
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

30

Modified Fast Recovery Algorithm for Performance

Enhancement of TCP-NewReno

Hanaa Torkey

Department of Computer
Science and Engineering,

Faculty of Electronic Eng.,

Minufiya University, Egypt.

Gamal Attiya

Department of Computer
Science and Engineering,

Faculty of Electronic Eng.,

Minufiya University, Egypt.

Ibrahim Z. Morsi

Department of Electrical
Engineering,

Faculty of Engineering,

Minufiya University, Egypt.

ABSTRACT

One of the keys to the success of the Internet is relying on

using efficient congestion control mechanisms. Congestion

control is required not only to prevent congestion collapse in

the network, but also to improve network utilization. Without

congestion control, a sending node may continue transmitting

packets that may be dropped later due to congestion collapse.

This paper presents a modified fast recovery algorithm to

enhance the performance of the most widespread congestion

control protocol; TCP-NewReno. The proposed mechanism is

evaluated by using the network simulator NS-2 and compared

with both the TCP-NewReno and the TCP-Reno. The

simulation results show that the proposed mechanism

improves the performance of the TCP-NewReno against

throughput and packet delay.

General Terms

Computer Networks, Network Protocols.

Keywords

TCP, Congestion Control, Congestion Avoidance, NewReno,

Fast Recovery Algorithm.

1. INTRODUCTION

Transmission Control Protocol (TCP) has been the dominant

transport protocol for reliable data transfer over the Internet. It

supports most of the popular Internet applications, such as the

World Wide Web, file transfer and e-mail. However, the rapid

growth of the Internet and the increasing demand of different

traffics over the Internet lied to a serious problem called

congestion collapse [1]. This problem occurs when the

aggregate demand for resources exceeds the available capacity

of the network.

Congestion is generally bad for network users, applications

and network performance. When a packet encounters

congestion, there is a good chance that the packet is dropped,

and the dropped packet wasted precious network bandwidth

along the path from its sender to its destination. Congestion

control is thus required to prevent congestion collapse in the

network and improve the network performance. Without

congestion control, a sending node could be busy transmitting

packets that may be dropped later due to congestion collapse.

After observing a series of congestion collapse, several

congestion control algorithms are proposed and incorporated

into the TCP to resolve the congestion collapse problem. In

1988, several innovative congestion control algorithms were

introduced into TCP [2]. This TCP version is called TCP

Tahoe. It includes three algorithms namely Slow Start,

Congestion Avoidance, and Fast Retransmit. Two years later,

a Fast Recovery algorithm was added to Tahoe to form a new

TCP version called TCP Reno [3]. TCP Reno is a reactive

congestion control scheme that uses packet loss as an

indicator for congestion. In order to probe the available

bandwidth along the end-to-end path, the TCP congestion

window (cwnd) is increased until a packet loss is detected, at

which point the congestion window is halved and a linear

increase algorithm takes over until further packet loss is

experienced. Generally, the congestion window is used to

limit the amount of data that the sender can inject into the

network in order to prevent the source from overrunning the

capacity of the network. In Reno, the TCP sender changes its

congestion window size according to the congestion control

algorithms; Slow-Start, Congestion Avoidance, Fast

Retransmit and Fast Recovery [4].

In [5], the authors have shown that the TCP Reno may

periodically generate packet loss by itself and cannot

efficiently recover multiple packet losses from a window of

data. Moreover, the Additive Increase and Multiplicative

Decrease (AIMD) strategy of TCP Reno leads to periodic

oscillations in the aspects of the congestion window size,

round-trip delay, and queue length of the bottleneck node.

Indeed, the oscillation may induce chaotic behavior in the

network, thereby adversely affecting overall network

performance. To alleviate the performance degradation

problem of packet loss, many researchers attempted to refine

the Fast Retransmit and the Fast Recovery algorithms of the

TCP Reno [6, 7]. In [8], a congestion control mechanism,

called TCP NewReno, is developed using an augmented Fast

Recovery algorithm to overcome the problem of TCP Reno

and combat multiple packet losses from the same transmission

window without entering into Fast Recovery multiple times.

That is, TCP NewReno modifies the sender behavior during

Fast Recovery algorithm, where, it continues in Fast Recovery

until all the packets which were outstanding during the start of

the Fast Recovery have been acknowledged.

Although the additional modifications to the Fast Recovery

algorithm improve the performance of TCP NewReno, it has

been found that the TCP NewReno is inefficient in terms of

utilization of link capacity and unfair in throughput [9-12].

The problem with NewReno is that, within Fast Recovery

algorithm, it halves its congestion window irrespective of the

state of the network as long as a packet loss is detected.

Another problem arises with NewReno is that when there are

no packet losses, but packets are reordered by more than three

duplicate acknowledgments; NewReno mistakenly enters Fast

Recovery, and halves its congestion window [13, 14].

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

31

This paper presents a modified Fast Recovery algorithm to

improve the TCP-NewReno performance. The basic idea is to

adjust the congestion window (cwnd) of the TCP sender based

on the level of congestion in the network so as to allow

transferring more packets to the destination. The proposed

mechanism, called Enhanced NewReno (EnewReno), is

evaluated by using the network simulator NS2 and compared

with both the TCP-NewReno and the TCP-Reno. The

simulation results show that the proposed mechanism

improves the performance of the TCP-NewReno against

throughput and packet delay.

The rest of this paper is organized as follows; Section 2

presents an overview of the most widespread congestion

control protocol; TCP-NewReno. The proposed mechanism is

described in Section 3 while Section 4 presents the simulation

results and discussions. Finally, the paper conclusions and the

direction for future work are given in Section 5.

2. TCP NewReno

Modern TCP implementations incorporate various congestion

control algorithms to adapt the sending rate at the sender site

in order to overcome the congestion collapse. This section

briefly describes the main algorithms of the TCP NewReno;

Slow-Start, Congestion Avoidance, Fast Retransmit and Fast

Recovery.

2.1 Slow Start and Congestion Avoidance

In TCP NewReno, when a TCP connection begins, the Slow

Start algorithm initializes a congestion window (cwnd) to one

segment [15]. The sender is then start transmitting packets

based on the window size. For each acknowledgement

returned from the receiver, the congestion window is

increased by one segment. This behavior continues until the

cwnd arrives to the slow start threshold (ssthresh). At this

point, the NewReno enters into Congestion Avoidance phase

to slow the increasing rate of the cwnd. During congestion

avoidance, the congestion window increases linearly by one

segment every round trip time (RTT) as long as the network

congestion is not detected. The implementation of the Slow

Start and the Congestion Avoidance algorithms is built in a

manner so that the increasing rate of the cwnd goes on until an

indication for congestion occurrence is reached. At this point,

the transmission rate should be slowed down to resolve the

network congestion [16].

2.2 Fast Retransmit and Fast Recovery

During Congestion Avoidance, the reception of duplicate

acknowledgement or the expiration of retransmission timer

can implicitly signal the sender that the network congestion is

occurred. So, the sender has to slow down its transmission

rate. If the congestion was indicated by a timeout, the ssthresh

is set to one half of the current congestion window and the

congestion window is set to one segment and the sender enters

into the Slow Start phase. If the congestion was indicated by

duplicate acknowledgements, the TCP sender goes into the

Fast Retransmit mode to retransmit what appears to be lost

packet without waiting for the retransmission timer to expire.

Then, the sender sets the ssthresh to half of the current

congestion window and the new congestion window to the

new ssthresh plus the number of received duplicate

acknowledgements and enters into the Fast Recovery phase.

Upon entering Fast Recovery, the sender continues to increase

the congestion window by one segment for each subsequent

duplicate ACK received. The intuition behind the Fast

Recovery algorithm is that duplicate ACKs indicate the

reception of some segments by the receiver, and thus can be

used to trigger new segment transmissions. The sender

transmits new segments if permitted by its congestion

window. During Fast Recovery, the TCP NewReno

distinguishes between a “partial” ACK and a “full” ACK. A

full ACK acknowledges all segments that were outstanding at

the start of fast recovery, while a partial ACK acknowledges

some but not all of this outstanding data. On receiving a

partial ACK, NewReno retransmits the segment next in

sequence based on the partial ACK, and reduces the

congestion window by one less than the number of segments

acknowledged by the partial ACK. This window reduction,

referred to as partial window deflation, allows the sender to

transmit new segments in subsequent RTTs of Fast Recovery.

The NewReno continues in Fast Recovery until all the packets

which were outstanding during the start of the Fast Recovery

have been acknowledged. On receiving a full ACK, the sender

sets the congestion window (cwnd) to ssthresh, terminates

Fast Recovery, and resumes Congestion Avoidance [17].

2.3 NewReno Implementation

The pseudo code of the TCP-NewReno is described in Table 1.

Table 1: Pseudo code of TCP-NewReno

Slow Start Algorithm:

Initial: cwnd = 1;

For (each packet Acked)

 cwnd++;

Until (congestion event, or, cwnd > ssthresh)

Congestion Avoidance Algorithm:

/* slow start is over and cwnd > ssthresh */

Every Ack:

cwnd = cwnd + (1/cwnd)

Until (Timeout or 3 DUPACKs)

Fast Retransmit Algorithm:

/* After receiving 3 DUPACKs */

Resend lost packet;

Invoke Fast Recovery algorithm

Fast Recovery Algorithm:

/* After fast retransmit; do not enter slow start */

ssthresh = cwnd / 2;

cwnd = ssthresh + 3;

Each DACK received;

cwnd ++;

Send new packet if allow;

After receiving an Ack:

If partial Ack;

Stay in fast recovery;

Retransmit next lost packet (one packet per RTT);

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

32

If Full Ack;

cwnd = ssthresh;

Exit fast recovery;

Invoke Congestion Avoidance Algorithm;

 When Timeout:

ssthresh = cwnd /2;

cwnd = 1;

Invoke Slow Start Algorithm;

3. PROPOSED MECHANISM

As mentioned earlier, the problem with both Reno and

NewReno is that within Fast Recovery algorithm, TCP halves

its congestion window irrespective of the state of the network.

Another problem with NewReno is that when there are no

packets lost but packets are reordered by more than three

duplicate acknowledgments, NewReno mistakenly enters Fast

Recovery, and halves its congestion window [12-14]. Since

the TCP's congestion window controls the number of packets

that a TCP sender can send over the network at any time,

hence, the process of setting the congestion window to half of

its value make the TCP NewReno inefficient in terms of

utilization of link capacity. The proposed mechanism avoids

these problems by modifying the Fast Recovery algorithm of

the TCP-NewReno. The basic idea is to adjust the congestion

window (cwnd) of the TCP sender based on the level of

congestion in the network so as to allow transferring more

packets to the destination. The adjustment of congestion

window has three main goals. The first one is to utilize the

available network resources, the second is to minimize the

probability of congestion, and the third is to offer a fair

bandwidth among multiple connections. These goals could be

achieved by adopting the congestion window size based on

the network status.

3.1 Basic Idea

In TCP, all the transmitted packets make a round trip back

from the sender to the receiver. The measurement of the

Round Trip Time (RTT) between the two ends is the

fundamental of timeout and the retransmission strategy of

TCP. The RTT changes during the TCP connection as the

network traffic load changes. In other words, the value of the

RTT increases with the increasing of the network load. So, the

RTT could be used to reflect the network status. The crux of

idea is that, for a given network status, the modified

mechanism determines the congestion degree in the network

using the change in the Round Trip Time. In entering the Fast

Recovery algorithm, it can detect the change in the RTT and

decreases the congestion window (cwnd) by a value related to

the increase in the RTT. The mechanism is that, the sender

continuously monitors the RTT from the receiving

acknowledgments and keeps up the measured values of the

last few numbers of the RTT. When TCP enters the Fast

Recovery algorithm, it computes the average value of RTT

(RTTavg) using the previously measured values of the RTT, as:

RTTavg = nRTT

n

i

i /

1

The sender then calculates the change in RTT (ΔRTT) by

calculating the difference between the latest RTT (RTTn) that

calculated just right before detecting congestion and the

average RTT (RTTavg), as:

ΔRTT = RTTn - RTTavg

Finally, the sender decreases its sending rate based on the

change in RTT. In other words, the sender calculates the

increasing factor (Factor) in the sending rate by dividing the

current congestion window over the average RTT, as:

Factor = cwnd / RTTavg

With increasing traffic load on the network, the cwnd will be

decreased by an average number (Avgnum) determined as the

product of the increasing factor and ΔRTT, as:

Avgnum = Factor * ΔRTT

The new congestion window (cwndn) is thus determined as

the maximum of two segments and the different between

current congestion window and the average value (Avgnum), as:

cwndn = max {2, (cwnd − Avgnum)}

3.2 Modified Fast Recovery Algorithm

During Congestion Avoidance, when the TCP sender receives

three duplicate ACKs, it goes into the Fast Retransmit mode

to retransmit what appears to be lost packet without waiting

for the retransmission timer to expire. It then calculates the

new congestion window (cwndn), sets the ssthresh to the

maximum of two segments and cwndn, and sets the cwnd to

the ssthresh value plus the number of received duplicate

acknowledgements and continues with the Fast Recovery

phase. The TCP sender increases the cwnd by one for each

received duplicate acknowledgment, and sends new segment

if allowed. With partial ACK, it retransmits the acknowledged

segment and proceeds. With full ACK, it sets the cwnd to the

ssthresh value and invokes the Congestion Avoidance

algorithm. If the TCP sender detects losses by timeout

expiration, it sets the ssthresh to the maximum of two

segments and cwndn, and sets cwnd to one segment, and

enters into the Slow Start algorithm. The modified Fast

Recovery algorithm is described in Table 2.

Table 2: Modified Fast Recovery Algorithm

i-With 3 DUPACKs:

cwndn = max {2, (cwnd − Avgnum)};

ssthresh = max {2, cwndn};

cwnd = ssthresh + 3;

Each DACK received;

cwnd + +;

Send new packet if allow;

 After partial Ack;

 Stay in fast recovery;

 Retransmit next lost packet (per RTT);

After Full Ack:

 cwnd = ssthresh;

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

33

 Exit Fast Recovery;

 Invoke Congestion Avoidance Algorithm;

ii-When TimeOut:

cwndn = max {2, (cwnd − Avgnum)};

ssthresh = max {2, cwndn};

cwnd = 1;

Invoke Slow Start Algorithm;

4. SIMULATION RESULTS

To test the behavior of the proposed congestion control

mechanism, EnewReno, it is coded in C++ and incorporated

into the Network Simulator NS-2 [18-20] to be used as the

transmission control protocol in the simulated network. The

EnewReno is formed by using the main three algorithms;

Slow Start, Congestion Avoidance, and Fast Retransmit, in

addition to the modified Fast Recovery algorithm.

Figure 1 shows the network topology that is used for the

simulation. The topology has four TCP connections between 4

senders and 4 receivers. The network links are labeled with

their bandwidth capacity and propagation delay.

Figure 1: Network Topology

Figure 2 shows the network throughput for the TCP Reno,

NewReno and EnewReno. From the figure, the TCP

EnewReno provides higher throughput than both the TCP

Reno and NewReno. This is because with the current

implementation of TCP NewReno, acknowledgment causes

the congestion window to additively increase, and packet

losses cause the window to multiplicatively decrease, and that

happens according to blind rate adaptation mechanism.

Indeed, the TCP NewReno reduces its congestion window to

half the current one disregarding to the degree of the

congestion in the network. On the other hand, with EnewReno

as soon as packet losses are detected, TCP EnewReno reduces

the transmission rate and adjusts its congestion window

according to the network status. So, it allows transferring of

more packets to the destination.

It is clear from Figure 2 that the TCP Reno, NewReno, and

EnewReno start up with the same throughput. This is because

they have the same behavior during the Slow Start and the

Congestion Avoidance phases. But, the EnewReno provides

higher throughput than both Reno and NewReno in the Fast

Retransmit and Fast Recovery phases. In case of packet loss,

the throughput of Reno decreases because it reduces its

window size to half of its value and with the first fresh

acknowledge it gets out of Fast Recovery without recovering

the multiple packet losses. TCP NewReno provides better

throughput than Reno because it continues in Fast Recovery

until all the packets which were outstanding during the start of

the Fast Recovery have been acknowledged. Even through

NewReno has better throughput than Reno, reducing the

congestion window to half of its value affecting on the

network throughput. With EnewReno, the congestion

window decreases by the same level of congestion in the

network. So, the TCP EnewReno can effectively transmit

more packets and hence improves the network throughput.

Figure 2: Throughput vs. Time

Figure 3 shows the behavior of congestion window (cwnd) for

the congestion control mechanisms; TCP Reno, NewReno,

and EnewReno. The figure shows the change of the

congestion window with time. With TCP Reno and NewReno,

when the packet losses are detected; these protocols set the

window size to 50% of the current size. In TCP EnewReno,

every time the packet losses are detected, it changes the

window size by different value based on the network status.

Figure 3: Behavior of the Congestion Window

Figure 4 shows the packet delay versus time for the TCP

Reno, NewReno, and EnewReno. As shown in the figure,

unlike NewReno which have higher delay than Reno,

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

34

EnewReno reduces the packet delay. This is because, during

the Fast Recovery algorithm, TCP NewReno waits to recover

all lost packets and send few new packets, but with

EnewReno the congestion window changes based on the

network status and it could send more new packets so it

reduces the packet delay.

Figure 4: Delay vs. Time

Figure 5 shows the packet losses versus time for the TCP

Reno, NewReno, and EnewReno. It is clear from the figure

that the three protocols have the same behavior during Slow

Start and Congestion Avoidance phases. However, with time,

the rate of packet losses of EnewReno is increased. This is

because, the congestion window size increases more than that

of Reno and NewReno, and more packets are transmitted, so

the probability of losses increased too. This appears in the

figure, the EnewReno provides higher losses than NewReno.

This behavior is noted also in the TCP NewReno compared

with Reno.

Figure 5: Losses vs. Time

5. CONCLUSIONS and FUTURE WORK

In this paper a modified Fast Recovery algorithm is proposed

to improve the performance of the TCP NewReno. The

mechanism is developed by adapting the congestion window

of the TCP sender based on the level of congestion in the

network. This level is determined by using the Round Trip

Time (RTT) that represents as an indicator for the traffic loads

on the network. The proposed mechanism is evaluated by

using the network simulator NS2 and compared with both the

TCP NewReno and the TCP Reno. The simulation results

shown that, incorporating the modified Fast Recovery

algorithm with the TCP NewReno improves its performance

against both the throughput and the packet delay because of

transferring more packets to the destination.

Although the additional modifications to the Fast Recovery

algorithm improve the performance, the proposed mechanism,

EnewReno, is inefficient in terms of packet losses, as shown

in Figure 5. Additional enhancements should be considered in

the future work to improve the EnewReno against packet

losses.

6. REFERENCES

[1] J. Nagle, “Congestion control in IP/TCP Internetworks,”

Request for Comments (RFC) 896, Internet Engineering

Task Force, January 1984.

[2] V. Jacobson, and M. J. Karels, "Congestion Avoidance

and Control," Proceedings of ACM SIGCOMM, Vol.18

(4), pp. 314-329, August 1988.

[3] V. Jacobson, "Berkeley TCP Evolution from 4.3-Tahoe

to 4.3 Reno," Proceedings of the 18th Internet

Engineering Task Force, University of British Columbia,

Vancouver, BC, Aug. 1990.

[4] W. Stevens, "TCP Slow Start, Congestion Avoidance,

Fast Retransmit, and Fast Recovery Algorithms," RFC

2001, January 1997.

[5] A. Veres, M. Boda, "The Chaotic Nature of TCP

Congestion Control," Proceedings of IEEE INFOCOM,

pp.1715–1723, 2000.

[6] S. Floyd, "A Report on Some Recent Developments in

TCP Congestion Control,” IEEE Communications

Magazine, pp. 84-90, April 2001.

[7] B. Kim, and J. Lee, ”Retransmission loss recovery by

duplicate acknowledgment counting”, IEEE

Communications Letters, Vol.8 (1), pp. 69-71, January

2004.

[8] S. Floyd, T. Henderson, and A. Gurtov, "The NewReno

Modification to TCP’s Fast Recovery Algorithm," RFC

3782, April 2004.

[9] A. Karnik, and A. Kumar, "Performance of TCP

Congestion Control with Explicit Rate Feedback,"

IEEE/ACM Transactions on Networking, Vol. 13 (1), pp.

108-120, February 2005.

[10] D. Roman, K. Yevgeni, and H. Jarmo, "TCP NewReno

Throughput in the Presence of Correlated Losses: The

Slow-but-Steady Variant," IEEE International

Conference on Computer Communications INFOCOM,

pp. 1- 6, April 2006.

[11] M. Niels, B. Chadi, A. Konstantin, and A. Eitan, "Inter-

protocol fairness between TCP NewReno and TCP

Westwood," The 3rd EuroNGI Conference on Next

Generation Internet Networks, Vol.1, pp. 21-23, May

2007.

[12] Hanaa A. Torkey, Gamal M. Attiya and I. Z. Morsi,

"Performance Evaluation of End-to-End Congestion

Control Protocols," Menoufia journal of Electronic

Engineering Research (MJEER), Vol. 18, no. 2, pp. 99-

118, July 2008.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

35

[13] Cheng-Yuan Ho, Yaw-Chung Chen, Yi-Cheng Chan,

Cheng-Yun Ho, "Fast retransmit and fast recovery

schemes of transport protocols: A survey and taxonomy,"

Computer Networks, Vol. 52, pp.1308–1327, 2008.

[14] Kolawole I. Oyeyinka, Ayodeji O. Oluwatope, Adio. T.

Akinwale, Olusegun Folorunso, Ganiyu A. Aderounmu,

and Olatunde O. Abiona, "TCP Window Based

Congestion Control Slow-Start Approach,"

Communications and Network, Vol. 3, pp.85-98, , May

2011.

[15] M. Miyake, and H. Inamura, "TCP Enhancement Using

Recovery of Lost Retransmissions for NewReno TCP,"

Transactions of Information Processing Society Journal,

Vol. 46 (9), pp. 2185-2195, September 2005.

[16] D. A. Lima, M. da Fonseca, and N. De Rezende, ”On the

Performance of TCP Loss Recovery Mechanisms”, IEEE

International Conference on Communications, Vol.3, pp.

1812-1816, May 2003.

[17] N. Parvez, A. Mahanti, and C. Williamson, "TCP

NewReno: Slow-but- Steady or Impatient?" IEEE

International Communications Conference, Vol.3 (2), pp.

716-722, June 2006.

[18] S. McCanne and S. Floyd, "ns Network Simulator",

http://www.isi.edu/nsnam/ns.

[19] L. Breslau, et al., "Advanced in Network Simulation,"

IEEE Computer, Vol. 33, No. 5, pp. 59-67, May 2000.

[20] K. Fall and K. Varadhan, "The ns Manual," UC

Berkeley, LBL, USC/ISI, and Xerox PARC, December

2006.

http://www.isi.edu/nsnam/ns

