
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

40

Generating all Navigational Test Cases using

Cyclomatic Complexity from Design Documents for

Mobile Application

Ayan Nigam
Quality & Process Lead,

Ideavate Solutions,
Indore, India

Bhawna Nigam
Department of Information

Technology,
Institute of Engineering &

Technology, DAVV, Indore

Devendra Kumar Vatsa
Department of Computer Engi.

Institute of Engineering &
Technology, DAVV, Indore

ABSTRACT

This is new mobile world; lots for even the simplest mobile

application there can be many Navigational Paths. The

challenge at Design phase is to identify all possible paths,

generate code and validations for each one of them.

Generating all possible test paths and test cases are difficult to

achieve and need lot of manual efforts. In this paper we tried

to generate possible navigational path using Design

documents, so that Development and QA team get all the

possible number of test cases in Design Phase itself. This will

help to Estimate and analyze the actual project scope and

timeline. QA Team save time as they do not have to generate

paths manually and thereby reducing Navigational bugs

getting detected and ensuring enhanced Path Coverage.

General Terms

Test cases, Cyclomatic Complexity, Navigational Path,

Mobile Application, Design Document.

1. INTRODUCTION
In this new era of mobile world navigational mobile

application are largely used for various tasks. In mobile

application, number of pages is connected & provides

functions for end user. End user can easily navigate mobile

applications which are interconnected. Due to small nature of

mobile application it is less costly for end users & there are

thousands of users so a regress testing is required before

launching of mobile application, because a small bug can

affect all those end users.

Testing is the important process of SDLC for bug detection &

test case generation. In developing a mobile application Client

(Stakeholder) provide requirement for Design Documents &

According to clients requirement Designer develops the

Design Documents. There are so many methodology & tools

available for testing the mobile applications when application

is already developed. Even there is Lack of testing

methodology at the time of design phase for mobile

application. Testing of Design Documents manually can arise

lots of error by human mistakes. This entire problem arise a

need of methodology which can test mobile application at

design time. This paper contains mobile applications

navigational testing during design phase to generate number

of test cases at design time. With the help of this testing other

stakeholders can also decide number of team members & cost

for developing application.

A navigational mobile application is organized & the pages

are linked by the designer as user perceptive. According to

client requirements when an activity is performed designer

linked pages of mobile application. When an activity is

preformed on mobile node by end user pages or links are

navigated. Each node functions as a specialized path or link to

relay information to other nodes. Organization of collection of

pages is decided at the time of design phase when part of code

is not available Testing becomes even more harder in

organized systems mainly due to unavailability and also

maintenance go at a faster rate than other software systems

and this maintenance often consists of small incremental

changes.

There are several methodological and technological proposals

for developing test case generation tool of mobile application

(MA) are coming both from industry and academia at the time

of testing phase, but there is a lack of general methods and

tools to carry out the key processes that significantly impact

the quality of a mobile application (MA), such as the

Validation & Verification (V&V), at early phase of SDLC (a

similar dictation is proposed by Dr.Giuseppe Antonio Di

Lucca, Dr. Anna Rita Fasolino, Dr.Francesco Faralli &

Dr.Ugo De Carlini [1]). The structure of Design Documents is

an activity diagrams, which is often one strongly connected

component as a whole. Analysis of Design Documents

visually shown that one activity depends on another. Back

edges and hyperlinks providing alternative navigations are

quite common, making the resulting structure close to a fully

connected graph. [2] This design document can contained

various paths for navigation. With the help of this design

documents created navigational dependency graph (NDG) can

be created which can generate all number of test path that can

be calculated by cyclomatic complexity number. In other

words, when the structure of the MA is strongly connected,

loop probabilities tend to make the contribution of new

navigational test cases for test path.

Navigational testing (NT) aims to generate test cases of the

tested object (node/path/link) and to give confidence to the

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

41

designer by executing tested object with selected node input

values & navigational path. MA typically undergo

maintenance at a faster rate than other software systems and

this maintenance often consists of small incremental

changes[3]. Small incremental increase enhance designer

effort if designer tested, design documents manually

Navigation-Based Testing (NBT) is a type of testing strategy

that depends on extracting test cases from different

navigational dependency graph.NDG is created by three

models: requirements models, usage models, and models

constructed from activity [4].NDG used Cyclomatic

Complexity [5] Proposed by Dr.McCabe give complexity

structure of NDG & number of test path in Design

Documents.

In this methodology all possible navigational test cases is

generated using cyclomatic complexity theory, for generating

all navigational test cases first the navigational dependency

graph is created with all the intermediate stages. Using this

cyclomatic complexity number all possible test paths has been

identified. With the help of this identified test path all possible

test cases will have generated.

Architecture Model of Proposed System

 Fig1. Shows the architecture of test case generation system.

.

Fig 1: Architecture of test case generation system

2. EXPLANATION OF ARCHITECTURE

A. Design Document: - storyboards are one of the

design documents designed for mobile application.

According to client requirement designer create

storyboards that can be understood by all other stack

holders.

Fig 2. Storyboards for message box registration.

Fig2 shows the Storyboards for message box registration in

mobile application. In this application user have a main screen

for message box registration .In main screen either user can

successfully submit registration form and will switch to inbox

or user have a security check for registration in the form of

verification mail. If verification mail is successfully sent then

user will again switch for inbox or will switch to error pages.

In this application user will switch for exit from inbox & error

pages.

3. GENERATION OF NAVIGATIONAL

PATH TABLE

According to storyboard of designer navigational testing

strategy created a table. This table shows name of storyboards

screen. User will enter the value of node & their name &

testing strategy generate navigational dependent node table.

For example in Table1 node value A shows main screen &

node value J shows Exit.

Table1. Navigational dependent Node

i=0 Node Value Node Name N(i)

1 A Main Screen

2 B Inbox

3 C Create An Account

4 D Registration form

5 E Registration form not successfully

submitted

6 F Page for errors

7 G Go to the Error display page

8 H Submit

9 I Verification mail sent to phone no. Or

email id (If successful submission)

10 J Exit

Generation of Navigational Path Table

Generation of Navigational Dependency

Graph

Calculation of Cyclomatic Complexity &

generation of Test Path

Test Case Generation

Story Board/Design document

Submit

Main

Screen

Create an

Account

Inbox

Registration

form not

submitted

Registration

Form

Page for
errors

Go to error

display page

Verification mail

sent or not sent

to email id

Exit

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

42

Table 2 the design document of navigational application is

used to automatically generate the Navigational Path table

(NPT) with all the Navigational activities involved in it

including decisions, loops and synchronization.

Table 2. Navigational dependency Path

No

.
P[] Node

Navigational

Path

Activity

Dependency

node

1 P[1] B BA A

2 P[2] B BH H

3 P[3] B BI I

4 P[4] C CA A

5 P[5] D DC C

6 P[6] E ED D

7 P[7] E EI I

8 P[8] F FE E

9 P[9] G GF F

10
P[10

]
H HD D

11
P[11

]
I IH H

12
P[12

]
J JG G

13
P[13

]
J JB B

The aims of these table (1&2) is showing the activities that

having transfer in control to other entities which can be useful

for system, regression and integration testing. It also includes

the input node and the expected output dependent values for

each navigational activity. Dependency of each activity on

others is clearly shown in NPT through navigational path

activity. Example of NPT describe that node B has three

dependent nodes A, H & I & their respective paths are BA,

BH & BI. Similarly node J has two dependent nodes G & B

and their respective paths JG & JB. When generate

navigational dependency graph table is generated 1 describe

node values of storyboard screen name & table 2 is used for

generated dependent activity for all nodes.

4. GENERATION OF NAVIGATIONAL

DEPENDENCY GRAPH

The navigational path table is used to automatically generate

the navigational dependency graph of Design Documents of

application. Fig3. Show generated navigational dependency

graph. In NDG node values is used for screen name & each

node represents an activity to other node for relaying

information. Since repeated activities are given the same

symbol in the navigational dependency table, only one node is

created for them no matter how many times they are used in

the design. This will decrease the search space in the

navigational dependency graph. The transitions from one

activity to another are represented by edges in the NDG.

The presence of an edge from a node to another is determined

by checking the dependency column in the Table 2 for the

current node‟s symbol. Specifically, if it contains the previous

node‟s symbol then an edge from the previous node to the

current one is drawn in the NDG. Otherwise, we backtrack in

the NDG until finding the node whose symbol is mentioned in

the current Node‟s dependency column and create an edge

from it to the current node and so on until all the rows in the

NPT are finished. Synchronization, decisions and loops are

demonstrated using edges as well.

Fig 3. Navigational Dependency Graph

In our example, after creating nodes for all the symbols

mentioned in the NPT we start creating the edges. Since the

symbol „A‟ is the first symbol in the NPT, then it is made at

the root node with no dependencies assigned to it. Then

comes symbol „B‟ to become the current node after dependent

Later to B i.e., we check the dependency column of node „B‟

and compare its registered values with all the other symbols

.Finding nodes „A‟, ‟H‟, and „I‟ means that a transition edge

should be drawn from each one of them to the current node

„B‟ and will continue for all other nodes till all nodes

completed.

Graph to Adjacency matrix

Fig 3 is a directed graph. Using this graph the following

matrix: It has 10 vertices and 13 edges.

Table 3: Adjacency Matrix of figure 3

Adjacency matrix shows successive path when 1 if the edge is

there, & „0‟ if no edge is there. Between two nodes adjacency.

 A B C D E F G H I j

A 0 1 1 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 1

C 0 0 0 1 0 0 0 0 0 0

D 0 0 0 0 1 0 0 1 0 0

E 0 0 0 0 0 1 0 0 0 0

F 0 0 0 0 0 0 1 0 0 0

G 0 0 0 0 0 0 0 0 0 1

H 0 1 0 0 0 0 0 0 1 0

I 0 1 0 0 1 0 0 0 0 0

j 0 0 0 0 0 0 0 0 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

43

Calculation of Cyclomatic complexity & test path

Cyclomatic Complexity is proposed by Thomas J. McCabe

is a means of measuring the complexity of a given graph.

Complexity is measured by counting „decision‟-the more

decisions i.e. number of statement/loops in the graph what

is the meaning of decision. A graph goes through in a single

run. McCabe‟s Cyclomatic metric, V (G) of a graph "G"

with "n" vertices and "e" edges is given by the following

formula.

 CCN=V-N+2

 =13-10+2

 =5

This cyclomatic complexity number define that the graph has

5 decision test paths which are now traversing is using DFS.

Graph traversing is perform using DFS

Step-1: Set the starting point of traversal and push it inside the

stack.

Step-2: Pop the stack and add the popped vertex to the list of

visited Test Path.

Step-3: Find the adjacent vertices for the most recently visited

vertex.

Step-4: Push these adjacent vertices inside the stack (in the

increasing order of their depth) if they are not visited and not

resent there in the stack already.

Step-5: Move to step-2 if the stack is not empty move to go to

step 1 else step 1 and repeat until all the traversal paths are

complete.

Table 4. Test path

Test Path Test Cases

Test Path1 A->B->J

Test Path2 A->C->D->E->F->G

Test Path3 A->C->D->H->B->J

Test Path4 A->C->D->D->H->I->B->J

Test Path5 A->C->D->H->I->E->F->G->J

Table4 shows that are 5 test paths that for navigational

dependency graph according to cyclomatic complexity

number. When traversing is performing node A is stored in

stack then Node B & finally Node J. Here are decision is

completed according to cyclomatic complexity number. This

stack is placed on Test Path1. Again when traversing is

performed it starts from node A to C, D, E, F and G & store

the node information in test path 2and stack in test path 2

continue for all five test paths.

Total Number of test cases

Total number of test cases is generate with the help of

summations of all test path node & cyclomatic complexity

number .Test path 1 contain 3 nodes ,Test path 2 contain 5

nodes & when cyclomatic number subtracted from those test

paths result gives total number of test cases as shown in table

5 are 32.

(TestPath1+TestPath2+TestPath3+TestPath4+TestPath5) -

(CyclomaticComplexity Number) = Total number of test

cases.

Table 5: Total number of Test case

Navigational Test

Path Node

CCN

Total no of Test case=

P[j]-CCN

32 5 27

B. Test Case Generation:-

Table 6 contain 3 columns one for test path number & other

two for test case number & navigational test case generation

respectively. Traversing of test path produces test node

values. For each node assign it‟s respective screen name from

table 1 & traverse all test cases, put this value in column

navigational test case generation of table6.

Test

Path

No.

 Test

Cases

No.

Navigational Test Case Generation

1 1 Main Screen->Inbox

1 2 Main Screen->Inbox->Create New

Account

2 3 Main Screen-> Create New Account

2 4 Main Screen-> Create New Account->

Registration form submission

2 5 Main Screen-> Create New Account->

Registration form submission->

Registration form not successfully

submitted

2 6 Main Screen-> Create New Account->

Registration form submission->

Registration form not successfully

submitted-> Page for errors

2 7 Main Screen-> Create New Account->

Registration form submission->

Registration form not successfully

submitted-> Page for errors-> Go to the

Error display page

2 8 Main Screen-> Create New Account->

Registration form submission->

Registration form not successfully

submitted-> Page for errors-> Go to the

Error display page->Exit

3 9 Main Screen-> Create New Account

3 10 Main Screen-> Create New Account->

Registration form submission

3 11 Main Screen-> Create New Account->

Registration form submission-> Submit

3

12

Main Screen-> Create New Account->

Registration form submission-> Submit->

Inbox

3 13 Main Screen-> Create New Account->

Registration form submission-> Submit->

Inbox->Exit

4 14 Main Screen-> Create New Account

4 15 Main Screen-> Create New Account->

Registration form submission

4 16 Main Screen-> Create New Account->

Registration form submission-> Submit

4 17 Main Screen-> Create New Account->

Registration form submission-> Submit->

Verification mail sent to phone no. Or

email id (If successful submission)

4 18 Main Screen-> Create New Account->

Registration form submission-> Submit->

Verification mail sent to phone no. Or

email id (If successful submission)->

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

44

Inbox

4 19 Main Screen-> Create New Account->

Registration form submission-> Submit->

Verification mail sent to phone no. Or

email id (If successful submission)->

Inbox->Exit

5 20 Main Screen-> Create New Account

5 21 Main Screen-> Create New Account->

Registration form submission

5 22 Main Screen-> Create New Account->

Registration form submission-> Submit

5 23 Main Screen-> Create New Account->

Registration form submission-> Submit-

>Verification mail not sent to phone no.

or email id

5 24 Main Screen-> Create New Account->

Registration form submission-> Submit->

Verification mail not sent to phone no. or

email id-> Registration form not

successfully submitted

5 25 Main Screen-> Create New Account->

Registration form submission-> Submit->

Verification mail not sent to phone no. or

email id....> Registration form not

successfully submitted-> Page for errors

5 26 Main Screen-> Create New Account->

Registration form submission-> Submit->

Registration form not successfully

submitted-> Verification mail not sent to

phone no. or email id-> Registration form

not successfully submitted-> Page for

errors-> Go to the Error display page

5 27 Main Screen-> Create New Account->

Registration form submission-> Submit->

Registration form not successfully

submitted-> Page for errors-> Go to the

Error display page->Exit

5. EXPERIMENT RESULT

Table 6 shows Experiment result of different storyboards test

paths.

Table6. Experiment Result

 Number

of

Nodes

Number

of Path

Cyclomatic

complexity

Test

Path

storyboard1

(Our

Example)

10 13 5 27

Storyboard2 7 8 3 8

Storyboard3 19 39 20 99

Table6 Experiment results define a clear view of analysis

result of storyboards. We have analysis 3 storyboards for

generating & calculating Navigational test cases. Results of 3

Story boards provide accurate number of navigational node,

navigational path. Our result also provides complexity &

navigational test case generation value for all those Design

Documents.

6. CONCLUSION
Many researchers and practitioners have been working in

generating optimal test cases based on the Specifications still

100% testing is impossibility .Navigational testing is new

subject arising in navigational system. There are many testing

algorithms for testing phase & for developing phase where

code is integral part of testing. Rather than requirement of

navigational testing system is an important factor for new era

of mobile world. This is new proposed technique so, there

may be next steps of future work will include generating the

scenarios based testing for generating each test case

automatically, based on the information given in the Design

Documents description.

7. REFERENCES
[1] Giuseppe Antonio Di Lucca, Anna Rita Fasolino,

Francesco Faralli, Ugo De Carlini “Testing Web

Applications” Proceedings of the International

Conference on Software Maintenance

(ICSM.02),Napoli,Italy,2002

[2] Paolo Tonella and Filippo Ricca, “Statistical testing of

Web applications” Journal of Software Maintenance and

Evolution: Research and Practice, Trento, Italy, 2004

[3] Zhongsheng Qian, Zhongsheng Qian, Hongwei Zeng, “A

Practical Web Testing Model for Web Application

Testing” Third International IEEE Conference on Signal-

Image Technologies and Internet-Based System,

Shangai, China, 2005

 [4] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed

Hashem and Mohamed F.Tolba,”A Proposed Test Case

Generation Technique Based on Activity Diagrams”,

International Journal of Engineering & Technology

IJET-IJENS Vol: 11 No: 03, june 2011

[5] Martin Sheppard,” A critique of cyclomatic complexity as

software metric”, Software Engineering Journal,

England, March, 1988

[6] L. Luo. “Software Testing Techniques, Technology

Maturation and Research Strategies”, Class Report,

Institute for Software Research International, Carnegie

Mellon University, Pittsburgh, USA, 2009.

[7] A.C. Dias-Neto, R. Subramanyan, M. Vieira, G.H.

Travassos. “A Survey on Model-based Testing

Approaches: A Systematic Review”, Proceedings of the

1st ACM international workshop on Empirical

assessment of software engineering languages and

technologies in conjunction with the 22nd IEEE/ACM

International Conference on Automated Software

Engineering (ASE), New York, USA, 2007.

[8] A.C. Dias-Neto, G.H. Travassos. “Model-based testing

approaches selection for software projects”, Journal of

Information and Software Technology 51 (2009).

[10] S.K. Swain, D.P. Mohapatra, R. Mall. “Test Case

Generation Based on Use case and Sequence Diagram”,

International Journal of SoftwareEngineering, IJSE 3

(2010).

[11] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M.

Lott, G.C. Patton, B.M. Horowitz. “Model-Based Testing

in Practice”, Proceedings of the 21st international

conference on Software engineering, New York, USA,

1999.

