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ABSTRACT 
Nowadays, the techniques based on the use of artificial neural 

networks are instigating increasing interest in the fields of 

control and robotics. The rapidity of processing, the ability to 

learn and adapt as well as the robustness of these approaches, 

are motivating this work.  

To help this system be embedded in a wheelchair, it is 

imperative to respect the functional constraints and those of 

resource allocation, weights, consumption, cost... 

So conceiving an embedded system is ultimately an exercise in 

optimization: minimizing production costs for optimal 

functionality. The objective of this work is FPGA 

implementation of an optimal architecture of neuronal network. 
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1. INTRODUCTION  
Intelligent algorithms [2-3] which have parallel data flow in 

her nature have the ability to solve complex problems on the 

areas, such as modeling, control, image processing, 

guidance/assistance  and medical diagnosis [4-10].. The most 

used algorithms are neural network, fuzzy logic and genetic 

algorithm. Real-time applications which employ ANN 

(Artificial Neural Network) requiring faster response time can 

show their real performance only on parallel running 

architectures. To take profit from the parallelism of neural 

networks, we had thought about new ways of implementation 

different from usual ones and based on the use of standard 

processors.  A suitable and adequate alternative consists in 

using dedicated hardware systems operating different means of 

achieving hardware and software. 

This strategy is based on both the advent of submicron 

technologies (FPGA and ASIC) [5] and the development of 

conception (methodology and CAD tools). 

In fact, these tools have many advantages: a beneficial 

hardware implementation in terms of area and execution time, 

affordable business costs, a satisfying response of functional 

and productive requirements and short deadline of conception. 

The purpose of this article is to conceive an optimal 

architecture of neuronal network in order to implements it on 

FPGA. The paper is organized as follows:  

Section 2 describes lane following system. Section 3 descried 

the design of the neural network and simulation results 

obtained by Matlab Toolbox. Section 4 presents the simulation 

and implementation approaches of the neural network system 

in FPGA. 

 

2. DESCRIPTION OF THE LANE 

FOLLOWING 
Our robot has a same configuration as normal car. Five infrared 

detectors which are used to find the distance between the 

vehicle and its obstacles (see Figure1). Three sensors were 

placed at the right side of the vehicle facing the parking area 

and two detectors were installed on the front and rear of the 

vehicle. 
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Figure 1: Positioning of the various detectors 
 

3. NEURAL NETWORK AND 

SIMULATIONS 
Several simulations were performed in Matlab to find the 

optimal architecture for our network of neurons.  

To guarantee efficiency, time and the minimum resources on 

the FPGA, we propose a network that contains two hidden 

layers: the first layer has ten neurons, the second seven 

neurons, and the output layer has one single neuron. 

We can analyze realization of MLP in two parts. Learning 

stage consists of updating network parameters defined by 

learning algorithm. Test and generalization stage composes that 

network is tested with different data by using same parameters 

which are achieved at the end of the training. 

The network’s input and output data training sets are 

normalized to [0.05, 0.95], this improve effectiveness 

regarding to the domain definition of the sigmoid function. The 

weights will be adjusted to minimize the error between the 

desired output and the network output. The simulation results 

using MATLAB gives a smallest error for 5000 epochs. We 

have conducted a learning machine using the MATLAB 
software where we get the smallest square error (1.8126e-004) 

See Figure2. 
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                  Figure 2.  Quadrature error curve during 

training 

 

This error is relatively low (see Figure 2). 
 

4. FPGA IMPLEMENTATION 
To reduce the computation time and increase accuracy, we 

work in fixed-point code for the various parameters of the 

network given the simplicity of implementation and low cost. 

The VHDL implementation of neural network algorithm is 

done by two steps: the first step is the implementation of the 

neurone function; the second step is the implementation of the 

network architecture design. 

4.1 Fixed points coding 
In this case implementation, we chose the natural binary coding 

for positive numbers between 0 and 2n-1 and 2's complement 

coding for negative numbers. The principle of the fixed-point 

coding is given in Figure 3. 

 

S bits e bits f bits 

 
          Integer part                fractional part 

     Figure 3.  Format of a fixed point number. 
 

To increase the precision of a real number N, N is multiplied by 

a constant 2f   with f the number of bits of the fractional part. So 

the number of bit coding of N will be: N=e+f+1.The estimated 

number is given by this equation:  

                              

  ff
est NroundN 22

          

(1)                                                                    

The round function is used in Matlab; it gives the rounding of a 

real number. These estimated parameters can experience errors 

that may affect the accuracy of the calculation. 

4.2 Sigmoïde function coding 
The simulation in digital technology of the activation function 

which is obtained from the basic formula: 

xe
xf




1

1
)(  

requires a relatively large computation time compared to the 

time required for the multiplier and adder. To reduce this 

computation time, three methods are often cited: 

1. The use of a calculation unit specific to the 

evaluation of the function activation 

2. polynomial methods 

3. Coding of the function in an array of values ("lookup 

table").  

In the first time of this work, we use the third solution 

4.2.1 Look up table approach 

In order to increase accuracy of coding the sigmoid function 

values, we took only the values of X (the weighted sum of 

output) belonging to the interval [-7.7] because the value of the 

sigmoid function Y is equal to 1 for values greater than 7, and 

it is less than 10-3 for values less than -7.  

X addresses was multiplied by 210, so the maximum address 

(corresponding to X = 7) is equal to 7 * 1024 = 7168, so the 

addresses will be coded on 14 bits. We chose a memory size of 

16384 memory cells in order to contain the positive and 

negative values of the addresses of X. 

The quantization error of sigmoid function is 0.0052%. The 

error is low due to the bits number coding chose.  To improve 

accuracy, the outputs Y are multiplied by 213. The values of Y 

will be coded on 14 bits. The values of Y estimated the 

sigmoid function is given by the following equation:    

                                 

  1313 22 iestiest YroundY

                      (3)            
 

The quantization error is given by the following relation   
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








 

16383

1

22
i

i

iestiestrr YYYYnormE  

 

So, to an accuracy of 13 bits of the fractional part there is the 

quantization error of the sigmoid function is 0.0013. 

In order to use the designed ROM, we reduce the output bits 

vector using truncate and division block. As shown in Figure 6 

the final block diagram of neural network blocks is composed 

of multipliers, adder, divider, truncate and ROM modules. 

4.2.2 Simulation results 

The simulation of the VHDL model is performed using 

Quartus II version 9.  

Our sigmoid function (see figure 4) has been compiled by 

QUARTUS II and implemented on a CycloneII 

EP2C35F484C6  FPGA. 

VCC
X[13..0] INPUT

VCC
clk INPUT

Y[13..0]OUTPUTaddress[13..0]

clock
q[13..0]

lpm_rom1

inst
 

 

Figure 4. Implementation of sigmoid function 

implemented with Look up table approach 

 
The results of the compilation process are described in table 1 

 

 

 

 

 

 

(4) 

 

(2) 
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Table 1.  Hardware resources of the sigmoid function 

implemented with Look up table approach 

 

 
The results of implementation of our neuronal networks with 

sigmoid function developed with this solution are described in 

table 2. 

 

Table 2.  Hardware resources of our neuronal 

networks 

 

 
The disadvantage of this solution comes from the area 

occupied by memory in FPGA.To remedy the problems of this 

solution, we thought about using the polynomial methods to 

approximate the sigmoid function. There are several methods 

of approximation, but the one used is the method in the sense 

of least squares. 

4.2.3  Polynomial approach 

In purpose to choose the smallest order of approximation 

polynomial, that allows obtaining the closest polynomial to the 

function f at some points xi, several simulations were carried 

out under Matlab. Figure 5 shows an approximation by a 

polynomial of order 6 and the other by a polynomial of order 7. 

-8 -6 -4 -2 0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

polynôme

fonction f

Approximation par un polynôme d'ordre 7

 
Figure 5.Approximation the sigmoid function by a 

polynomial of order 6 and 7. 

We note here that the polynomial of order 7 gives a better 

approximation of the sigmoid. 

Thus, the polynomial approximation obtained is: 
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1 axaxaxaxaxaxaxaP  (5) 

By eliminating insignificant coefficients, the polynomial 

becomes: 

  
87

3
5

5
3

7
1 axaxaxaxaP 

           

(6) 

To increase the accuracy of calculation the coefficients ai of 

polynomial P was multiplied by 219. Once we have obtained a 

polynomial approximating the function and whose coefficients 

are numbers that can be manipulated by machine, it remains to 

implement this polynomial. To do that, we have to choose an 

evaluation diagram that describes the order in which operations 

are conducted. The simplest diagram is the one of Horner. This 

diagram has good properties in terms of accuracy, but the 

sequential structure forbidden to exploit the parallelism 

exposed by the materiel[8]. That is why we thought about 

using Estrin’s family of diagram which is some kind of Horner 

diagram parallelized [8]. 

Our polynomial of degree 7 is evaluated by the following 

diagram:  

        xaxxaxxaxxaaP  1

2

3

4

5

2

78

  

(7) 

This diagram can be run in parallel. 

Every line contains the different expressions that can be run in 

parallel: 

xxx 2  xaaP  781 xaP  52 xaP  33

xaP  14

 224 xxx  22121 PxPP  42322 PxPP 

 22421 PxPP   

 
This solution (see figure 6) has been compiled by QUARTUS 

II and implemented on a Cyclone EP2C35F484C6 FPGA. 

 

 

VCC
X[17..0] INPUT

VCC
clk INPUT

Y[21..0]OUTPUT

clk

X[17..0]

Y[21..0]

P21

inst

clk

X[17..0]

y[21..0]

P221

inst1

clk

X[17..0]

X4[71..0]

X4

inst2

Signed
multiplication

dataa[21..0]

datab[71..0]

clock

result[93..0]

lpm_mult11

inst39

clock

data[93..0]

result[53..0]

div ision3

inst40

clock

data[53..0]

result[21..0]

troncature6

inst41

A

B

A+B

dataa[21..0]

datab[21..0]

clock result[21..0]

lpm_add_sub1

inst45

 
 

Figure 6. Implementation of sigmoid function 

approximated by a polynomial 

 
Figure 7 presents the results of functional simulation of the 

sigmoid function approximated by a polynomial. 

 
  Figure 7. Simulation result of polynomial approximation 

of the sigmoid function 

 
 

 

Total logic elements Total memory bits 

34/33.216(1%) 229.376/483.840(47%) 

Total logic elements Total memory bits 

11.234/85200(13%) 4.128.768/8.248.320(50%) 

; ; ; ; ; ; 
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For x = 7, we obtain: 

- The theorique result : y = 0,9761 

- The simulation result : y = 0,9203(482518/219) 

The results of the compilation process are described in table 3. 

 

 Table 3. Result of compilation (synthesis) of the 

polynomial solution 

 

 

The results of implementation of our neuronal networks with 

sigmoid function approximated by a polynomial function are 

described in table 4. 

 

Table 4.  Hardware resources of our neuronal 

networks 

 

4.3 Comparaison 
In this section we will compare the implementation results of 

our  NNC developed  

 

Table 5. Comparison 

Total logic elements Memory ressource 

NNC (look up 

table approach) 
11.234/85.200 (13%) 

4.128.768/8.248.320 

(50%) 

NNC(polynomial 

approach) 
45.583/85.200( 55%) 0/8.248.320 (0%) 

 
The step of synthesis and implementation of our NNC has 

shown that with the first solution (use look up table approach) 

we have occupied more memory resources (50%) than with the 

second solution (use polynomial approach) developed (0%). 

5. CONCLUSION 

In This paper we have described the design and 

implementation of neural network control algorithm for a 

mobile robot car. We have chosen to work with programmable 

circuits and in particular to use FPGA. 

To implement our NNC we have developed two solutions for 

sigmoid function optimization: look up table approach and 

polynomial approach. The step of synthesis and 

implementation shas shown that with the first solution we have 

occupied more memory resources (50%) than with the second 

solution developed (0%). 
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