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ABSTRACT 

One of the keys to the success of the Internet is relying on 

using efficient congestion control mechanisms. Congestion 

control is required not only to prevent congestion collapse in 

the network, but also to improve network utilization. Without 

congestion control, a sending node may continue transmitting 

packets that may be dropped later due to congestion collapse. 

This paper presents a modified fast recovery algorithm to 

enhance the performance of the most widespread congestion 

control protocol; TCP-NewReno. The proposed mechanism is 

evaluated by using the network simulator NS-2 and compared 

with both the TCP-NewReno and the TCP-Reno. The 

simulation results show that the proposed mechanism 

improves the performance of the TCP-NewReno against 

throughput and packet delay. 
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1. INTRODUCTION 

Transmission Control Protocol (TCP) has been the dominant 

transport protocol for reliable data transfer over the Internet. It 

supports most of the popular Internet applications, such as the 

World Wide Web, file transfer and e-mail. However, the rapid 

growth of the Internet and the increasing demand of different 

traffics over the Internet lied to a serious problem called 

congestion collapse [1]. This problem occurs when the 

aggregate demand for resources exceeds the available capacity 

of the network.  

Congestion is generally bad for network users, applications 

and network performance. When a packet encounters 

congestion, there is a good chance that the packet is dropped, 

and the dropped packet wasted precious network bandwidth 

along the path from its sender to its destination. Congestion 

control is thus required to prevent congestion collapse in the 

network and improve the network performance. Without 

congestion control, a sending node could be busy transmitting 

packets that may be dropped later due to congestion collapse. 

After observing a series of congestion collapse, several 

congestion control algorithms are proposed and incorporated 

into the TCP to resolve the congestion collapse problem. In 

1988, several innovative congestion control algorithms were 

introduced into TCP [2]. This TCP version is called TCP 

Tahoe. It includes three algorithms namely Slow Start, 

Congestion Avoidance, and Fast Retransmit. Two years later, 

a Fast Recovery algorithm was added to Tahoe to form a new 

TCP version called TCP Reno [3]. TCP Reno is a reactive 

congestion control scheme that uses packet loss as an 

indicator for congestion. In order to probe the available 

bandwidth along the end-to-end path, the TCP congestion 

window (cwnd) is increased until a packet loss is detected, at 

which point the congestion window is halved and a linear 

increase algorithm takes over until further packet loss is 

experienced. Generally, the congestion window is used to 

limit the amount of data that the sender can inject into the 

network in order to prevent the source from overrunning the 

capacity of the network. In Reno, the TCP sender changes its 

congestion window size according to the congestion control 

algorithms; Slow-Start, Congestion Avoidance, Fast 

Retransmit and Fast Recovery [4]. 

In [5], the authors have shown that the TCP Reno may 

periodically generate packet loss by itself and cannot 

efficiently recover multiple packet losses from a window of 

data. Moreover, the Additive Increase and Multiplicative 

Decrease (AIMD) strategy of TCP Reno leads to periodic 

oscillations in the aspects of the congestion window size, 

round-trip delay, and queue length of the bottleneck node. 

Indeed, the oscillation may induce chaotic behavior in the 

network, thereby adversely affecting overall network 

performance. To alleviate the performance degradation 

problem of packet loss, many researchers attempted to refine 

the Fast Retransmit and the Fast Recovery algorithms of the 

TCP Reno [6, 7]. In [8], a congestion control mechanism, 

called TCP NewReno, is developed using an augmented Fast 

Recovery algorithm to overcome the problem of TCP Reno 

and combat multiple packet losses from the same transmission 

window without entering into Fast Recovery multiple times. 

That is, TCP NewReno modifies the sender behavior during 

Fast Recovery algorithm, where, it continues in Fast Recovery 

until all the packets which were outstanding during the start of 

the Fast Recovery have been acknowledged.  

Although the additional modifications to the Fast Recovery 

algorithm improve the performance of TCP NewReno, it has 

been found that the TCP NewReno is inefficient in terms of 

utilization of link capacity and unfair in throughput [9-12]. 

The problem with NewReno is that, within Fast Recovery 

algorithm, it halves its congestion window irrespective of the 

state of the network as long as a packet loss is detected. 

Another problem arises with NewReno is that when there are 

no packet losses, but packets are reordered by more than three 

duplicate acknowledgments; NewReno mistakenly enters Fast 

Recovery, and halves its congestion window [13, 14]. 
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This paper presents a modified Fast Recovery algorithm to 

improve the TCP-NewReno performance. The basic idea is to 

adjust the congestion window (cwnd) of the TCP sender based 

on the level of congestion in the network so as to allow 

transferring more packets to the destination. The proposed 

mechanism, called Enhanced NewReno (EnewReno), is 

evaluated by using the network simulator NS2 and compared 

with both the TCP-NewReno and the TCP-Reno. The 

simulation results show that the proposed mechanism 

improves the performance of the TCP-NewReno against 

throughput and packet delay. 

The rest of this paper is organized as follows; Section 2 

presents an overview of the most widespread congestion 

control protocol; TCP-NewReno. The proposed mechanism is 

described in Section 3 while Section 4 presents the simulation 

results and discussions. Finally, the paper conclusions and the 

direction for future work are given in Section 5.  

2. TCP NewReno 

Modern TCP implementations incorporate various congestion 

control algorithms to adapt the sending rate at the sender site 

in order to overcome the congestion collapse. This section 

briefly describes the main algorithms of the TCP NewReno; 

Slow-Start, Congestion Avoidance, Fast Retransmit and Fast 

Recovery. 

2.1 Slow Start and Congestion Avoidance 

In TCP NewReno, when a TCP connection begins, the Slow 

Start algorithm initializes a congestion window (cwnd) to one 

segment [15]. The sender is then start transmitting packets 

based on the window size. For each acknowledgement 

returned from the receiver, the congestion window is 

increased by one segment. This behavior continues until the 

cwnd arrives to the slow start threshold (ssthresh). At this 

point, the NewReno enters into Congestion Avoidance phase 

to slow the increasing rate of the cwnd. During congestion 

avoidance, the congestion window increases linearly by one 

segment every round trip time (RTT) as long as the network 

congestion is not detected. The implementation of the Slow 

Start and the Congestion Avoidance algorithms is built in a 

manner so that the increasing rate of the cwnd goes on until an 

indication for congestion occurrence is reached. At this point, 

the transmission rate should be slowed down to resolve the 

network congestion [16]. 

2.2 Fast Retransmit and Fast Recovery 

During Congestion Avoidance, the reception of duplicate 

acknowledgement or the expiration of retransmission timer 

can implicitly signal the sender that the network congestion is 

occurred. So, the sender has to slow down its transmission 

rate. If the congestion was indicated by a timeout, the ssthresh 

is set to one half of the current congestion window and the 

congestion window is set to one segment and the sender enters 

into the Slow Start phase. If the congestion was indicated by 

duplicate acknowledgements, the TCP sender goes into the 

Fast Retransmit mode to retransmit what appears to be lost 

packet without waiting for the retransmission timer to expire.  

Then, the sender sets the ssthresh to half of the current 

congestion window and the new congestion window to the 

new ssthresh plus the number of received duplicate 

acknowledgements and enters into the Fast Recovery phase. 

Upon entering Fast Recovery, the sender continues to increase 

the congestion window by one segment for each subsequent 

duplicate ACK received. The intuition behind the Fast 

Recovery algorithm is that duplicate ACKs indicate the 

reception of some segments by the receiver, and thus can be 

used to trigger new segment transmissions. The sender 

transmits new segments if permitted by its congestion 

window. During Fast Recovery, the TCP NewReno 

distinguishes between a “partial” ACK and a “full” ACK. A 

full ACK acknowledges all segments that were outstanding at 

the start of fast recovery, while a partial ACK acknowledges 

some but not all of this outstanding data. On receiving a 

partial ACK, NewReno retransmits the segment next in 

sequence based on the partial ACK, and reduces the 

congestion window by one less than the number of segments 

acknowledged by the partial ACK. This window reduction, 

referred to as partial window deflation, allows the sender to 

transmit new segments in subsequent RTTs of Fast Recovery. 

The NewReno continues in Fast Recovery until all the packets 

which were outstanding during the start of the Fast Recovery 

have been acknowledged. On receiving a full ACK, the sender 

sets the congestion window (cwnd) to ssthresh, terminates 

Fast Recovery, and resumes Congestion Avoidance [17]. 

2.3 NewReno Implementation 

The pseudo code of the TCP-NewReno is described in Table 1.  

Table 1: Pseudo code of TCP-NewReno 

Slow Start Algorithm: 

Initial: cwnd = 1; 

For (each packet Acked) 

    cwnd++; 

Until (congestion event, or, cwnd > ssthresh) 

Congestion Avoidance Algorithm: 

/* slow start is over and cwnd > ssthresh */ 

Every Ack: 

cwnd = cwnd + (1/cwnd) 

Until (Timeout or 3 DUPACKs) 

Fast Retransmit Algorithm: 

/* After receiving 3 DUPACKs */ 

Resend lost packet; 

Invoke Fast Recovery algorithm 

Fast Recovery Algorithm: 

/* After fast retransmit; do not enter slow start */ 

ssthresh =  cwnd / 2; 

cwnd = ssthresh + 3; 

Each DACK received; 

cwnd ++; 

Send new packet if allow; 

After receiving an Ack: 

If partial Ack; 

Stay in fast recovery; 

Retransmit next lost packet (one packet per RTT); 
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If Full Ack; 

cwnd = ssthresh; 

Exit fast recovery; 

Invoke Congestion Avoidance Algorithm; 

 
          When Timeout: 

ssthresh = cwnd /2; 

cwnd = 1; 

Invoke Slow Start Algorithm; 

 

3. PROPOSED MECHANISM 

As mentioned earlier, the problem with both Reno and 

NewReno is that within Fast Recovery algorithm, TCP halves 

its congestion window irrespective of the state of the network. 

Another problem with NewReno is that when there are no 

packets lost but packets are reordered by more than three 

duplicate acknowledgments, NewReno mistakenly enters Fast 

Recovery, and halves its congestion window [12-14]. Since 

the TCP's congestion window controls the number of packets 

that a TCP sender can send over the network at any time, 

hence, the process of setting the congestion window to half of 

its value make the TCP NewReno inefficient in terms of 

utilization of link capacity. The proposed mechanism avoids 

these problems by modifying the Fast Recovery algorithm of 

the TCP-NewReno. The basic idea is to adjust the congestion 

window (cwnd) of the TCP sender based on the level of 

congestion in the network so as to allow transferring more 

packets to the destination. The adjustment of congestion 

window has three main goals. The first one is to utilize the 

available network resources, the second is to minimize the 

probability of congestion, and the third is to offer a fair 

bandwidth among multiple connections. These goals could be 

achieved by adopting the congestion window size based on 

the network status. 

3.1 Basic Idea 

In TCP, all the transmitted packets make a round trip back 

from the sender to the receiver. The measurement of the 

Round Trip Time (RTT) between the two ends is the 

fundamental of timeout and the retransmission strategy of 

TCP. The RTT changes during the TCP connection as the 

network traffic load changes. In other words, the value of the 

RTT increases with the increasing of the network load. So, the 

RTT could be used to reflect the network status. The crux of 

idea is that, for a given network status, the modified 

mechanism determines the congestion degree in the network 

using the change in the Round Trip Time. In entering the Fast 

Recovery algorithm, it can detect the change in the RTT and 

decreases the congestion window (cwnd) by a value related to 

the increase in the RTT. The mechanism is that, the sender 

continuously monitors the RTT from the receiving 

acknowledgments and keeps up the measured values of the 

last few numbers of the RTT. When TCP enters the Fast 

Recovery algorithm, it computes the average value of RTT 

(RTTavg) using the previously measured values of the RTT, as: 

RTTavg = nRTT

n

i

i /

1




 

The sender then calculates the change in RTT (ΔRTT) by 

calculating the difference between the latest RTT (RTTn) that 

calculated just right before detecting congestion and the 

average RTT (RTTavg), as: 

ΔRTT = RTTn - RTTavg 

Finally, the sender decreases its sending rate based on the 

change in RTT. In other words, the sender calculates the 

increasing factor (Factor) in the sending rate by dividing the 

current congestion window over the average RTT, as: 

Factor = cwnd / RTTavg 

With increasing traffic load on the network, the cwnd will be 

decreased by an average number (Avgnum) determined as the 

product of the increasing factor and ΔRTT, as: 

Avgnum = Factor * ΔRTT 

The new congestion window (cwndn) is thus determined as 

the maximum of two segments and the different between 

current congestion window and the average value (Avgnum), as: 

cwndn = max {2, (cwnd − Avgnum)} 

3.2 Modified Fast Recovery Algorithm  

During Congestion Avoidance, when the TCP sender receives 

three duplicate ACKs, it goes into the Fast Retransmit mode 

to retransmit what appears to be lost packet without waiting 

for the retransmission timer to expire. It then calculates the 

new congestion window (cwndn), sets the ssthresh to the 

maximum of two segments and cwndn, and sets the cwnd to 

the ssthresh value plus the number of received duplicate 

acknowledgements and continues with the Fast Recovery 

phase. The TCP sender increases the cwnd by one for each 

received duplicate acknowledgment, and sends new segment 

if allowed. With partial ACK, it retransmits the acknowledged 

segment and proceeds. With full ACK, it sets the cwnd to the 

ssthresh value and invokes the Congestion Avoidance 

algorithm. If the TCP sender detects losses by timeout 

expiration, it sets the ssthresh to the maximum of two 

segments and cwndn, and sets cwnd to one segment, and 

enters into the Slow Start algorithm. The modified Fast 

Recovery algorithm is described in Table 2. 

Table 2: Modified Fast Recovery Algorithm 

i-With 3 DUPACKs: 

cwndn = max {2, (cwnd − Avgnum)}; 

ssthresh = max {2, cwndn}; 

cwnd = ssthresh + 3; 

Each DACK received; 

cwnd + +; 

Send new packet if allow; 

 After partial Ack; 

     Stay in fast recovery; 

     Retransmit next lost packet (per RTT); 

After Full Ack: 

   cwnd = ssthresh; 
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   Exit Fast Recovery; 

   Invoke Congestion Avoidance Algorithm; 

 
 

ii-When TimeOut: 

cwndn = max {2, (cwnd − Avgnum)}; 

ssthresh = max {2, cwndn}; 

cwnd = 1; 

Invoke Slow Start Algorithm; 

 

4. SIMULATION RESULTS 

To test the behavior of the proposed congestion control 

mechanism, EnewReno, it is coded in C++ and incorporated 

into the Network Simulator NS-2 [18-20] to be used as the 

transmission control protocol in the simulated network. The 

EnewReno is formed by using the main three algorithms; 

Slow Start, Congestion Avoidance, and Fast Retransmit, in 

addition to the modified Fast Recovery algorithm. 

Figure 1 shows the network topology that is used for the 

simulation. The topology has four TCP connections between 4 

senders and 4 receivers.  The network links are labeled with 

their bandwidth capacity and propagation delay. 

 

Figure 1: Network Topology 

Figure 2 shows the network throughput for the TCP Reno, 

NewReno and EnewReno. From the figure, the TCP 

EnewReno provides higher throughput than both the TCP 

Reno and NewReno. This is because with the current 

implementation of TCP NewReno, acknowledgment causes 

the congestion window to additively increase, and packet 

losses cause the window to multiplicatively decrease, and that 

happens according to blind rate adaptation mechanism. 

Indeed, the TCP NewReno reduces its congestion window to 

half the current one disregarding to the degree of the 

congestion in the network. On the other hand, with EnewReno 

as soon as packet losses are detected, TCP EnewReno reduces 

the transmission rate and adjusts its congestion window 

according to the network status. So, it allows transferring of 

more packets to the destination.  

It is clear from Figure 2 that the TCP Reno, NewReno, and 

EnewReno start up with the same throughput. This is because 

they have the same behavior during the Slow Start and the 

Congestion Avoidance phases. But, the EnewReno provides 

higher throughput than both Reno and NewReno in the Fast 

Retransmit and Fast Recovery phases. In case of packet loss, 

the throughput of Reno decreases because it reduces its 

window size to half of its value and with the first fresh 

acknowledge it gets out of Fast Recovery without recovering 

the multiple packet losses. TCP NewReno provides better 

throughput than Reno because it continues in Fast Recovery 

until all the packets which were outstanding during the start of 

the Fast Recovery have been acknowledged. Even through 

NewReno has better throughput than Reno, reducing the 

congestion window to half of its value affecting on the 

network throughput.  With EnewReno, the congestion 

window decreases by the same level of congestion in the 

network. So, the TCP EnewReno can effectively transmit 

more packets and hence improves the network throughput. 

 
Figure 2: Throughput vs. Time 

Figure 3 shows the behavior of congestion window (cwnd) for 

the congestion control mechanisms; TCP Reno, NewReno, 

and EnewReno. The figure shows the change of the 

congestion window with time. With TCP Reno and NewReno, 

when the packet losses are detected; these protocols set the 

window size to 50% of the current size. In TCP EnewReno, 

every time the packet losses are detected, it changes the 

window size by different value based on the network status.  

 

Figure 3: Behavior of the Congestion Window 

Figure 4 shows the packet delay versus time for the TCP 

Reno, NewReno, and EnewReno. As shown in the figure, 

unlike NewReno which have higher delay than Reno, 
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EnewReno reduces the packet delay. This is because, during 

the Fast Recovery algorithm, TCP NewReno waits to recover 

all lost packets and send few new packets, but with 

EnewReno the congestion window changes based on the 

network status and it could send more new packets so it 

reduces the packet delay. 

 
Figure 4: Delay vs. Time 

Figure 5 shows the packet losses versus time for the TCP 

Reno, NewReno, and EnewReno. It is clear from the figure 

that the three protocols have the same behavior during Slow 

Start and Congestion Avoidance phases. However, with time, 

the rate of packet losses of EnewReno is increased. This is 

because, the congestion window size increases more than that 

of Reno and NewReno, and more packets are transmitted, so 

the probability of losses increased too. This appears in the 

figure, the EnewReno provides higher losses than NewReno. 

This behavior is noted also in the TCP NewReno compared 

with Reno. 

 
Figure 5: Losses vs. Time 

5. CONCLUSIONS and FUTURE WORK 

In this paper a modified Fast Recovery algorithm is proposed 

to improve the performance of the TCP NewReno. The 

mechanism is developed by adapting the congestion window 

of the TCP sender based on the level of congestion in the 

network. This level is determined by using the Round Trip 

Time (RTT) that represents as an indicator for the traffic loads 

on the network. The proposed mechanism is evaluated by 

using the network simulator NS2 and compared with both the 

TCP NewReno and the TCP Reno. The simulation results 

shown that, incorporating the modified Fast Recovery 

algorithm with the TCP NewReno improves its performance 

against both the throughput and the packet delay because of 

transferring more packets to the destination. 

Although the additional modifications to the Fast Recovery 

algorithm improve the performance, the proposed mechanism, 

EnewReno, is inefficient in terms of packet losses, as shown 

in Figure 5. Additional enhancements should be considered in 

the future work to improve the EnewReno against packet 

losses. 
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