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ABSTRACT  
The discovery of microRNAs has been a path-breaking step in 

understanding the full scope of post-transcriptional gene 

regulation. The microRNAs (miRNAs) are highly conserved, 

non-coding short ribonucleic acid (RNA) molecules, 

approximately 22 nucleotides long[6] and are found in all 

eukaryotic cells, except fungi and marine plants. MicroRNAs 

(miRNAs) post-transcriptionally regulate the expression of 

target genes by binding to complementary sequences on target 

messenger RNA transcripts, usually resulting in translational 

repression and thus inhibition of the expression of target 

mRNAs. Complete complementarity between miRNA:mRNA 

pairs is rare in mammals, but as little as a 6 bp match with the 

target mRNA can be sufficient to suppress the gene 

expression[8]. MicroRNAs, which were initially determined 

as moderate biological modifiers, have now emerged as 

powerful regulators of diverse cellular processes with 

important roles in tissue remodeling[9]. It throws light into the 

causes of diseases like lymphoma, leukemia, cancers and 

many cardiac problems where miRNA:mRNA pairing is 

found to play crucial roles[5].   Many computational methods 

are being developed to identify the relationship between the 

animal miRNAs and their target mRNAs.  Here we study two 

of those recent methods to identify the target mRNAs of 

existing animal miRNAs. 
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1. INTRODUCTION 

MiRNAs are a class of small, non-coding regulatory RNAs 

that are important in post-transcriptional gene silencing[7]. 

They facilitate deadenylation, which leads to rapid mRNA 

decay[11]. They regulate gene expression by binding to 3' 

untranslated region (UTR) of their target mRNAs for cleavage 

or translational repression and play important roles in many 

biological processes including cell proliferation, cell 

differentiation, cell death, hematopoiesis, and 

oncogenesis.There are many computational algorithms 

developed to predict plant and animal miRNA targets. Since 

in plants we find almost perfect sequence complementarities, 

researchers used near-perfect complementarities to predict 

plant miRNA targets. But regarding animals very few miRNA 

targets could be predicted, because of limited sequence 

complementarities between the animal miRNAs and their 

gene targets[7]. Most of the different computational programs 

for animal miRNA target prediction, including the very 

popular miRanda(Enright et al. 2003, John et al. 2004 ), 

TargetScan(Lewis et al. 2003), and PicTar(Krek et al. 2005), 

mainly rely on the identification of the seed region between 

the miRNA and the corresponding target genes. But, the 

presence of a seed region, although conserved across 

evolution, is not a reliable way to identify functional miRNA 

targets. A significant proportion of the predicted miRNA–

mRNA target pairs present in appropriate seed regions, are 

false positives (Lewis et al. 2005; Didiano and Hobert 

2006)[4]. Again, since each miRNA can target several mRNA 

sequences and the target sites may overlap to some degree[2], 

it is a very complex and laborious task to identify these targets 

correctly. So more different types of computational target 

prediction tools are needed to build models with high 

specificity to accurately predict miRNA targets. Here we 

study some of the recent different approaches for prediction of 

targets of animal miRNAs and their results. 

2. BACKROUND STUDY 

2.1. Biogenesis 

MiRNAs are a class of short non-coding RNAs. MiRNAs 

originate in the nucleus and modify mRNA in the cytoplasm. 

Each miRNA is first transcribed and long primary transcripts 

(pri-miRNAs) are generated. The pri-miRNA is processed in 

the nucleus itself into hairpin precursors of 60 to 70 nt by  the 

RNase III–type enzyme Drosha and an RNA binding 

protein Pasha. This stem-loop precursor molecule, known as 

pre-miRNA, is transported to the cytoplasm. by the RNase III 

protein Dicer. In the cytoplasm, they are processed into 

unstable, 20 to 25 nt miRNA duplex structures by the RNase 

III protein Dicer. The pre-miRNA attaches to the multiple-

protein nuclease complex RISC (RNAi-induced silencing 

complex). This complex degrades one of the strands, 

passenger strand, leaving the other RNA strand, the mature 

strand, to bind to its target mRNA. After the mature miRNA 

binds to mRNA, RISC is freed to find and process another 

pre-miRNA. The target sequence typically resides in the 

3’UTR region of the mRNA, although some have been found 

in the 5’UTRs and in coding regions. The function of a 

miRNA is ultimately defined by the genes it targets and the 

effects it has on their expression[10],[5]. 

3. STUDY OF SOME IMPOTANT 

MIRNA TARGET PREDICTION 

ALGORITHM: DEPICTING THE 

INDIVIDUAL METHODS 

To build a correct and appropriate computational method for 

identification of animal miRNA target genes, is a complex 

job. It is due to the fact that animal miRNAs display limited 

sequence complementarity to their gene targets. It is difficult 

to build a fully efficient target prediction model without any 

loopholes. Nevertheless there are some effective target 

prediction algorithms for mammalian target identification. 

Now we will be  discussing some of   those algorithms:  
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3.1. NbmiRTar : 
Around 2007,Malik Yousef, Segun Jung, Andrew V. 

Kossenkov, Louise C. Showe and Michael K. Showe[3] 

presented a machine-learning approach for predicting miRNA 

target sites based on the Naïve Bayes (NB) classifier. This 

method was called NBmiRTar and unlike many other methods 

it did not need sequence conservation. Here along with the 

seed, the out-seed segments of the miRNA:mRNA duplex 

were also used for target identification. A training dataset was 

prepared by the authors to experiment with and get proper 

results. 

3.1.1. Selection of the Training dataset and 

features 

The training dataset contained 225 confirmed miRNA targets 

(human, mouse, fruit fly worm and zebrafish) and 38 

confirmed false target predictions to serve as positive and 

negative examples, respectively.  Some additional negative 

examples were generated by the miRanda algorithm to make 

the algorithm function efficiently. Few miRNA features were 

chosen to device this machine learning approach. 

The features chosen in this study were based on the 

following assumptions:  

(1) The complementarity of 7–8 bases in the seed region(5′ 8 

nt of the miRNA) are sufficient for proper miRNA:mRNA 

duplex formation.  

(2) A seed segment with weak complementarity can be 

compensated for by the out-seed(3′ remainder portion of the 

miRNA ) sequence to make a functional duplex.  

(3) Good complementarity in the out-seed region alone is not 

sufficient for functional duplex formation. 

For each part of the duplex (the seed and the out-seed) the 

following features were considered to form 57 structural 

features to help in target identification:  

(1) The number of paired bases,   (2) The number of bulges,    

(3) The number of loops,    (4) The number of asymmetric 

loops,    (5) Eight features, each representing the number of 

bulges of lengths 1–7 and those with lengths greater than 7,     

(6) Eight features, each representing the number of symmetric 

loops with lengths 1–7 and those with lengths >7,      (7) Eight 

features each representing the number of asymmetric loops 

with lengths 1–7 and those with lengths >7 and     (8) The 

distance from the start of the seed (the 3′ end) to the first 

paired base of the 5′ start of the out-seed part. 

3.1.2. The Procedure 

The miRanda program(John et al. 2004) assigns a score to 

each pairwise alignment to describe the maximal local 

complementarities. A score of +5 for G:C and A:T pairs and 

+2 for G:U wobble pairs is assigned over here. The final 

miRanda score is computed as the sum of all these single-

residue-pair match scores over the entire duplex structure. The 

output of miranda comes to the NB(Naïve Bayes) classifier. 

It calculates the probability of a given example belonging to a 

particular class, assuming that the features constituting the 

example are conditionally independent given the class. 

Although the NB classifier had high accuracy at finding 

known miRNA:mRNA target genes, the number of false 

positives were not much reduced. So, a proper threshold value 

(0.9 as taken by the authors) was applied to further reduce the 

number of false positive predictions. The classifier assigned a 

score to each miRNA: mRNA duplex and classified it into the 

positive class (target) and the negative class (non-target).    

3.2. Mtar: 
A method called MTar(Chandra et al,2010)[5] was proposed 

for human transcriptome. This model considers evolutionary 

conservation analysis, incorporates 16 very important 

positional, thermodynamic and structural features (identified 

from the wet lab proven miRNA:mRNA pairs) for miRNA 

target identification, and classifies the training dataset into 

three miRNA target classes (5' seed-only, 5' dominant, and 3' 

canonical).  

3.2.1. Selection of the Training dataset and 

features 

Only experimentally verified microRNAs by wet lab and their 

targets were considered for this method. The targets whose 

exact binding site were not verified were excluded from the 

dataset to maintain the quality of the data used. The collected 

dataset consisted of 882 human records for 741 genes by 138 

miRNAs. The training dataset was classified into three 

portions based on the three target classes (5' seed-only, 5' 

dominant, and 3' canonical). 

The 5' dominant seed site targets (5' seed-only), possessing 

high complementarities in 5' end and a few complementary 

pairs in 3' end.   2) The 5' dominant canonical seed site 

targets (5' dominant), possessing high complementarities in 5' 

end (of the miRNA) and very few or no complementary pairs 

in 3' end.  3) The 3' complementary seed site targets (3' 

canonical) have high complementarities in 3' end and 

insufficient pairings in 5' end. 

The final training dataset contained 40 positives and 56 

negatives for 3' canonical target class, 58 positives and 74 

negatives for 5' dominant target class and 52 positives and 70 

negatives for 5' seed-only target class. 

The authors analysed and considered 16 parameter features to 

be very relevant  to their approach. These miRNA target site 

features, were divided into three categories-(a) structural 

(Seed score, Out seed score, WC pairs, Wobble pairs, 

Mismatches, Length-bulge,Number-bulges, Proportion), (b) 

thermodynamic (Free energy, Hybridization Energy, 

Normalized free energy, Difference in hybridization energy) 

and (c) positional (Positional pair score,Matrix 

score,Deviation matrix score,Deviation positional score). 

3.2.2. The Procedure 

1) Firstly, the miRNA sequence input were aligned with 

the mRNA target sequence using a modified Smith-

Waterman local alignment algorithm, which preferred 

mismatches to gaps and assigned higher penalty for 

gaps. The scoring scheme was to assign each Watson-

Crick(WC)  pair a score of 5, each G:U pair , a score 

of 1 and all others a score of -3.  

 

2) Secondly, miRNA:mRNA duplex was checked for 

seed and out-seed complementarity. The 

complementarity score in the seed region and out seed 

region were calculated to classify the target candidates 

into 3 types. These classes that were considered to be 

processed by the method were: 

 

3) (a) 5' seed-only: Here minimum 6 WC pairs and no 

wobble or mismatch were allowed in the seed region. 
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The non-seed region may contain a minimum of 4 

matching pairs including G:U pairs; (b) 5' dominant: 

Here minimum 5 WC pairs, with one mismatch and a 

maximum of 2 G:U pairs were allowed in the seed 

region. Minimum 5 matching pairs including G:U 

pairs should be in the non-seed region and (c)3' 

Canonical: Here minimum 3 WC pairs, 4 mismatches 

and maximum 3 G:U pairs were allowed in the seed 

region. The non-seed region should contain a 

minimum 7 matching pairs including G:U wobble 

pairs. 

4) The potential target candidates for the miRNA 

belonging to the three different categories (5' seed-

only, 5' dominant and 3' canonical) were located by 

aligning each segment with the miRNA.  

 

5) Then, appropriate weights were assigned to those 16 

most relevant parameters for each candidate.  

 

6) This output goes to an Artificial neural networks 

(ANN) classifier for target validation. This classifier 

was used to verify the miRNA targets, due to their 

ability to deal with complex non-linear data. Three 

separate ANNs for each target class (5' seed-only, 5' 

dominant and 3' canonical) were trained to validate the 

target candidates of each of those classes.  

 

4. RESULTS OBTAINED FROM EACH 

METHOD: 

4.1 NBMiRTar[3] 
I. This method could yield a specificity of 0.99 and a 

sensitivity of 0.94 using 900 negative examples.  

II. In this method the authors compared the number of 

target predictions generated by miRanda(John et 

al. 2004), the NB classifier. For 10 known human 

miRNAs, the NBmiRTar tool had a reduction of 75% 

of miRanda predictions with a recovery rate of 77% of 

the confirmed targets. Finally as an output this method 

gave 620 757 predictions from the 10 known human 

miRNAs. 

III. For a single human miRNA, mir-15, miRanda 

produced 88 376 predictions which was subsequently 

reduced to 3479 predictions after applying this 

method.  

4.2 MTar[4] 
 

I. MTar was tested with all the three parameters 

combined and also with different pairwise 

combinations of these features. Mtar predicted a total 

of 2663 target sites including 819 experimentally 

verified targets of 129 miRNAs.  

 

II. The authors compared the results obtained from 

MTar with few other methods (MiRanda, 

TargetScan, RNA22, PicTar, MiTarget). In their 

experiment MiRanda gave a specificity of 

82%,PicTar (~ 70%) and TargetScan (~ 80%) by the 

same test dataset used for MTar. MTar had an 

average accuracy of 92.8%, sensitivity of 94.5% and 

a specificity of 90.5% for the miRNA targets for all 

138 experimentally verified miRNAs in human 

genome.  

5. MERITS AND DEMERITS OF THE 

METHODS DISCUSSED: 

5.1 NBMiRTar[3] 
i. NBmiRTar maintained the levels of sensitivity 

indicating the importance of the extracted features. 

ii. Many target prediction tools either predicted very 

large numbers of miRNA targets making biological 

validation very difficult or produced smaller 

numbers of predictions but only with highly 

conserved sequences. NBmiRTar does not rely on 

conservation and significantly minimizes the 

number of target candidates to be tested. 

iii. NBmiRTar demonstrates both high specificity and 

high sensitivity and thus a high accuracy in target 

identification. 

iv. This method uses a threshold value(0.9) for 

reducing the false positive predictions hugely but 

loses some of the true miRNA targets in this 

procedure. 

v. The number of target predictions is considerably 

reduced while retaining the sensitivity of the 

procedure. 

5.2 MTar[4] 
i. The performance of MTar was better in accuracy 

than MiRanda, TargetScan, RNA22, PicTar or 

MiTarget which are few of the popular and 

existing algorithms of today. 

ii. This method, unlike others, identifies the three 

types of targets (5' seed-only, 5' dominant, and 3' 

canonical) in a single framework.  

iii. Target site multiplicity and cooperativity are 

handled very effectively. 

iv. Target identification is based on the selection of 

the 3 different features (positional, 

thermodynamic and structural). 

v. MTar still gave false positives and lowering it 

further effected on its sensitivity.  

vi. This method is a complex procedure in 

comparison to few other existing algorithms. 

6. CONCLUSION AND FUTURE SCOPE 
NBmiRTar is a machine-learning approach to miRNA target 

prediction that does not rely on sequence conservation and is 

still able to significantly reduce the number of target 

predictions while retaining an acceptable sensitivity. MTar 

can identify all known three types of miRNA targets (5' seed-

only, 5' dominant, and 3' canonical). The performance of 

MTar was compared against existing solutions and the method 

is found to be more accurate.  

Since the first lin-4 discovered miRNA lin-4 (Lee et al. 1993), 

numerous approaches contributed greatly to understanding 

these microRNAs. The methods we have discussed are very 

recent approaches. To give the ultimatum that whether any of 

these is totally effective or totally useless will be too early to 

comment. There are methods that provide prediction by using 
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multiple algorithms. But many such combinatorial predictions 

perform worse than the prediction by one accurate algorithm, 

because of the trade-off  between specificity and sensitivity 

(Alexiou et al., 2009). Since existing target prediction 

algorithms rely on different assumptions and approaches, one 

must check the underlying assumptions and limitations first 

before employing a target prediction tool. So one can choose 

NBMiRTar or MTar according to one’s requirements. 

There is continuous thrive to get an even more efficient 

computational tools for a more effective and accurate target 

prediction . More and more path-breaking biological insights 

will lead to the creation of new algorithms based on 

mechanistic understanding. Although knowledge of miRNAs 

has accumulated rapidly in recent years, still many stones are 

left unturned and much of the miRNA functions in the 

biological network needs to be discovered. 
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