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ABSTRACT 
The Present manuscript reports the solution of well known 

non linear wave mechanics problem called KDV equation, 

here main emphasis is given on the Mathematical modeling of 

traveling waves and their solutions in the form of Korteweg-

de Vries equation (KdV) It is a non-linear Partial Differential 

Equation (PDE) of third order which arises in a number of 

physical applications such as water waves, elastic rods, 

plasma physics etc. We present numerical solution of the 

above equation using B-spline FEM (Finite Element Method) 

approach. The ultimate goal of the paper is to solve the above 

problem using numerical simulation in which the accuracy of 

computed solutions is examined by making comparison with 

analytical solutions, which are found to be in good agreement 

with each other along with that we discussed the physical 

interpolation of the soliton study in which we found that the 

travel waves reaches to the maximum magnitude of the 

velocity in the short time of the interval and there is an 

uncertainty in the motion of the moving waves.  Another 

important observation we found that the maximum magnitude 

of the velocity in the most of the time domain is around 1 but 

in some of the condition waves having a unnatural phenomena 

which is called the existence of the doubly soliton is seemed 

frequently. All above observation which is clearly indication 

of the generic outcome of a weakly nonlinear long-wave 

asymptotic analysis of many physical systems. The another 

achievement of the work is to implementation of the cubic B-

spline FEM in the above non linear propagating waves 

phenomena.  
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1. INTRODUCTION 

In engineering and real world science the wave is a 

disturbance that travels through space and time and the 

different kind of waves is occur in nature every part of flow 

dynamics having a different kind of application in nature. The 

term wave is often intuitively understood as referring to a 

transport of spatial disturbances that are generally not 

accompanied by a motion of the medium occupying this space 

as a whole. The modeling of the each one is in different form. 

Here our objective is to introduce one of the kind of wave 

mechanics problem called KDV equation. In mathematics, the 

Korteweg–de Vries equation (KdV equation for short) is a 

mathematical model of waves on shallow water surfaces. It is 

particularly notable as the prototypical example of an exactly 

solvable model, that is, a non-linear PDE whose solutions can 

be exactly and precisely specified. The solutions in turn 

include prototypical examples of solitons. KdV can be solved 

by means of the inverse scattering transform. The 

mathematical theory behind the KdV equation is rich and 

interesting, and, in the broad sense, is a topic of active 

mathematical research. The equation is named for Diedrik 

Korteweg and Gustavde Veris who studied it in (Korteweg–

de Vries 1895) [1], though the equation first appears in 

Boussineq [2], Zabusky, N. J.; Kruskal, M. D. [3] observed 

unusual nonlinear interaction among “solitary-wave puses” 

propagating in nonlinear dispersive media, Miura et.al [4] 

gives Korteweg-de Vries equation and generalizations. II. 

Existence of conservation laws and constants of motion along 

with Lax [5] find the integral solution of non linear solitary 

wave equation  then Vliegenthart [6] find the solution of KDV 

equation using FDM approach, hence Miles., John W. [7] 

gives a detail of KDV equation as an essay then Dingmans, 

M.W. [8] founds a  Water wave propagation over uneven 

bottoms using numerical simulation, de Jager, E.M. [9]. 

Reports the detail origin of the KDV equation it imp aspects 

and there historical background  and then Darvishi [10] gives 

a Numerical Solution of the Lax’s 7th-order KdV Equation by 

Pseudo spectral Method now I n this paper we have choose 

KdV equation as our model problem as it is used in many 

different fields to model various physical phenomena of 

interest. In 1895 Korteweg [1] showed that long waves, in 

water of relatively shallow depth, could be described 

approximately by a nonlinear equation of the form 

     𝑢𝑡 +  𝑐0 + 𝑐1𝑢 𝑢𝑥 + 𝑣𝑢𝑥𝑥𝑥 = 0             (1) 

where 𝑐0, 𝑐1, 𝑣   are real constants. and can be used as a model 

describing the lossless propagation of shallow water waves. It 

is well known that the Korteweg-de Vries equation is the 

generic outcome of a weakly nonlinear long-wave asymptotic 

analysis of many physical systems. It is categorized by its 

family of solitary wave solutions, with the familiar 𝑠𝑒𝑐ℎ2 

profile. It has also been used as a model for ion-acoustic 

waves in plasma, pressure waves in liquid-gas bubble 

mixtures rotating flow down a tube and thermally excited 

phonon packets in low-temperature nonlinear crystals [10 -

11]. The aim of present paper is to focus on the numerical 

solution of KDV equation using finite element technique with 

B-spline functions, splines play an important role in 

computational study and visulization  [13]. 
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The Korteweg-de Vries (KDV) equation 

0,t x x xxxu u uu u                    (1 a) 

where α  β are real constants, was first introduced as a model 

describing the lossless propagation of shallow water waves 

[1]. Since then it has been used as a model for ion-acoustic 

waves in plasma ,[10-12] pressure waves in liquid-gas bubble 

mixtures [14] rotating flow down a tube and [15] thermally 

excited phonon packets in low-temperature nonlinear crystals. 

It is well known that the Korteweg-de Vries equation is the 

generic outcome of a weakly nonlinear long-wave asymptotic 

analysis of many physical systems. It is categorized by its 

family of solitary wave solutions, with the familiar sech2   

profile. 

Due to its properties, the KdV equation was the source of 

many applications and results in a large area  of nonlinear 

physics. For example the KdV equation and its 

generalizations. Also another formulation of (1) is as 

0,t x xxxu uu u a x b               (1 b) 

with boundary conditions 

( , ) ( , ) 0, ( , ) ( , ) 0x xu a t u b t u a t u b t          (1 c) 

Zabusky and Kruskal [15] solved the KdV equation using a 

finite difference explicit method with periodic boundary 

conditions and showed the existence of solitons which 

propagated with their own velocities, exerting essentially no 

influence on each other. The Fourier expansion procedure 

[16] which is competitive with finite difference method is 

used to study numerically the KdV equation. Taha and 

Ablowitz [17- 18] have done excellent comparisons between 

different known schemes and their scheme for KdV equation 

which is developed using notions of the inverse scattering 

transform. An effiient numerical method is developed for 

solving the KdV equation by Fornberg and Whitham [19]. 

Iskander [20] studied the KdV equation numerically using an 

implicit finite difference scheme based on the combined 

approach of linearization and finite difference method. 

Karakashian and McKinney [21] obtained optimal rate of 

convergence estimates in time for high-order fully discrete 

approximations to the KdV equation with periodic boundary 

conditions. These approximations are generated by a finite-

element process [22] for the spatial discretization and implicit 

Runge-Kuttamethod [23] for the time stepping. After that 

S.Kapoor [24] has an attempted to solve well known burgers 

equation using B-spline FEM technique this is also a good 

achievement due the remarkable accuracy and agreement with 

the exact solution is found in the further stage V.Dabral [24-

26] is introduce the b-spline FEM for the solution of wave 

mechanics problem like MEW , and KDV equation , here the 

objective is very clear that was to implementation of the 

method in those type of problem with special case and they 

successfully implemented spline function as basis function 

with homogenous boundary condition, taken care of the above 

we keep in mind the work of Gupta and Kumar [27] in which 

employs cubic trigonometric B-spline to solve linear two 

point second order singular boundary value problems for 

ordinary differential equations. The objective of the present 

work is not only to introduce a finite element technique for 

the numerical solution of KDV equation using B-spline 

functions but also to understand the behavior of the these type 

of wave problem which in general come into the nature such 

as  shock wave , true waves found in dispersive medium it 

highly non linear also , so here the attempt is to find out the 

solution of non linear PDE using B-spline FEM is taken. 

2. FINITE ELEMENT SOLUTION 

A general form of KDV equation is taken for the present 

study 

     
𝜕𝑢

𝜕𝑡
+ 𝜀𝑢

𝜕𝑢

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥 2 = 0                              (2) 

with the boundary conditions 

      𝑢 𝑎, 𝑡  =  𝑢 𝑏, 𝑡 = 0                             (3) 

    
𝜕𝑢

𝜕𝑥
 𝑎, 𝑡 =

𝜕𝑢

𝜕𝑡
 𝑏, 𝑡 = 0                            (4) 

where 𝜀, 𝜇 are positive parameters. Let us consider 𝑥0 < 𝑥1 <

⋯ < 𝑥𝑁   be the partition of [a; b] by the knots 𝑥𝑖 . Cubic B-

splines are used to approximate the solution u(x, t). Thus the 

set of splines  𝐵−1 , 𝐵0, …𝐵𝑁 , 𝐵𝑁+1 forms a basis for functions 

defined over [a, b]. Cubic B-splines 𝐵𝑚 ; (𝑚 = −1, …𝑁 +

1)at knots 𝑥𝑚  to form a basis over the problem domain are 

defined by [4] 

  𝐵𝑚  𝑥 =
1

ℎ3

 
 
 

 
 
𝑓1 𝑥      𝑥 ∈ [𝑥𝑚−2 , 𝑥𝑚−1]

𝑓2 𝑥      𝑥 ∈ [𝑥𝑚−1 , 𝑥𝑚 ]    

𝑓3 𝑥      𝑥 ∈ [𝑥𝑚 , 𝑥𝑚+1]    

𝑓4 𝑥      𝑥 ∈  𝑥𝑚+1, 𝑥𝑚+2 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Where 

   𝑓1 𝑥 = (𝑥 − 𝑥𝑚−2)3 

  𝑓2 𝑥 = ℎ3 + 3ℎ2 𝑥 − 𝑥𝑚−1 + 3ℎ(𝑥 − 𝑥𝑚−1)2 −

3(𝑥 − 𝑥𝑚−1)3 

  𝑓3 𝑥 = ℎ3 + 3ℎ2 𝑥𝑚+1 − 𝑥 + 3ℎ(𝑥𝑚+1 − 𝑥)2 −

3(𝑥𝑚+1 − 𝑥)3 

  𝑓4 𝑥 = (𝑥𝑚+2 − 𝑥)3 

where m = -1,….,N+1 and ℎ = (𝑥𝑚+2 − 𝑥𝑚 )for all m. We 

transform the cubic B-splines into element shape functions 

over the finite intervals [0, h] using a local coordinate system 

𝜋 = 𝑥 − 𝑥𝑚 , 0 ≤ 𝜋 ≤ ℎ Over [0, h] the cubic B-splines in 

terms of 𝜋 are given by 

   𝐵𝑚−1 =  1 −
𝜋

ℎ
 

3
 

  𝐵𝑚 = 4 − 3
𝜋

ℎ
+ 3  1 −

𝜋2

ℎ
 

2

− 3  1 −
𝜋

ℎ
 

3
 

  𝐵𝑚+1 = 1 + 3
𝜋

ℎ
+ 3  

𝜋

ℎ
 

2
− 3  

𝜋

ℎ
 

3
 

  𝐵𝑚+2 =  
𝜋

ℎ
 

3
                                          (6) 
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Since a finite element [𝑥𝑚 , 𝑥𝑚+1] is covered by four 

successive cubic B-splines, local approximation over each 

element is given by applying Galerkin method to (2) over 

each element 

   𝜙  
𝜕𝑢

𝜕𝑡
+ 𝜀𝑢

𝜕𝑢

𝜕𝑥
 − 𝜇𝜙𝑥

𝜕2𝑢

𝜕𝑥 2
 𝑑𝑥 = 0

𝑥𝑚 +1

𝑥𝑚
                 (7) 

We seek the approximation 𝑢ℎ to the solution in terms of cubic 

B-spline basis functions and element parameter 𝜎 in the form 

of 𝑢ℎ =  𝐵𝑖𝜎 𝑖
𝑁+1
𝑖=−1   where  𝐵𝑚−1 … . 𝐵𝑚+2 are B-splines 

acting as shape functions for each element and  

𝜎 𝑚−1 , 𝜎 𝑚 , 𝝈 𝒎+𝟏, 𝜎 𝑚+2 , are nodal parameters. Using our 

approximation 𝑢ℎ  in (7) 

      

   𝐵𝑖𝐵𝑗𝑑𝑥
ℎ

0
 𝜎 𝑗

𝑒 +𝑚+2
𝑗=𝑚−1

𝜀𝑗=𝑚−1𝑚+2𝑘=𝑚−1𝑚+20ℎ𝐵𝑖𝐵𝑗𝐵𝑘′𝑑𝑥𝜎 𝑗𝑒𝜎 
𝑘𝑒−𝜇𝑗=𝑚−1𝑚+20ℎ𝐵𝑖′𝐵𝑗′′𝑑𝑥𝜎𝑗𝑒                                           

(8) 

The matrix formulation can be represented as 

       𝑋𝑒𝜎𝑒 + 𝜀𝑌𝑒𝜎𝑒 − 𝜇𝑍𝑒𝜎𝑒                                       (9) 

Where 𝑋𝑒 =  𝐵𝑖𝐵𝑗𝑑𝑥,   
1

0
𝑌𝑒 =  𝐵𝑖𝐵𝑗𝐵𝑘

′ 𝑑𝑥
1

0
,  𝑍𝑒 =

 𝐵𝑖
′𝐵𝑗

′′𝑑𝑥
1

0
  with i,j,k taking  values m-1,m,m+1,m+2 for each 

element  [𝑥𝑚 , 𝑥𝑚+1] and the general row of each element 

matrix is given by 

    𝑋 =
ℎ

140
 1,120,1191,2416,1191,120,1    

    𝑌 =
ℎ

40
(−6, −336, −1470,0,1470,336,6)    

    𝑍 =
1

2ℎ2 (−3, −24,57,0, −57,24,3) 

 Assembling contributions from all the elements gives a 

global system of equations as  𝑋𝜎  + 𝑌𝜀𝜎 − μZ𝜎 = 0  Using a 

Crank-Nicolson approach in time the vector 𝜎 and its time 

derivative 𝜎  are given by  𝜎 =
𝜎 𝑛 +𝜎 𝑛+1

2
, 𝜎  =

𝜎 𝑛+1−𝜎 𝑛

∆𝑡
 =  

where n denotes the time level. So, finally we get (9) in the 

form as  

 𝑋 +
𝜎∆𝑡

2
𝑌 −

1

2
 𝜇∆𝑡 𝑍 𝜎 𝑛+1 = [𝑋 −

𝜀∆𝑡

2
𝑌 −

1

2
 𝜇∆𝑡 𝑍]𝜎 𝑛                                                           

(10) 

giving recurrence relation for computing 𝜎 𝑛  for different time 

levels. Initially we calculate  𝜎 0 and with the help of (10) we 

calculate the first iteration 𝜎1
1 using 𝜎 = 𝜎 0 Next 

approximation is calculated using  
1

2
 𝜎 0 + 𝜎2

1 . In the similar 

way we carry on the iteration process and the approximate 

solution 𝑢ℎ  is calculated from 𝜎 𝑛 . 

3. TEST PROBLEM AND NUMERICAL 

RESULTS 

In this section, to check the proposed technique we analyses 

the solution for single soliton as well interaction of two. 

Solution profiles have been recorded by taking into account 

different parameters. For the single soliton study, we have the 

analytical solutions 

    𝑢 𝑥, 𝑡 = 𝐴𝑠𝑒𝑐ℎ2(𝜅𝑥 − 𝜔𝑡 − 𝑥0)                       (11) 

With 𝐴 = 12𝜅2, 𝜔 = 4𝜅3. we take 𝜅 = 0.3 and initial 

condition𝑥0 = 0. Fig. shows the solution for single soliton 

study with 𝑥0, corresponding to the exact solution (11) taking 

𝜅 = 0.3,0.2. Consider KDV equation with 

𝜀 = 0.0013010833 with the initial value of one soliton 

solution 

   𝑢 𝑥, 𝑡 = 3𝑐𝑠𝑒𝑐ℎ2   
𝑐

4𝜀
(𝑥 − 𝑐𝑡)                       (12) 

where c = 1/3 solution has the advection speed 1/3 and 

solution region is taken to be (-1, 2). Corresponding to the 

problem with exact solution given by (12), results are shown 

in taking c = 1/3, 𝜀 = 0.0013020833 at different times. If we 

consider the third order generalized KDV equation of the 

form 

     𝑢𝑡 + 𝑢𝑝𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, 

   𝑢 𝑥, 0 =  𝐴𝑠𝑒𝑐ℎ2(𝜅𝑥 − 𝑥0) 1/𝑝                        (13) 

and available exact solution is of the form 

   𝑢 𝑥, 𝑡 =  𝐴𝑠𝑒𝑐ℎ2(𝜅𝑥 − 𝑐𝑡 − 𝑥0) 1/𝑝               (14) 

where 𝑝 ≥ 2, 𝜅, 𝑚 and 𝑥0  are constants with 𝐴 =
2 𝑝+1 (𝑝+2)

𝑚2
𝜅2, 𝑐 =

4𝜅2

𝑚2
.  In the next part   we have the 

solutions for the  interaction of two solitary waves. Next we 

see interaction of two solitons. To conduct the numerical 

simulation, we consider some examples for this case. For first 

example in this study we have the exact solution given by 

   𝑢 𝑥, 𝑡 = 12
𝑋1

 1+𝑒𝜃1 +𝑒𝜃2 +𝑎2𝑒𝜃1+𝜃2 
2                  (15) 

Where 𝑋1 = 𝜅1
2𝑒𝜃1 + 𝜅2

2𝑒𝜃2 + 2 𝜅2 − 𝜅1 
2𝜅1

2𝑒𝜃1+𝜃2 +

𝑎2(𝜅2
2𝑒𝜃1 + 𝜅1

2𝑒𝜃2 )𝑒𝜃1+𝜃2  

With  𝜅1 = 0.4, 𝜅2 = 0.6, 𝑎2 =  
𝜅1−𝜅2

𝜅1+𝜅2
 

2
=

1

25
, 𝜃1 = 𝜅1𝑥 −

𝜅1
3𝑡 + 𝑥1 , 𝜃2 = 𝜅2𝑥 − 𝜅2

3𝑡 + 𝑥2, 𝑥1 = 4, 𝑥2 = 15 Consider 

KDV equation with 𝜀 = 0.0013010833, with the initial value 

of two solitons, we have 

   𝑢 𝑥, 𝑡 = 12
𝑌1

 1+𝑒𝜃1 +𝑒𝜃2 +𝑎2𝑒𝜃1+𝜃2 
2                    (16)   

   Where 𝑌1 = 𝜅1
2𝑒𝜃1 + 𝜅2

2𝑒𝜃2 + 2 𝜅2 − 𝜅1 
2𝜅1

2𝑒𝜃1+𝜃2 +

𝑎2(𝜅2
2𝑒𝜃1 + 𝜅1

2𝑒𝜃2 )𝑒𝜃1+𝜃2  

With 𝜅1 = 1, 𝜅2 = 1.5, 𝑎2 =  
𝜅1−𝜅2

𝜅1+𝜅2
 

2
=

1

25
, 𝜃1 = 𝜅1

𝑥

 6𝜀
−

𝜅1
3 𝑡

63/2 𝜀
− 3, 𝜃2 = 𝜅1

𝑥

 6𝜀
− 𝜅2

3 𝑡

63/2 𝜀
+ 3 

Corresponding to the problem with exact solution (15), 

numerical solution can be seen. Whereas for the case 

corresponding to the exact solution (16) gives two 

dimensional plot in Fig. taking 𝜀 = 0.05, 𝑥1 = 4, 𝑥2 = 15  at 

times t = 20,40. In the next example we have the boundary 

conditions 

𝑢(0, 𝑡)  =  𝑢(4, 0)  =  0, 𝑡 >  0 
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and the initial conditions shall be derived from the exact 

solution 

    𝑢 𝑥, 𝑡 = 12𝜇 log 𝐸 𝑥𝑥 , 0 ≤ 𝑥 ≤ 4                 (17) 

Where       𝐸 = 1 + exp(𝜂1) + exp(𝜂2) +  
𝛼1−𝛼2

𝛼1+𝛼2
 

2
exp(𝜂1 +

𝜂2),  

       𝜂1 = 𝛼1𝑥 − 𝛼1
3𝜇𝑡 + 𝑏1 , 

        𝜂2 = 𝛼2𝑥 − 𝛼2
3𝜇𝑡 + 𝑏2, 

  𝑏1 = −0.48𝛼1, 𝑏2 = −1.07𝛼2 

         𝛼1 =  
0.3

𝜇
, 𝛼2 =  

0.1

𝜇
.                                (18) 

Further we have the KDV equation of the form 

           𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0                              (19) 

whose exact solution is given by 

     𝑢 𝑥, 𝑡 =
3+4 cosh (2𝑥−8𝑡)+cosh (4𝑥−64𝑡)

 3 cosh  𝑥−28𝑡 +cosh (3𝑥−36𝑡) 2              (20) 

For the last case (17) our solution is plotted in Fig. Taking 

into account the next case with exact solution given by (20) is 

shown in Fig. Surface plots showing the solution pro files 

corresponding to the solutions (15-20) 

4. RESULT AND DISCUSSION  

In this section rigorous study has been made for the solution 

of KDV equation in the form of wave equation and soliton,  in 

sciences a soliton is a self – reinforcing solitary wave  or in 

other way we can say the wav packets or it is also known as 

the pulse which never changes it shapes while traveling in the 

medium ( At constant speed) . The soliton came in to act 

when the motion of in undergo into the dispersive effects or 

the cancellation of nonlinear effect.  

Here the objective of the presented work is not only to 

understand the soliton solution of the moving pulses and wave 

but also to introduces the B-spline FEM technique in the 

above nonlinear equation which is a called as the KDV 

equation. From the above section wee clearly shows the 

excellent agreement of the solution obtained w.r.t the B-spline 

FEM, and now our motivation is give the behavior of the 

solution for this we have plotted the Fig 1 to 6. In which Fig 1 

to 4 ,we shown the interaction of wave solution in one 

dimensional visualization w.r.t the time space and in the next 

two fig we plotted the surface(3-D) Fig of the above 

visualization. From the Fig 1, which is plotted for the different 

time 4 and 6?   

 

Figure 1A Result obtained at t=4 

 

Figure 1B Results obtained at t=6 

Where we observed that for the small time level that is the 

wave having a double soliton in the domain 0.5<t<2, for the 

time steps size is maximum 4, here the another observation 

we found that the traveling having the maximum magnitude 

of the velocity is around 1.3in both the cases, but here as we 

increased the time step the physical phenomena is remain 

same but it shifted from one point to another which can be 

seen from the plotted profile. 

 

Figure 2 A Results obtained at t=0 
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Figure 2 B  Results obtained at t=10 

Now the pattern profile became significantly changes a we  

increased the time step, basically for the large time it shown 

the profile of single soliton, here we can visualize from the fig 

2, here the velocity profile has point of maxima t=0 and the 

value is around 1.25 , the maximum value of the velocity has 

less change but profile having the significant change this 

might be the cause of the waves pattern because as we 

increased the time level we get the velocity became less 

magnitude of the on the other hand we can say that as we 

increases the time the forcing factor reduces in a time step. 

This is cause of changes the pattern of the pulses. 

 

Figure 3 A Results obtained at t=2 

 

Figure 3 B Results obtained at t=10 

 

In the next observation we again reduces the time step for the 

wave pattern but it is still having the same profile as the 

previous case but it having the less magnitude of the velocity 

along with that its peak is shifted from one point to another 

point , in the time step is again an important observation 

because in this period waves having the less magnitude along 

with that , the soliton having a less amount of efficient energy.  

 

Figure 4A Results obtained at t=0 

In the fig 4 , we taken large time for the calculation of the 

wave profile , the successfully we get the unexpected result , 

that is the profile having the doubly soliton along with that the 

waves are generated in the reveres time of interval , it is 

significant result we obtained in this manner , so far the 

magnitude of the velocity is also changes but it is still close to 

one. 

 

Figure 4B Results obtained at t=40 

It means that shock waves hit the target in the same 

magnitude of the pulses but it changes there profiles in the 

time interval , it can be clarity seen from the above figs , in 

order to understand the surface behavior of the physical 

phenomena so we have attempted the plotting of the 3-D fig 

of the above phenomena these can be seen in the 5 and6 
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Figure 5A and 5B  Numerical solution profile for p = 6; c = 

0:003; 𝜿 = 𝟎. 𝟐, p = 4; c = 0:005; κ=0.3 

It is an interesting to see the wave profile in the 3-D plot , 

from the fig 5 (a) and (b) , for the fix value of constant wee 

plotted the singly soliton wave profile. The observation is 

made with respect to the rigorous time step study here the 

upper Z direction is showing the maximum velocity of the 

traveling waves. The above picture is clearly shows that the 

maximum magnitude of the velocity is near to one in one case 

in the other case it having less then which is not found or 

clearly visible in the two dimensional plot. The changes of the 

time steps i.e increases the time level is the cause of the 

decreases the magnitude of the velocity this due to the 

reduction of the forcing factor in the mean while as we 

increases the time steps the eternal forces on the waves reduce 

there power or energy so that we can say that in time space 

the shock wave through their natural power of hitting the 

objects. These waves normally occurs near the sea , so it 

affected the normal life of the human being if it come in less 

time space , but as time changes it less harmful for the human 

being . There is some another observation we made in the next 

fig . As we mention earlier that “solitary-wave pluses” 

propagating in nonlinear dispersive media so that three 

behavior is also shows the non linearity in there profile, it can 

be seen from the fig 6, here in the last section of our study we 

analyzed the behavior of the wave propagation for the large 

time of interval, the study of the above wave  propagation 

basically through the KDV equation so the magnitude of the 

velocity having no changes.  

 

Figure 6A ad 6B  Solution profile obtained for interaction 

of two soliton at t=100;4000, t=50;90 
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But the profiles having the drastic changes which we observed 

from fig 1 to 4 also , but here we can visualize the effect of 

nonlinearity of the solution , mathematically we can say that 

the governing PDE is basically non linear in nature so it 

solution should have a non linear profile this phenomena is 

being true from the last two fig . The plotted profiles have 

shown the non linear behavior of the moving pulses and the 

travelling waves. The important observation is we get that the 

doubly soliton is occurs for the different time level or steps , 

which is also great achievement of our study  

5. CONCLUSION    

The present study is basically based on the numerical 

investigation through the B-Spline FEM for the solution of 

KDV equation which comes through the waves dynamics the 

following are conclude of our syudy 

1. We get the numerical solution of the non linear problem 

through FEM 

2. B-spline basis function are successfully implemented in 

the above non linear problem 

3. Excellent comparative result we get between the 

numerical and analytical solution  

4. The non linear behavior of the travelling shows the 

maximum magnitude of the velocity in the above study is 

around 1 

5. In the time space the profile having the significant 

changes 

6. REFERENCES 

[1] Korteweg D. J., de Vries G., On the change of form of 

long waves advancing in a rectangular canal, and on a 

new type of long stationary waves. Phil. Mag. J. Science, 

39 (1895) 422-443. 

[2] Boussinesq, J. (1877), Essai sur la theorie des eaux 

courantes, Memoires presentes par divers savants ` 

l’Acad. des Sci. Inst. Nat. France, XXIII, pp. 1–680 

[3] N.J. Zabusky and M.D. Kruskal, Interaction of solitons in 

a collisionless plasma and the recurrence of initial states, 

Phys. Rev. Lett. 6 (1965) 240-243. 

[4] Miura, Robert M.; Gardner, Clifford S.; Kruskal, Martin 

D. (1968), "Korteweg-de Vries equation and 

generalizations. II. Existence of conservation laws and 

constants of motion", J. Mathematical Phys. 9: 1204–

1209  

[5] Lax, P. (1968), "Integrals of nonlinear equations of 

evolution and solitary waves", Comm. Pure Applied 

Math. 21: 467–490, 

[6] A. C. Vliegenthart, On finite difference method for 

Korteweg-de Vries equation,J. Eng. Math., 5 (1971) 137-

155. 

[7] Miles., John W. (1981). "The Korteweg–De Vries 

equation: A historical essay". Journal of Fluid 

Mechanics 106: 131–147. 

[8] Dingemans, M.W. (1997), Water wave propagation over 

uneven bottoms, Advanced Series on Ocean Engineering, 

13, World Scientific, Singapore,, 2 Parts, 967 pages 

[9]  de Jager, E.M. (2006). "On the origin of the Korteweg–

de Vries equation". arXiv;math/0602661vl [math.HO]. 

[10] Darvishi, M. T.; Kheybari, S.; Khani, F. (2007), A 

Numerical Solution of the Lax’s 7th-order KdV Equation 

by Pseudospectral Method and Darvishi’s 

Preconditioning, 2, pp. 1097–1106 

[11] A. C. Scott, Y. F. Chu and D. W. McLaughlin, The 

Soliton: A New Concept In Applied Science, IEEE Proc., 

61 (1973) 1443. 

 [12] Peregrine, D.H., Calculations of Development of an 

undular Bore, J.Fluid Mech, 25 (1966)321-330. 

[13] Malik Zawwar Hussain., Muhammad Sarfraz., Ayesha 

Shakeel , Shape Preserving Surfaces for the Visualization 

of Positive and Convex Data using Rational Bi-quadratic 

Splines.,  International Journal of Computer Applications 

., 27(10),  2011 

[14] A. C. Vliegenthart.,On Finite difference method for 

Korteweg-de Vries equation, J. Eng. Math., 5 (1971)137-

155. 

 [15] Zabusky, N. J.; Kruskal, M. D. (1965), “Interaction of 

“Soliton” in a collisionless Plasma and the Recurrence of 

Initial States”, Phys. Rev. Lett. 15: 240–243,  

[16] K. Abe and 0. Inoue, Fourier expansion solution of the 

Korteweg-de Vries equation, J. Comp. Phys. 34 (1980) 

202-210. 

[17] T.R. Taha and M.J. Ablowitz, Analytical and numerical 

aspects of certain nonlinear evolution equations I. 

Analytic, J. Comp. Phys. 55 (1984) 192-202. 

[18] T.R. Taha and M.J. Ablowitz, Analytical and numerical 

aspects of certain nonlinear evolution equations III. 

Numerical, J. Comp. Phys. 55 (1984) 231-253. 

[19] B. Fornberg and G.B. Whitham, A numerical and 

theoretical study of certain nonlinear wave phenomena, 

Phil. Tra. Roy. Sot. London 289 (1978) 373-404. 

[20] L. Iskander, New numerical solution of the Korteweg-de 

Vries equation, Appl. Num. Math. 5 (1989) 215-221. 

[21]  O.A. Karakashian and W. McKinney, On optimal high-

order in time approximations for the Korteweg- de Vries 

equation, American Math. Sot. 55 (1990) 473-496. 

[22] V.A. Dougalis and O.A. Karakashian, On some high-

order accurate fully discrete Galerkin methods for the 

Korteweg-de Vries equation, Math. Comp. 45 (1985) 

329-345. 

[23] O.A. Karakashian and W. Rust, On the parallel 

implementation of implicit Runge-Kutta methods, SIAM 

J. Sci. Statist. Comput. 9 (1988) 1085-1090. 

[24] S.Kapoor & S.Dhawan; “ A computational technique for 

the solution of Burgers’ equation”   Int. J. of Appl. Math. 

and Mech. 6(3): 84-95, 2010. 

[25] V.Dabral., S.Kapoor., S.Dhawan. S.Rawat  “ Finite 

Element Based solution of Modified Equal Width 

equation (MEW) with Homogenous Boundary condition 

using B-spline Basis Function , Chiangmai University 

International Conference 2011 , Vol. 1, No. 1 (2010) 124 

– 131 

[26] V.Dabral., S.Kapoor., S.Dhawan., “Mathematical study 

of seprated solitry Wave solution for KDV equation: B-

spline FEM Approach” . in 4th  International conference 

on “Modeling ,Simulation and Applied Optimization “ 

(ICMSAO-2011) ”   Kulalumpur (Malaysia), an IEEE 

conference held at Kula-Lumpur (Malaysia)  Paper 

Published in conference Proceeding Paper code: 96508 

in Applied Mathematics Track. P.P  771-775.,  

[27] Yogesh Gupta., Manoj Kumar., “A Computer based 

Numerical Method for Singular Boundary Value 

Problems., International Journal of Computer 

Applications, 30(1)., 2011, pp. 21-25 


