of Eighth

International workshop CODES (2000).

[3] Buss, M., Edwards, S., Yao, B., and Waddington, D.

Pointeranalysis for source-to-source transformations. In

Source Code Analysis and Manipulation, 2005. Fifth

IEEE International Workshop on (302005), pp. 139 -

148.

[4] C.Liao, D.J.Quinlan, J., and T.Panas. Extending

automatic parallelization to optimize high leel

abstraction for multicore. In Proceedingsof 5th

international workshop on openMP IWOMP (2009),

pp. 28-41.

[5] Dave, B., Lakshminarayana, G., and Jha, N. Cosyn:

Hardware-software co-synthesis of heterogeneous

distributed embedded systems.Very Large Scale

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

49

Integration (VLSI) Systems, IEEE Transactions on 7,1

(Mar 1999), 92 -104.Bibliography 107

[6] De Kock, E., W.J.M.Smith, P. v. d. W., Brunel, J.,

W.M.Kruijtzer, P.Lieverse, K., and G.Essink.Yapi:

Application modelling for signal processing systems.

In Proceedings of the 37thAnnual Design Automation

Conference (2000), pp. 402-405.

[7] Dulloo, J., and Marquet, P. Design of a real-time

scheduler forkahn process networks" on multiprocessor

systems. Rapport LIFL 2003-2006 (September 2003).

[8] Edward.A.Lee, and Thomas.M.Parks. Dataow process

networks.In Proceedings Of IEEE (May 1995), vol.

Vol 83, pp. 773-801.

[9] Geilen, M., and Basten, T. Requirements on the

execution ofkahn process networks. In ESOP'03:

Proceedings of the 12th European conference on

Programming (Berlin, Heidelberg, 2003), Springer-

Verlag,pp. 319-334.

[10] Graphviz. Graph vizualization library.

http://http://www.graphviz.org/.

[11] Haid, W., Schor, L., Huang, K., Bacivarov, I., and

Thiele, L.Eficient execution of kahn process networks

on multi-processor systemsusingprotothreads and

windowed fifos. In Embedded Systems for RealTime

Multimedia, 2009. ESTIMedia 2009. IEEE/ACM/IFIP

7th Workshop on (15-16 2009), pp. 35 -44.

[12] J. Cockx, K.Donolf, B., and R.Stahi. SPRINT:A tool to

generateconcurrent transaction-level models from

sequential code. In EURASIPJournal on Applied

Signal Processing (January 2007), vol. 1, p.

213.Bibliography 108

[13] W.Luk, J.G.F coutinho, T., Y.M.Lam, W., and

K.W.Susanto,O.Liu, W. Harmonic: A high level

compilation toolchain for hetrogeneous systems.

[14] In IEEE international SOC conference (Sept 9-11

2009).

