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ABSTRACT 

This paper proposes a grouping algorithm for partitioning 

large-scale nonlinear dynamical systems based on graph 

theory. The algorithm incorporates a novel scheme to quantify 

the strengths of graph edges, representing the degree of 

couplings among the system variables via sensitivity 

functions. This leads to a weighted graph topology with 

different weights on the obtained graph edges. An algorithm is 

then developed to partition systems into some sub-graphs 

based on the weighted graph. A decentralized nonlinear model 

predictive control (NMPC) methodology is then formulated 

for the sub-systems. The overall NMPC design methodology 

is finally evaluated on a process plant benchmark, consisting 

of two continuous stirred tank reactors (CSTRs) and a flash 

separator with a recycle path. A set of tracking and regulatory 

tests is comparatively conducted exploring the successful 

performance of the proposed algorithm in the context of the 

decentralized NMPC methodology with respect to an 

alternative centralized NMPC control scheme.   
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Keywords 
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1. INTRODUCTION 
Large-scale dynamical systems provide new challenges and 

opportunities in control theory research area. Modern systems 

are developing both in size and complexity much more than 

before and hence new efforts for designing novel control 

methodologies are something inevitable. Properties of large-

scale systems like nonlinear dynamics, modeling 

uncertainties, constraints and presences of external 

disturbances make design, implementation and maintenance 

of such systems non-trivial. In such complicated context, the 

traditional control design strategy may show inefficiency. 

Therefore, some other advanced control methodologies 

applicable to real world large-scale systems are in great 

importance.  

Model predictive control (MPC) has shown to play effective 

role in large-scale control system applications. There are lots 

of reported successful applications of MPC in real-world such 

as urban water distribution systems [1], electrical power 

networks [2], process industry [3], manufacturing systems [4] 

that make model predictive control as one of the most 

demanding approach in control theory [5]. While the MPC 

paradigm encompasses several different variants, each one 

with its own special features, all MPC methods rely on the 

idea of generating values for system inputs as solutions of an 

on-line optimization problem on the basis of a system model 

and the relevant measurements. The model predictive control 

problem is formulated as solving on-line a finite horizon 

open-loop optimal control problem, satisfying different 

control objectives subject to system dynamics and constraints 

involving states and controls. Regardless of the particular 

choice made for the MPC ingredients elements, on-line 

optimization is the common thread tying them together. 

However, the traditional MPC strategy demands a great 

amount of online computation, since an optimization problem 

is solved at each sampling time. This has limited the use of 

these controllers to systems with relatively slow dynamics. 

Furthermore, the use of MPC is critically dependent on having 

a system model of low order, typically with a maximum of ten 

states. 

One centralized controller unit may traditionally be 

recommended for overall control of a large-scale plant. This 

centralized control approach, however, can be difficult to be 

practically implemented due to computational complexity, 

reliability, robustness, fault tolerances and bandwidth 

limitation issues. Furthermore, it makes the maintenance 

activities more difficult and may force the full control system 

to face with ultimate shutdown due to one major central 

controller fault [6]. 

Decentralized MPC or distributed MPC offers an efficient 

approach to circumvent these issues in which a set of local 

MPC controllers take in charge of the entire system rather 

than the centralized MPC controller. This alleviates the 

adverse consequences due to the centralized MPC 

malfunctions in price of missing global optimal system 

responses. In this approach, each local MPC controller caters 

for its own subsystem which is a small manageable part of the 

entire system [5].  

However, the decentralized MPC approach poses a 

challenging problem in which the large scale system should 

be properly decomposed into smaller-size subsystems. This 

issue has already been addressed in the literature [7, 8, 9] in 

the general context of decentralized control for large scale 

systems. The system decomposition problem is traditionally 

recommended during the system modeling process through 

cleaver identification of subsystems on the basis of physical 

insight, intuition or experience. Obviously, this approach is 

not suitable for a large-scale complex system with many states 

inputs and outputs. Thus, there is a strong motivation to 

develop systematic methods to automatically decompose a 

given large-scale system via its actual structure. 
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The subject is still very incipient and less method has been 

proposed in the literature. A new automatic decomposition 

algorithm has recently been presented [1] based on graph 

partitioning. The algorithm provides a decomposition scheme, 

consisting of a set of non-overlapping sub-graphs whose 

number of vertices is as similar as possible and the number of 

interconnecting edges between them is minimal. The 

approach, however, assumes that the system behaves linearly 

and any inherent dynamic non-linearity effect will be 

eliminated through the lower regulation-layer controllers. The 

final decentralized MPC controllers are then designed on the 

basis of the linear dynamics of the partitioned sub-systems. 

Furthermore, the developed graph utilizes edges with the 

same weighting, leading to ignorance of different possible 

strengths among the system vertices.    

In this work, an enhanced systematic method is presented to 

partition a complex large scale system into smaller-size 

subsystems without restricting the large-scale system to 

behave linearly. The approach is hence applicable to nonlinear 

dynamic large-scale systems. The required information is first 

extracted via the system dynamics so that the system can be 

represented by a directed graph. In this way, the constructed 

graph inherits the system structural information in its essence 

and hence the system partitioning subject is led to a graph 

partitioning problem which can use the rich supporting 

content of the graph theory to be solved [10, 11].  

The work presents a novel scheme based upon the sensitivities 

of the ending graph vertices, indicating system states or 

inputs, with respect to each other to incorporate different 

weights on the obtained graph edges.  

The graph partitioning algorithm uses the whole system graph 

and tries to evolve some sub-graphs with almost equal number 

of vertices and minimal number of weighted interconnecting 

edges. The algorithm searches for some optimal cuts which 

result into sub-graphs that share edges with minimal total 

number and minimal total weights.  

The paper is organized as follows. The proposed portioning 

algorithm is developed in Section 2. Once the large-scale 

system is decomposed into the constituent sub-systems, the 

decentralized MPC methodology is then utilized to design the 

required individual local MPC controllers. The whole 

procedure is then validated on a CSTR process plant case 

study in Section 3 to explore the comparative performances of 

the proposed algorithm with respect to conventional 

centralized MPC scheme.  Section 4 summarizes the 

concluding remarks.  

2. DEVELOPMENT OF A SYSTEMATIC 

PARTITIONING ALGORITHM 

2.1  Graph representation of a large-scale 

system 

Consider the general state-space representation of the system 

by 
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Where 
nx  and 

nx 


 are state and its derivative 

vector, respectively, 
mu   is the system input vector and 

dd  is process disturbance vector, 
ry  is output 

vector and ,f g indicate some general input and output 

mapping functions. The problem is to decompose the large-

scale system, described by Eqn. (1) into subsystems. First, a 

weighted graph is constructed using the given general non-

linear system model from its physical interconnecting 

topology [12]. The weighed system graph, represented by  

( , )g V E  , consists of the vertex set V which is 

community of state vector 1 2{ , ,..., }nX x x x , input 

vector 1 2{ , ,..., }mU u u u  and output vector 

1 2{ , ,..., }rY y y y . E indicates the edge set which 

shows the connectivity of the two edges (i.e., system 

variables) in the system equations. Notice that the set E only 

has ( , ), ( , ), ( , )i j i j i ju x x x x y ,  as its member [12]. 

The graph edge weights is derived after linearization of the 

nonlinear system equations, given in Eqn. (1),  to demonstrate 

each individual system state to input1, state-to-state2  and 

output to state3 sensitivities. As a consequence, the weighted 

graph can be represented by the incidence matrix MI , 

defined as follow: 

 

 

 

 

 

Where ijw denotes the sensitivity gain. The incidence matrix 

MI will naturally have a dimension equal to    , where 

  shows total number of vertices and   indicates total 

number of edges. This is a basic contribution with respect to 

the alternative algorithm proposed in [1], leading to a 

weighted graph based on the actual sensitivities among the 

system variables. The partitioning algorithm will then 

consider the different strengths, linking the system variables 

in the constructed graph.  

2.2 Main algorithm 
The graph partitioning algorithm is based on the work 

proposed in [1], where a multistep, iterative method is used to 

accomplish the task. The algorithm is constructed in a 

modular basis, incorporating some main routines which are 

implemented according to the standard graph partitioning 
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problem [10]. In the following, a brief description of the 

implemented modular algorithm is presented.  

2.3 Groundwork partitioning step 
At the initial step, the algorithm traverses the entire graph to 

find all vertices of the shared edges and their corresponding 

weights. Then, the results are stored for further uses. In this 

context, all direct descendants (e.g., state-to- state or state-to-

output connections) and ancestors (e.g., input-to-state or state-

to-state connections), corresponding to a specified vertex in 

the graph, are recorded. Total values of each individual 

vertices are defined as vertex’s order 
i where 

{1,2,..., }i v . The  
i is calculated as follow: 

1

i

ijj
w





 and  {1,2,..., }i v                 (2)  

Preliminary portioning  

In this step, the algorithm chooses the most valued vertex to 

fix it as the center of the first sub-graph. Then, all descendants 

and ancestors, representing all vertices with at least one 

shared edges with the center vertices, are chosen to be a 

member of the first sub-graph.  

After removing the selected vertices, the process is repeated 

for the remaining vertices and the other most valued vertex is 

defined as the center of the next sub-graph. Total number of 

vertices in each sub-graph is defined as the internal weight of 

the corresponding sub-graph [1]. In addition, some other 

information of the sub-graphs is used in the other steps which 

are defined as follow: 

1

1 k

iik
 


                                                        (3) 

Yielding the average of sub-graphs internal weight.  

i represents the total number of vertices in sub-graph i and 

{1,2,..., }i k . i  is called internal weight. 

2.4 Internal balance  
After assigning each vertex to a certain sub-graph, the next 

step is to balance the generated sub-graphs in order to have 

similar internal weight. To achieve this goal, all the m sub-

graphs with internal weights less than the calculated average 

value via the algorithm and all jh neighbor sub-graphs are 

specified. Then, for those in which condition (3) is met, the 

two sub-graphs are combined; leading to generation of a new 

sub-graph with larger internal weight.  

i j                   (4) 

Where 

 {1,2,..., }i m and {1,2,..., }jj h  

For sub-graphs in which the joinable neighbors are more than 

one, the one with smaller internal weight is selected. After 

each combination, all the parameter and sub-graph structural 

information like i ,  , … are updated, accordingly. The 

merging procedure is repeated until no other merging is 

obtainable.  

2.5 External balance 
In this step, the graph partitioning algorithm tries to reduce 

the cut size of the generated sub-graphs which is the total 

number of the weighted cut between the sub-graphs. some 

further information from subgraph vertices and edges are 

needed to be extracted in order to move toward the minimal 

cut size. Therefore, internal and external degrees are defined 

for each vertex in each sub-graph [1]. 
j

i


 denotes total value of the shared edges of vertex j  in 

the sub-graph i with all other vertices in this sub-graph with 

{1,2,..., }ij   and {1,2,..., }i k . 
j

i


 indicates 

total value of the shared edges of vertex 
j

 in sub-graph 

i with all other vertices in the other sub-graphs. 

After defining the mentioned weights, the algorithm starts to 

search for finding vertices with condition 
j j

i i 
 

. The 

entrapped vertices then are moved from the origin sub-graph 

to the sub-graph which has maximum total weighted cut size.  

After each movement, all the indexes must be updated. 

This course of action is repeated until no other movement is 

possible and all vertices in all sub-graphs satisfy the condition 
j j

i i 
 

. 

Once the foregoing graph partitioning algorithm is terminated, 

the aimed partitioned sub-graphs are determined and the 

corresponding decomposed subsystems will then be ready to 

be employed in the decentralized control scheme. Each 

subsystem contains a set of special state, input and output 

variables, recommended by the obtained groupings. On this 

basis, the local subsystem models can be derived for the 

design of the corresponding decentralized MPC controllers. 

For this purpose, nonlinear model predictive control scheme 

[13] is utilized based on the local models and measurements 

configured from the proposed partitioning algorithm, leading 

to a fully decentralized control design methodology. 

3. SIMULATIONS 

An industrial process plant can pose a challenging benchmark 

to exercise the proposed partitioning algorithm in a NMPC 

control framework. For this purpose, a nonlinear chemical 

process plant, consisting of a cascade of two Continuous 

Stirred Tank Reactors (CSTRs) together with a flash 

separator, having a recycle, has been selected [3]. A 

simplified schematic of the plant is shown in Figure (1). The 

plant has a set of 12 states (X), a set of 6 inputs (U), and 6 

outputs, represented by the following vectors: 
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First, the proposed system partitioning algorithm is exercised 

to the process plant, yielding an incidence matrix denoted by 

MI . The corresponding graph has been illustrated in Figure 

(2).  

The partitioning algorithm determines how to decompose the 

unified model of process plant. In other words, the algorithm 
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categorizes the appropriate groups of process states, inputs 

and outputs for the aimed decentralized control system 

configuration. The grouping information is then moved to the 

accommodated decentralized nonlinear model predictive 

controller (NMPC) design algorithm.  

A set of test scenarios is conducted to clearly evaluate both 

reference tracking and disturbance rejection objectives. 

Performances of the designed decentralized NMPC controllers 

are then compared with alternative centralized NMPC 

controllers. The obtained output responses have been 

illustrated in Figures (3) and (4). The corresponding control 

inputs are authentic because we put some constraints both on 

their value and rate. The constraints on the value of control 

signal prevent actuators from saturation and constraints on 

control signal rate cause smooth control. The plant state 

variables are set to some arbitrary initial values different from 

the final reference targeted values. Further test scenarios have 

been conducted to examine the disturbance rejection 

performances of both centralized and decentralized NMPC 

controllers, being exposed to relatively large disturbances 

which have been introduced at time instants of 250 and 265 

sec. The obtained responses are clearly demonstrating the 

successful performances of both tracking and disturbance 

rejection missions of the decentralized NMPC controllers on 

the basis of the decentralized subsystems, being determined 

by the proposed partitioning algorithm.  The obtained results 

verify that the designed decentralized NMPC controllers can 

duplicate the optimal centralized NMPC controller results 

with negligible deviations. 

The resulting optimization cost functions, relevant to the both 

conducted test scenarios cases, in Figure (5); provide some 

useful information to comparatively judge about the 

implemented decentralized NMPC design procedures in 

comparison with the optimal centralized NMPC design 

scheme. 

4. CONCLUSIONS 
The paper addresses a demanding problem issue in large scale 

control systems. An efficient graph-theory-based algorithm 

has been proposed in to automatically partition large-scale 

systems into subsystems to facilitate the attractive 

decentralized MPC control strategy. The algorithm 

incorporates two basic contributed provisions to better 

conform to real large-scale systems. The algorithm is not 

restricted to linear large-scale systems. Furthermore, it 

incorporates a novel scheme based upon the sensitivities of 

the ending graph vertices, to quantify the weights which 

indicate the coupling among the system states or inputs, 

leading to a new weighted graph topology with different 

weights on the obtained graph edges. 

The graph partitioning algorithm employs the obtained 

weighted system graph and tries to evolve some sub-graphs 

with almost equal number of vertices and minimal number of 

weighted interconnecting edges. For this purpose, the 

algorithm searches for some optimal cuts which result into 

sub-graphs that share edges with minimal total number and 

minimal total weights.  

 The decentralized NMPC control framework has then been 

incorporated in the large-scale control system design 

procedure on the basis of the decomposed subsystems to 

locally generate the optimal control policies. Comparative 

evaluations of the conducted test scenario results with optimal 

centralized NMPC in a process plant benchmark demonstrated 

the successful performance of the integrated design procedure 

in the context of the proposed partitioning algorithm.    

Further researches have been motivated to enhance the 

proposed partitioning algorithm for more secure and stable 

control performances in the face of different system 

malfunctions.  
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Figure 2. Schematic diagram of the partitioned graph and the corresponding sub-graphs of the simulated process plant. 

 

 

Figure 1. Two-reactor chains followed by a flash separator with recycle. 
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Figure 3. Setpoint tracking and distrurbance rejection performances of Centralized and Decentralized NMPC for 3 Level 

state variables (Hr, Hm, Hb). 
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Figure 4. Setpoint tracking and distrurbance rejection performances of Centralized and Decentralized NMPC for 3 

Temperature state variables (Tr,Tm,Tb). 
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Figure 5. Optimized cost of control schemes 

 


