
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.14, February 2012

34

Numerical Modelling of Concrete Tensile

Strength Test by Wrapping Scripting Language

with Compiled Library

Md. Golam Rashed
Department of Civil Engineering,
Ahsanullah University of Science

and Technology (AUST),
Dhaka-1208, Bangladesh

Raquib Ahsan, Phd
Department of Civil Engineering,

Bangladesh University of
Engineering and Technology

(BUET),
Dhaka-1000, Bangladesh

Sharmin Reza Chowdhury,
Phd

Department of Civil Engineering,
Ahsanullah University of Science

and Technology (AUST),
Dhaka-1208, Bangladesh

ABSTRACT
The importance of engineering simulation is increasing day by

day with the increase of computing power. The finite element

analysis method is one of the widely used approaches for this

purpose. To achieve optimum simulation, there is no

alternative to take complete control over the code which

proprietary commercial codes fail to offer. This paper focuses

on the review of the development of a finite element analysis

framework using freely available python libraries and

wrapping legacy C/C++ or Fortran libraries around python;

and its verification as a viable finite element solution with an

example of concrete tensile strength test simulation.

Keywords
Finite Element Analysis, Numerical Modeling, Engineering

Simulation, Scientific Computing, Sparse Matrix, Python.

1. INTRODUCTION
The finite element analysis is a computer based numerical

technique which gives near accurate result in modeling

complex engineering phenomena with very small error margin

[1]. Major applications for FEA include static, dynamic and

thermal characterizations of mechanical phenomena occuring

in nature and in real life [2] [3]. FEA is also being used as a

tool to model biological phenomena occuring in human body

[4] and to optimize smart characteristics of advanced

materials & devices [5]. Advances in computer hardware have

made FEA easier and very efficient for solving complex

engineering problems on desktop computers. To achieve

optimum simulation, there is no alternative to take complete

control over the code which proprietary commercial codes fail

to offer. Moreover, To avoid input errors and increase the

simulation reliability, the user must have the access to the

source code level. This paper discusess the present numerical

modeling practice and suggests an optimum numerical

modeling framework from both the performance and

accessibility point of view.

2. PRACTICES IN ENGINEERING

SIMULATION
There are three possible approaches by which finite element

analysis is performed for an engineering phenomenon.

Firstly, one can use a propritery finite element analysis

software package, such as ABAQUS, ANSYS or even general

purpose prototyping framework MATLAB. The main

advantage of these FEA software packages is that they come

equiped with both pre- and post-prossesor. The operation of a

specific software is usually detailed in the documentation

accompanying the software, and vendors of the more

expensive codes will often offer workshops or training

sessions as well to help users learn the intricacies of code

operation. One problem users may have even after this

training is that the code tends to be a "black box" whose inner

workings are not understood by the end user. Thus, although

ABAQUS, ANSYS are good for finite element analysis

packages, they are not suitable for full-blown research

projects, where complete control is the top most priority.

Furthermore, they have fixed keywords, are not open source,

very expensive and not widely accepted in academia.

Secondly, one could develop their own FEA program, in a

high-level scripting language. However, one should realize

that, there is a concern for speed if the whole program is

coded in a scripting language alone. FEA involves solution of

large matrices which requires high computing power as well

as efficient algorithm. In many cases, pre-written library

routines offer solutions to numerical problems which are quite

hard to improve upon [6].

Thirdly, coding can be done in a high-level scripting

language, but invoking pre-written, pre-compiled routines in

commonly available subroutine libraries, such as UMFPACK,

LAPACK and BLAS, to perform all of the real numerical

work. This approach is most beneficial for ease in coding and

performance points of view. This approach is used by the

majority of researchers and scientists in their modern FEA

simulation programs. In developing efficient FEA framework,

using FORTRAN or C/C++ is less preferable as the code

becomes less expressive, making it difficult to maintain over

the years of reaserch where different people work on a single

code at different times.

So, it is evident that the use of open source FEA software is

beneficial for both the user and researcher, and it will further

enhance the simulation reliability if it is a self coded one.

3. DEVELOPMENT OF OPEN SOURCE

FINITE ELEMENT ANALYSIS

FRAMEWORK
Optimum simulation depends on complete control over the

finite element analysis framework but commercial products

fail to offer such control as they are proprietary, closed

source. So a user is unable to see what is going on behind the

scene during the simulation. Developing a finite element

analysis framework, or at least using an open source finite

element analysis software will help the end user by achieving

complete control over the simulation process. Open source

software is community driven, so large number of users can

contribute to the continuing development of the software. The

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.14, February 2012

35

uses of freely available modules ensure least cost in both

usability and maintenance.

Figure 1: Uptrend of Dynamically typed language [7]

Figure 2: Increasing popularity of Python among the top

10 most popular languages [7]

Over the years dynamic languages have steadily gained

acceptance over static languages (Figure 1). The popularity of

python as a general purpose programming language as well as

a scientific computing tool is on the rise (Figure 2). According

to Millman python is the best choice for the scripting

environment in developing high performance scientific code

[8]. Python is used as the glue language because it is highly

readable and easy to understand where end user can use this as

the interface to the complex compiled code. Python offers the

benefits of object-oriented and generic programming, together

with a syntax that is simpler and clearer than static languages,

providing high code re-use [9]. It has all major scientific

libraries available either as standard library or as third party

open source library. Libraries like NumPy, SciPy, Matplotlib

and Mayavi allow Python to be used effectively in scientific

computing [10] [11]. The advantages of python are tabulated

against traditional FORTRAN and C/C++ in Table 1.

To overcome all the difficulties associated with commercial

FEA packages and to take advantage of python, an open

source FEA framework named "simple finite element in

python" or "Sfepy" has been developed. Sfepy is finite

element analysis software written almost entirely in Python,

with exception of the most time demanding routines, those are

written in C and wrapped by Cython or written directly in

Cython. Sfepy is a software for solving systems of coupled

partial differential equations by the finite element method in

2D and 3D. Solutions of linear, nonlinear problems are

possible in Sfepy [12].

The finite element method is comprised of three major phases:

(1) Pre-processing, in which the analyst develops a finite

element mesh to divide the subject geometry into sub domains

for mathematical analysis (Figure 3), and applies material

properties and boundary conditions. Gmsh provides a reliable

pre-processing solution and is the pre-processor of the

developed FEA framework. The simplest way of using Sfepy

is to mesh the geometry using Gmsh and then solve a system

of PDE’s describing the physical problem in python

programming language defined in a problem description file.

Table 1: Comparison of C/C++, FORTRAN and Python [13] [14] [15] [8]

Language C/C++ Fortran Python

Intended use Application, System Application, Numerical

Computing.

Application, General, Web,

Scripting.

Paradigm Imperative, procedural,

object-oriented (C++).

Generic, imperative, object-

oriented, procedural.

Aspect-oriented, functional,

imperative, object-oriented,

reflective.

Type strength strong strong strong

Type safety unsafe safe safe

Expression of types explicit explicit implicit

Type checking static static dynamic

Failsafe I/O No No Yes

Statements ratio 1 / 2.5 2 6

Lines ratio* 1 0.8 6.5

* The ratio of line count tests won by each language to the number won by C when using the Compare to feature at

Shootout.alioth.debian.org. C gcc was used for C, C++ g++ was used for C++, and FORTRAN G95 was used for

FORTRAN.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.14, February 2012

36

√

Figure 3: Supported geometry elements [12]

(2) Solution, during which the program assembles the

governing equations from the model into matrix form and

solves numerically for the primary quantities. The assembly

process depends on the type of analysis such as static or

dynamic, on the model's element types and properties,

material properties and boundary conditions. The dataset

prepared by the pre-processor is used as input to the finite

element code itself, which constructs and solves a system of

linear or nonlinear algebraic equations in the form Kd = r,

where K is the system stiffness matrix, d is the nodal degree of

freedom displacement vector, and r is the applied nodal load

vector. The strain-displacement relation may be introduced

into the stress-strain relation to express stress in terms of

displacement. Under the assumption of compatibility, the

differential equations of equilibrium along with the boundary

conditions then determine a unique displacement field

solution, which in turn determines the strain and stress fields.

The chances of directly solving these equations are less, hence

the need of approximate numerical techniques rises. Various

Solution methods exists for finite element matrix equations. In

the case of the linear static Kd = r, during solution inversion

of K is numerically unstable and computationally expensive.

A better alternative is Cholesky factorization, a form of Gauss

elimination, and a minor variation on the "LDU" factorization

scheme. The K matrix may be efficiently factored into LDU,

where L is lower triangular, D is diagonal, and U is upper

triangular, resulting in LDUd = r. Since L and D are easily

inverted, and U is upper triangular, d may be determined by

back-substitution. In wavefront method, the equations are

assembled and reduced at the same time [16]. Sparse matrix

technique is the best modern solution method. As the stiffness

matrix has a large number of zero entries, solution time and

storage can be reduced by a factor of 10 or more by using

optimized algorithm [6]. In developing Sfepy, solver SuperLU

integrated in scipy library is employed.

Table 2: Comparison of popular sparse direct solver [6]

Compiled library Language Free to academics Factorization algorithm

BCSLIB-EXT F77 No Multifrontal

MA57 F77/F90 No Multifrontal

MUMPS F90 Yes Multifrontal

Oblio C++ Yes Left-looking, right-looking, multifrontal

PARDISO F77 & C Yes Left-right looking

SPOOLES C Yes Left-looking

SPRSBLKLLT F77 Yes Left-looking

SuperLU C Yes Left-looking, Unsymmetric

TAUCS C Yes Left-looking, Multifrontal

UMFPACK C Yes Unsymmetric multifrontal

WSMP F90 & C Yes Multifrontal

And (3) Post-processing, in which the analyst checks the

validity of the solution, examines the values of primary

quantities such as displacements and stresses, and derives &

examines additional quantities such as specialized stresses and

error indicators. In developing Sfepy, matplotlib for 2D and

Mayavi for 3D visualization of solution results is employed.

4. VERIFICATION
The tensile strength test of concrete which is also known as

split cylinder test, shown in Figure 4(a), is simulated with the

developed finite element analysis framework.

Figure 4: (a) Indirect Tesnsile Strength test setup, (b)

Simplified 2D diametrically point loaded disk.

In this test a cylindrical specimen is loaded across its diameter

to failure. To model this problem using finite elements, the

indirect tensile test can be simplified to represent a

diametrically point loaded disk as shown in Figure 4(b). At

the centre of the cylindrical specimen of diameter (D) and

thickness (t), Tensile stress (σt) is developed horizontally and

Compressive stress (σt) is developed vertically for a point load

P. The compressive stress is 3 times the tensile stress and the

analytical formulation for these are, respectively:

𝜎𝑡 =
2𝑃

𝜋𝑡𝐷
 (1)

𝜎𝑐 =
6𝑃

𝜋𝑡𝐷
 (2)

The specimen has a diameter of 150 mm. Assuming plane

strain conditions, the test is modeled using 2D triangle

element and only one quarter of the 2D model is used as the

model geometry is symmetrical about x- and y-axes (Figure

5). The material is assumed to be linear elastic and isotropic

with a Young’s modulus of 2,000 MPa and a Poisson’s ratio

of 0.4, which are inputed in the linear elastic isotropic

equation as Lamé’s parameter. The vertical displacement of

the nodes in the bottom and the horizontal displacement of the

nodes in the left are set to zero to ensure symmetry.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.14, February 2012

37

Figure 5: Meshed geometry

The resultant matrix from the governing equation is

unsymmetric sparse in nature so optimized Umfpack library is

used instead of SuperLU in the modeling of the test which

provided better performance (Table 2).

The stresses in the model had been calculated but these were

averaged from those calculated at Gauss quadrature points

within the elements. Stresses at bottom-left node is calculated

as it is the centre of the concrete disk. The analytic solution is

independent of mesh refinement influence, so it will always

be same for as long as the whole geometry remains intact. On

the other hand, the finite elemnt analysis solution is

influenced by mesh refinement. The finer the mesh is, the

more accurate the result will be. The FEA result for both a

coarse and fine mesh is shown in Table 3.

It is established that the developed FEA framework and the

modeling technique outlined in this paper works correctly as

the FEA approximate solution of the modeled concrete tensile

strength test is very close to the analytical solution and moves

towards convergence with mesh refinement. The

implementation of optimized Umfpack library to solve large

unsymmetric sparse matrix has proven to be efficient.

Table 3: Analysis summary with coarse and fine mesh

Mesh type Applied

load

(N)

Analytic

horizontal

tensile stress

(MPa/mm)

FEA

horizontal

tensile stress

(MPa/mm)

% error

w.r.t

Analytic

solution

Analytic vertical

compressive

stress

(MPa/mm)

FEA vertical

compressive

stress

(MPa/mm)

% error

w.r.t

Analytic

solution

Coarse Mesh -

83 Elements
2000

8.48826

7.57220 +10.79

25.4648

25.8660 -1.57

Fine Mesh -

5568 Elements
2000 8.50042 -0.14 25.4300 +0.13

Figure 6: Visualization of the solution

5. CONCLUSION
Taking the advantages of full control over the Engineering

simulation using custom coded finite element analysis

software along with its structure and working principle is

focused in this paper. As the source code is freely available to

use and modify, many user can contribute their individual

knowledge regarding various aspects of numerical modeling.

This paper also focuses on the necessity and ease of

developing engineering simulation framework. The evaluation

of the developed framework is presented with comparison to

an analytical solution. It has been observed that development

and use of open source engineering simulation software offers

four main benefits:

1. Anyone can contribute to the continuing development of

the software, as it is open source.

2. Optimum simulation is obtained as the user can see what is

running behind the scene.

3. The use of legacy mathematical libraries written in static

language offers great code reuse and saves time; also it is

easier to change the underlying legacy library.

4. Use of freely available libraries provides maximum

economy.

6. REFERENCES

[1] Susmita Sinha, Sunipa Roy, C. K. Sarkar. "Design &

Electro-Thermal Analysis of Microheater for Low

Temperature MEMS based Gas Sensor." International

Symposium on Devices MEMS, Intelligent Systems &

Communication. Sikkim, India: International Journal of

Computer Applications, 2011. 26-31.

[2] J. N. Sharma, Dinkar Sharma, Sheo Kumar. "Analysis of

Stresses and Strains in a Rotating Homogeneous

Thermoelastic Circular Disk by using Finite Element

Method." International Journal of Computer

Applications, 2011: 10-14.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.14, February 2012

38

[3] Saleh Alsubari, Hassan Chaffoui. "Homogenization of a

Composite Periodic Structure in the Case of Composite

Plate ." International Journal of Computer Applications,

2011: 28-33.

[4] Mamta Agrawal, Neeru Adlakha, K.R. Pardasani.

"Modelling and Simulation of Thermal Effect of

Metastasis of Tumors in Human Limbs." International

Symposium on Devices MEMS, Intelligent Systems &

Communication. Sikkim, India : International Journal of

Computer Applications, 2011. 24-30.

[5] S.Maflin Shaby, A.Vimala Juliet. "Improving the

Sensitivity of MEMS Piezoresistive Pressure Sensor

using Polysilicon Double Nanowire." International

Journal of Computer Applications , 2011: 1-4.

[6] Nicholas I. M. Gould, Yifan Hu, Jennifer A. Scott. A

numerical evaluation of sparse direct solvers for the

solution of large sparse, symmetric linear systems of

equations. Oxfordshire, UK: Council for the Central

Laboratory of the Research Councils, 2005.

[7] TIOBE Programming Community Index. 12 30, 2011.

http://www.tiobe.com/index.php/tiobe_index (accessed

12 30, 2011).

[8] Millman, K. "Python for Scientists and Engineers."

Computing in Science & Engineering 13, no. 2 (2011): 9

- 12.

[9] Rossum, Guido van. Glue It All Together With Python.

Monterey, California: Object Services and Consulting,

Inc., 1998.

[10] Pérez, F. "Python: An Ecosystem for Scientific

Computing." Computing in Science & Engineering 13,

no. 2 (2011): 13 - 21.

[11] van der Walt, S. "The NumPy Array: A Structure for

Efficient Numerical Computation." Computing in

Science & Engineering 13, no. 2 (2011): 22 - 30.

[12] Cimrman, Robert. SfePy: Simple Finite Elements In

Python. 12 30, 2011. http://sfepy.org/ (accessed 12 30,

2011).

[13] Ritchie, Dennis M. "The Development of the C

Language." The second ACM SIGPLAN History of

Programming Languages Conference. New York: ACM,

1993. 201–208.

[14] Stroustrup, Bjarne. The C++ Programming Language.

Addison-Wesley, 2000.

[15] Akin, Ed. Object Oriented Programming via Fortran

90/95. Cambridge University Press, 2003.

[16] Roensch, Steven J. The Finite Element Method: A Four-

Article Series. ASME newsletter, 1996.

