
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

7

Implementations Approches of Neural Networks

Lane Following System

Klabi Imen
METS Research Group-National

Engineers School of Sfax, Tunisia

Afef Benjemma
METS Research Group-National

Engineers School of Sfax, Tunisia

Mohamed Slim Masmoudi
METS Research Group-National

Engineers School of Sfax, Tunisia

ABSTRACT
Nowadays, the techniques based on the use of artificial neural

networks are instigating increasing interest in the fields of

control and robotics. The rapidity of processing, the ability to

learn and adapt as well as the robustness of these approaches,

are motivating this work.

To help this system be embedded in a wheelchair, it is

imperative to respect the functional constraints and those of

resource allocation, weights, consumption, cost...

So conceiving an embedded system is ultimately an exercise in

optimization: minimizing production costs for optimal

functionality. The objective of this work is FPGA

implementation of an optimal architecture of neuronal network.

Keywords:
Robotic Mobile, neural networks, FPGA, sigmoid function

1. INTRODUCTION
Intelligent algorithms [2-3] which have parallel data flow in

her nature have the ability to solve complex problems on the

areas, such as modeling, control, image processing,

guidance/assistance and medical diagnosis [4-10].. The most

used algorithms are neural network, fuzzy logic and genetic

algorithm. Real-time applications which employ ANN

(Artificial Neural Network) requiring faster response time can

show their real performance only on parallel running

architectures. To take profit from the parallelism of neural

networks, we had thought about new ways of implementation

different from usual ones and based on the use of standard

processors. A suitable and adequate alternative consists in

using dedicated hardware systems operating different means of

achieving hardware and software.

This strategy is based on both the advent of submicron

technologies (FPGA and ASIC) [5] and the development of

conception (methodology and CAD tools).

In fact, these tools have many advantages: a beneficial

hardware implementation in terms of area and execution time,

affordable business costs, a satisfying response of functional

and productive requirements and short deadline of conception.

The purpose of this article is to conceive an optimal

architecture of neuronal network in order to implements it on

FPGA. The paper is organized as follows:

Section 2 describes lane following system. Section 3 descried

the design of the neural network and simulation results

obtained by Matlab Toolbox. Section 4 presents the simulation

and implementation approaches of the neural network system

in FPGA.

2. DESCRIPTION OF THE LANE

FOLLOWING
Our robot has a same configuration as normal car. Five infrared

detectors which are used to find the distance between the

vehicle and its obstacles (see Figure1). Three sensors were

placed at the right side of the vehicle facing the parking area

and two detectors were installed on the front and rear of the

vehicle.

Avant

D5D4D3

D2D1

AvantArrière

Figure 1: Positioning of the various detectors

3. NEURAL NETWORK AND

SIMULATIONS
Several simulations were performed in Matlab to find the

optimal architecture for our network of neurons.

To guarantee efficiency, time and the minimum resources on

the FPGA, we propose a network that contains two hidden

layers: the first layer has ten neurons, the second seven

neurons, and the output layer has one single neuron.

We can analyze realization of MLP in two parts. Learning

stage consists of updating network parameters defined by

learning algorithm. Test and generalization stage composes that

network is tested with different data by using same parameters

which are achieved at the end of the training.

The network’s input and output data training sets are

normalized to [0.05, 0.95], this improve effectiveness

regarding to the domain definition of the sigmoid function. The

weights will be adjusted to minimize the error between the

desired output and the network output. The simulation results

using MATLAB gives a smallest error for 5000 epochs. We

have conducted a learning machine using the MATLAB
software where we get the smallest square error (1.8126e-004)

See Figure2.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

8

 Figure 2. Quadrature error curve during

training

This error is relatively low (see Figure 2).

4. FPGA IMPLEMENTATION
To reduce the computation time and increase accuracy, we

work in fixed-point code for the various parameters of the

network given the simplicity of implementation and low cost.

The VHDL implementation of neural network algorithm is

done by two steps: the first step is the implementation of the

neurone function; the second step is the implementation of the

network architecture design.

4.1 Fixed points coding
In this case implementation, we chose the natural binary coding

for positive numbers between 0 and 2n-1 and 2's complement

coding for negative numbers. The principle of the fixed-point

coding is given in Figure 3.

S bits e bits f bits

 Integer part fractional part

 Figure 3. Format of a fixed point number.

To increase the precision of a real number N, N is multiplied by

a constant 2f with f the number of bits of the fractional part. So

the number of bit coding of N will be: N=e+f+1.The estimated

number is given by this equation:

  ff
est NroundN 22

(1)

The round function is used in Matlab; it gives the rounding of a

real number. These estimated parameters can experience errors

that may affect the accuracy of the calculation.

4.2 Sigmoïde function coding
The simulation in digital technology of the activation function

which is obtained from the basic formula:

xe
xf




1

1
)(

requires a relatively large computation time compared to the

time required for the multiplier and adder. To reduce this

computation time, three methods are often cited:

1. The use of a calculation unit specific to the

evaluation of the function activation

2. polynomial methods

3. Coding of the function in an array of values ("lookup

table").

In the first time of this work, we use the third solution

4.2.1 Look up table approach

In order to increase accuracy of coding the sigmoid function

values, we took only the values of X (the weighted sum of

output) belonging to the interval [-7.7] because the value of the

sigmoid function Y is equal to 1 for values greater than 7, and

it is less than 10-3 for values less than -7.

X addresses was multiplied by 210, so the maximum address

(corresponding to X = 7) is equal to 7 * 1024 = 7168, so the

addresses will be coded on 14 bits. We chose a memory size of

16384 memory cells in order to contain the positive and

negative values of the addresses of X.

The quantization error of sigmoid function is 0.0052%. The

error is low due to the bits number coding chose. To improve

accuracy, the outputs Y are multiplied by 213. The values of Y

will be coded on 14 bits. The values of Y estimated the

sigmoid function is given by the following equation:

  1313 22 iestiest YroundY

 (3)

The quantization error is given by the following relation

  









 

16383

1

22
i

i

iestiestrr YYYYnormE

So, to an accuracy of 13 bits of the fractional part there is the

quantization error of the sigmoid function is 0.0013.

In order to use the designed ROM, we reduce the output bits

vector using truncate and division block. As shown in Figure 6

the final block diagram of neural network blocks is composed

of multipliers, adder, divider, truncate and ROM modules.

4.2.2 Simulation results

The simulation of the VHDL model is performed using

Quartus II version 9.

Our sigmoid function (see figure 4) has been compiled by

QUARTUS II and implemented on a CycloneII

EP2C35F484C6 FPGA.

VCC
X[13..0] INPUT

VCC
clk INPUT

Y[13..0]OUTPUTaddress[13..0]

clock
q[13..0]

lpm_rom1

inst

Figure 4. Implementation of sigmoid function

implemented with Look up table approach

The results of the compilation process are described in table 1

(4)

(2)

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

9

Table 1. Hardware resources of the sigmoid function

implemented with Look up table approach

The results of implementation of our neuronal networks with

sigmoid function developed with this solution are described in

table 2.

Table 2. Hardware resources of our neuronal

networks

The disadvantage of this solution comes from the area

occupied by memory in FPGA.To remedy the problems of this

solution, we thought about using the polynomial methods to

approximate the sigmoid function. There are several methods

of approximation, but the one used is the method in the sense

of least squares.

4.2.3 Polynomial approach

In purpose to choose the smallest order of approximation

polynomial, that allows obtaining the closest polynomial to the

function f at some points xi, several simulations were carried

out under Matlab. Figure 5 shows an approximation by a

polynomial of order 6 and the other by a polynomial of order 7.

-8 -6 -4 -2 0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

polynôme

fonction f

Approximation par un polynôme d'ordre 7

Figure 5.Approximation the sigmoid function by a

polynomial of order 6 and 7.

We note here that the polynomial of order 7 gives a better

approximation of the sigmoid.

Thus, the polynomial approximation obtained is:

87
2

6
3

5
4

4
5

3
6

2
7

1 axaxaxaxaxaxaxaP  (5)

By eliminating insignificant coefficients, the polynomial

becomes:

87

3
5

5
3

7
1 axaxaxaxaP 

(6)

To increase the accuracy of calculation the coefficients ai of

polynomial P was multiplied by 219. Once we have obtained a

polynomial approximating the function and whose coefficients

are numbers that can be manipulated by machine, it remains to

implement this polynomial. To do that, we have to choose an

evaluation diagram that describes the order in which operations

are conducted. The simplest diagram is the one of Horner. This

diagram has good properties in terms of accuracy, but the

sequential structure forbidden to exploit the parallelism

exposed by the materiel[8]. That is why we thought about

using Estrin’s family of diagram which is some kind of Horner

diagram parallelized [8].

Our polynomial of degree 7 is evaluated by the following

diagram:

        xaxxaxxaxxaaP  1

2

3

4

5

2

78

(7)

This diagram can be run in parallel.

Every line contains the different expressions that can be run in

parallel:

xxx 2  xaaP  781 xaP  52 xaP  33

xaP  14

 224 xxx  22121 PxPP  42322 PxPP 

 22421 PxPP 

This solution (see figure 6) has been compiled by QUARTUS

II and implemented on a Cyclone EP2C35F484C6 FPGA.

VCC
X[17..0] INPUT

VCC
clk INPUT

Y[21..0]OUTPUT

clk

X[17..0]

Y[21..0]

P21

inst

clk

X[17..0]

y[21..0]

P221

inst1

clk

X[17..0]

X4[71..0]

X4

inst2

Signed
multiplication

dataa[21..0]

datab[71..0]

clock

result[93..0]

lpm_mult11

inst39

clock

data[93..0]

result[53..0]

div ision3

inst40

clock

data[53..0]

result[21..0]

troncature6

inst41

A

B

A+B

dataa[21..0]

datab[21..0]

clock result[21..0]

lpm_add_sub1

inst45

Figure 6. Implementation of sigmoid function

approximated by a polynomial

Figure 7 presents the results of functional simulation of the

sigmoid function approximated by a polynomial.

 Figure 7. Simulation result of polynomial approximation

of the sigmoid function

Total logic elements Total memory bits

34/33.216(1%) 229.376/483.840(47%)

Total logic elements Total memory bits

11.234/85200(13%) 4.128.768/8.248.320(50%)

; ; ; ; ; ;

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.17, February 2012

10

For x = 7, we obtain:

- The theorique result : y = 0,9761

- The simulation result : y = 0,9203(482518/219)

The results of the compilation process are described in table 3.

 Table 3. Result of compilation (synthesis) of the

polynomial solution

The results of implementation of our neuronal networks with

sigmoid function approximated by a polynomial function are

described in table 4.

Table 4. Hardware resources of our neuronal

networks

4.3 Comparaison
In this section we will compare the implementation results of

our NNC developed

Table 5. Comparison

Total logic elements Memory ressource

NNC (look up

table approach)
11.234/85.200 (13%)

4.128.768/8.248.320

(50%)

NNC(polynomial

approach)
45.583/85.200(55%) 0/8.248.320 (0%)

The step of synthesis and implementation of our NNC has

shown that with the first solution (use look up table approach)

we have occupied more memory resources (50%) than with the

second solution (use polynomial approach) developed (0%).

5. CONCLUSION

In This paper we have described the design and

implementation of neural network control algorithm for a

mobile robot car. We have chosen to work with programmable

circuits and in particular to use FPGA.

To implement our NNC we have developed two solutions for

sigmoid function optimization: look up table approach and

polynomial approach. The step of synthesis and

implementation shas shown that with the first solution we have

occupied more memory resources (50%) than with the second

solution developed (0%).

6. REFERENCES

[1] A. Abedenour"Outil d'analyse et de partitionnement/

ordonnancement pour les systèmes temps réel embarqués

"Thèse de doctorat, l'université Bretagne sud 2004.

[2] Yeong-Chan Chang and Bor-Sen Chen “Intelligent robust

tracking controls for holonomic and nonholonomic

mechanical systems using only position measurements”

IEEE Trans on Fuzzy System, Vol. 13, No.4, August 2005

[3] Joseba L. Arroyabe, Gerardo Aranguren, Luis A. L.

Nozal, Jose L. Martin “Autonomous vehicle guidance

with fuzzy algorithm” in Proceedings of IEEE

International Conference I.E.C.O.N. Japan, 2000.

[4] C¸ avus¸lu MA, Karakaya F, Altun H (2008) C¸KA Tipi

Yapay Sinir Ag˘i Kullanılarak Plaka Yeri Tespitinin

FPGA’da Donanımsal Gerc¸eklenmesi. In: Proceedings of

Akıllı Sistemlerde Yenilikler ve Uygulamalar

Sempozyumu 2008 (ASYU 2008) Isparta, Turkey (in

Turkish)

[5] Wafa Makni Ben Ayed, « Implémentation de réseaux de

neurones sur FPGA Appliqués à la Robotique Mobile »,

Mastère, Ecole Nationale d’Ingénieur à Sfax, juillet 2007.

[6] Sang-Woo Moon and Seong-Gon Kong, “Block-based

neural networks” IEEE Trans Neural Networks, Vol. 12,

No. 2, pp. 307-317, March 2001.

[7] Frank Elie « Conception et réalisation d’un système

utilisant des réseaux de neurones pour l’identification et la

caractérisation, au bord de satellites, de signaux

transitoires de type sifflement », thèse de doctorat à

l’université de l’Orléans, 1997, pp.101-118

[8] Florent de Dinechin, « Matériels et logiciels pour

l’évaluation de fonction numériques Précision,

performance et validation », mémoire d’habilitation à

diriger des recherches, numéro d’ordre 22-2007,

l’université Claude Bernard Lyon1.

[9] Wafa Makni Ben Ayed, « A Neural Controller for

lane/wall following system», Ecole Nationale d’Ingénieur

à Sfax, juillet 2008.

[10] Mehmet Ali çavuslu «Neural network training based on

FPGA with floating point number format and it’s

performance»,Neural Comput & Applic (2011)

Total logic elements Memory Ressources

2.198/33.216(7%) 0/483.840(0%)

Total logic elements Memory Ressources

45.583/85.200(55%) 0/8.248.320(0%)

