
International Journal of Computer Applications (0975 – 8887) 

Volume 40– No.12, February 2012 

1 

Complex and Inverse Complex Dynamics of Fractals 

using Ishikawa Iteration 

 
Ashish Negi 

Associate Professor 

Dept. of Computer science and 
Engineering 

G.B.Pant Engineering College 
Ghurdauri, Pauri 

 

Shashank Lingwal 
 

Dept. of Computer Science and 
Engineering 

G.B.Pant Engineering College 
Ghurdauri, Pauri 

 

Yashwant Singh Chauhan 
Astt. Professor 

Dept. of Computer Science and 
Engineering 

G.B.Pant Engineering College 
Ghurdauri, Pauri 

ABSTRACT 

Complex graphics of dynamical system have been a subject of 

intense research nowadays. The fractal geometry is the base of 

these beautiful graphical images. Many researchers and 

authors have worked to study the complex nature of the two 

most popular sets in fractal geometry, the Julia set and the 

Mandelbrot set, and proposed their work in various forms 

using existing tools and techniques. Still researches are being 

conducted to study and reveal the new concepts unexplored in 

the complexities of these two most popular sets of fractal 

geometry. Recently, Ashish Negi, Rajeshri Rana and 

Yashwant S. Chauhan are among those researchers who have 

contributed a lot in the area of Fractal Geometry applications. 

In this paper we review the recently done work on complex 

and inverse complex functions for producing beautiful fractal 

graphics. The reviewed work mainly emphasizes on the study 

of the nature of complex and inverse complex functional 

dynamics using Ishikawa iterates and existence of relative 

superior Mandel-bar set. 
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1. INTRODUCTION 
In 1918, French mathematician Gaston Julia [9] 

investigated the iteration process of complex function and 

attained a Julia set, which is a landmark in the field of fractal 

theory. The object Mandelbrot set on the other hand was 

given by Benoit B. Mandelbrot [11] in 1979. The visual 

complexity, beauty and self similarity of these structures have 

made these subjects of a wide area of intense research right 

from its advent. The various extensions and variants of both 

of these sets have been extensively studied using Picard’s 

iterations. We have applied in this research article a new 

iteration process called Ishikawa iteration. 

The fractals generated from the self-squared 

function
2z z c  , where z and c are complex quantities, 

have been studied extensively in literature [5, 6, 7 & 14]. 

Recently, the generalized transformation function 

nz z c   for positive integer value of n has been 

considered by K.W.Shirriff [14]. The z plane fractal images 

for the function 1n nz z c

    for positive and negative, 

both integer and non-integer values of n have been presented 

by Gujar et al. along with some conjectures about their visual 

characteristics [6, 7].  

Several programs and papers have used escape-time methods 

to produce images of fractals based on the complex mapping 
1( )nz z c   , where exponent n is a positive integer. On 

the other hand, Shizuo [15], has presented the various 

properties of Multicorns and Tricorns for simple complex 

function, where z and c are complex quantities. Shizuo[16]has 

also quoted the Multicorns as the generalized Tricorn or 

Tricorn of higher order.  The dynamics of anti-polynomial 
dz z c 


 of complex polynomial dz c , where 

2d  , leads to interesting Tricorns and Multicorns 

antifractals with respect to function iteration[4, 15, 16]. 

Multicorns are symmetrical objects. Their symmetry has been 

studied by Lau and Schieicher [10]. The study of 

connectedness locus for anti-holomorphic polynomials 
2z c

  defined as Tricorns coined by Milnor, plays an 

intermediate role between quadratic and cubic polynomials. 

Crowe etal.[3] considered as in formal analogy with 

Mandelbrot set and named it as Mandel-bar set and also 

brought its features bifurcations along axis rather than at 

points. Milnor [12] found it as a real slice of cubic connected 

locus. Winters [17] showed it as boundary along the smooth 

arc. 

In this paper we considered the transformation (for studying 

complex dynamics) of the functions 
2z z c  , 2n   

and 
nz z c  , 2n  , and transformation (for studying 

inverse complex dynamics) of the function 
1( )nz z c   , for 2n  , and analysed the z plane 

fractal images for the first function and c plane fractal images 

for the second function, generated from Ishikawa iterations of 

these functions using Ishikawa iteration procedure. We 

explored the drastic changes that occur in visual 

characteristics of the images for different integer and non-

integer values of n. 

2. ELABORATION OF CONCEPTS 

INVOLVED 

2.1 Mandelbrot Set 
Definition 1. The Mandelbrot set M for the quadratic 

2( ) = z  + c CQ z  is defined as the collection of all 
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c C  for which the orbit of point 0 is bounded, that is, 

{ :{ (0)}; 0,1,2,3... is bounded}n

cM c C Q n  

 An equivalent formulation is 

{ :{ (0) does not tends to  as }}n

cM c C Q n   

 We choose the initial point 0, as 0 is the only critical point of 

Qc . 

2.2 Julia Set 
Definition 2. The set of points K whose orbits are bounded 

under the iteration function of Qc(z) is called the Julia set. We 

choose the initial point 0, as 0 is the only critical point of 

Qc(z) .  

2.3 Ishikawa Iteration 
Definition 3. Ishikawa Iterates [8]: Let X be a subset of real 

or complex number and :f X X  for all 
0x X , we 

have the sequence {xn} and {yn} in X in the following 

manner: 

' ( ) (1 ' )n n n n ny S f x S x    

1 ( ) (1 )n n n n nx S f y S x     

where 0 ' 1,nS   0 1nS   and 'nS  & 
nS  are both 

convergent to non-zero number. 

2.4 Relative Superior Orbit 
Definition 4. [13] The sequence xn and yn constructed above 

is called Ishikawa sequence of iteration or relative superior 

sequence of iterates. We denote it by
0( , , ' , )n nRSO x s s t . 

Notice that 
0( , , ' , )n nRSO x s s t  with ' 1ns   is 

0( , , )nSO x s t  i.e. mann’s orbit and if we place 

' 1n ns s   then 
0( , , ' , )n nRSO x s s t  reduce to 

0( , )O x t . We remark that Ishikawa orbit 

0( , , ' , )n nRSO x s s t  with ' 1/ 2ns   is relative superior 

orbit. 

2.5 Relative Superior Mandelbrot Set 
Now we define Mandelbrot set for the function with respect to 

Ishikawa iterates. We call them as Relative Superior 

Mandelbrot sets. 

Definition 5. [13] Relative Superior Mandelbrot set RSM for 

the function of the form ( ) n

cQ z z c  , where n = 

1,2,3,… is defined as the collection of c C  for which the 

orbit of 0 is bounded i.e. 

{ : (0) : 0,1,2,3...}k

cRSM c C Q k   is bounded. 

In functional dynamics, we have existence of two different 

types of points. Points that leave the interval after a finite 

number are in stable set of infinity. Points that never leave the 

interval after any number of iterations have bounded orbits. 

So, an orbit is bounded if there exists a positive real number. 

2.6 Relative Superior Julia Set 
Definition 6. [2] The set of points RSK whose orbits are 

bounded under relative superior iteration of function Q(z) is 

called Relative Superior Julia sets. Relative Superior Julia set 

of Q is boundary of Julia set RSK. 

2.7 Mandel-bar Set 
Definition 7. [2] The Mandel-bar set Ac , for the quadratic 

( ) 'ncA z z c   is defined as the collection of all c C  

for which the orbit of point 0 is bounded, that is, 

0,1,2,3,...{ : (0)  is bounded}c c nA c C A   . 

An equivalent formulation is 

{ : (0) not tends to  as n }c cA c C A    . 

2.8 Relative Superior Mandel-bar Set 
Definition 8. [13] Relative superior Mandel-bar set RSMB for 

the function of the form  ( ) n

cQ z z c  , where 

n=1,2,3,4,… is defined as the collection of c C   for which 

the orbit of 0 is bounded i.e. 

{ : (0) : 0,1,2,3,...}k

cRSMB c C Q k    is bounded. 

3. GENERATING PROCESS 
The basic principle of generating fractals employs the iterative 

formula: 
1 ( )n nz f z   where z0 = the initial valueof z, 

and zi = the value of complex quantity z at the ith iteration [6, 

7]. For example, the Mandelbrot’s self-squared function for 

generating fractal is: f(z) = z2+c , where z and c are both 

complex quantities. We propose the use of transformation 

function , 2nz z c n    and 1( )nz z c    for 

generating fractal images with respect to Ishikawa iterates, 

where z and c are the complex quantities and n is a real 

number. Each of these fractal images is constructed as two-

dimensional array of pixel. Each pixel is represented by a pair 

of (x,y) coordinates. The complex quantities z and c can be 

represented as: 

x yz z iz   

x yc c ic     

where ( 1)i    and zx , cx are the real parts and zy , cy are 

the imaginary parts of z and c respectively. The pixel 

coordinates (x,y) may be associated with (cx,cy) or (zx,zy) . 

Based on this concept, the fractal images can be classified as 

follows:  

(a) z-Plane fractals, wherein (x,y) is a function of 

(zx,zy). 

(b) c-Plane fractals, wherein (x,y) is a function of 

(cx,cy). 

In the literature, the fractals for n=2 in z plane are termed as 

the Mandelbrot set while the fractals for n=2 in c plane are 

known as Julia sets [14] 
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4. ESCAPE CRITERION FOR 

RELATIVE SUPERIOR JULIA AND 

MANDELBROT SETS 

4.1 Escape Criterion for Quadratics 
[13] Suppose that max{ ,2 / ,2 / '}z c s s , then 

(1 )n

nz z   and z   as n . So, 

z c  and 2 /z s  as well as 2 / 'z s  shows the 

escape criteria for quadratics. 

4.2 Escape Criterion for Cubics 
[13] Suppose 1/2 1/2max{ ,( 2 / ) ,( 2 / ') }z b a s a s    

then 
nz   as n . This gives the escape criterion 

for cubic polynomials. 

4.3   General Escape Criterion 
[13] Consider 1/2 1/2max{ ,(2 / ) ,(2 / ') }z c s s  then 

nz   as n is the escape criterion. 

Note that the initial value z0 should be infinity, since infinity 

is the critical point of 1( )nz z c    . However, instead 

of starting with z0 = infinity, it is simpler to start with z1 = c, 

which yields the same result. A critical point of 

( )z F z c   is a point where '( ) 0F z  . 

5. SIMULATIONS AND RESULTS 
Generation of Relative Superior Mandelbrot set  

 

Fig.1: For cubic function [1]: s=0.8, s’=0.3, n=3.2 

 

 

 

 

 

 

 

 

 

Fig.2: For cubic function: s=0.8, s’=0.3, n=3.8 

 

Fig.3: For bi-quadratic function: s=0.5, s’=0.4, n=4.2 

 

Fig.4: For bi-quadratic function: s=0.5, s’=0.4, n=4.8 

 

Generalization of Relative Superior Mandelbrot Set 
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Fig.5: s=0.4, s’=0.3, n=15.8 

 

Fig.6: s=0.5, s’=0.4, n=16.8 

 

Generation of Relative Superior Julia Sets: 

(for cubic function) 

Fig.7: s=0.5, s’=0.4, n=3.2  

c=0.03488180321-0.01680604855i 

 

Fig.8: s=0.5, s’=0.4, n=3.8 

c=-0.0442117701+0.03592300032i 

 

(for bi-quadratic function) 

Fig.9: s=0.8, s’=0.2, n=4.2 

c=0.04015470789+0.03592299963i 

 

Fig.10: s=0.8, s’=0.2, n=4.8 

c=-0.01784724577+0.03065009474i 
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Generalization of Relative Superior Julia Sets: 

Fig.11: s=0.5, s’=0.4, n=15.8 

c=-0.001391094496+0.005718433219i 

 

Fig.12: s=0.5, s’=0.4, n=16.8 

c=-0.06389131715+0.02134348888i 

 

Fixed points : 

Fixed points of Quadratic Polynomial [13] : 

Table 1: Orbit of F(z) at s=0.5 and s’=0.1 

 for (z0=-0.01192288639+0.01042379668i) 

Number of 

iteration i 
|F(z)| 

Number of 

iteration i 
|F(z)| 

1 0.015837 6 0.85943 

2 0.98458 7 0.85943 

3 0.86429 8 0.85942 

4 0.85883 9 0.85942 

5 0.85933 10 0.85942 

 

Fig.13: Observation : the value converges to a fixed point 

after 08 iterations 

 

Fixed points of Cubic polynomial [13] 

Table 2 : Orbit of F(z) at s=0.5 and s’=0.1  

for (z0=-0.00888346751+0.01650347336i) 

Number of 

iteration i 
|F(z)| 

Number of 

iteration i 
|F(z)| 

1 0.018742 6 0.86749 

2 0.97928 7 0.86747 

3 0.85738 8 0.86747 

4 0.86871 9 0.86747 

5 0.86732 10 0.86747 

 

Fig.14: Observation : the value converges to a fixed point 

after 07 iterations 
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Fixed points of Bi-quadratic polynomial [13] 

Table 3 : Orbit of F(z) at s=0.5 and s’=0.1 

for (z0=-0.01573769494+0.03678871897i) 

Number of 

iteration i 
|F(z)| 

Number of 

iteration i 
|F(z)| 

1 0.040014 8 0.8968 

2 0.98215 9 0.89704 

3 0.90556 10 0.89699 

4 0.88426 11 0.89699 

5 0.90308 12 0.89699 

6 0.89476 13 0.89699 

7 0.8977 14 0.89699 

 

Fig.15: Observation : the value converges to a fixed point 

after 10 iterations 

 

Generation of Relative Superior Mandelbrot Set: 

Fig.16: For quadratic function: s=0.8, s’=0.3 

 

 

Fig.17: For cubic function: s=0.8, s’=0.3 

 

Generation of Relative Superior Julia Sets: 

Fig.18: For quadratic function: s=0.5, s’=0.4 

c=0.002169194079+0.465750756i 

 

Fig.19: For bi-quadratic function: s=0.8, s’=0.3,  

c=-0.0227144337+0.04376545773i 
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Fixed points : 

Fixed points for quadratic polynomial [2]: 

Table 4 : Orbit of F(z) at s=0.5 and s’=0.7  

for (z0=-0.6160374839+0.0135629073i) 

Number of 

iteration i 
|F(z)| 

Number of 

iteration i 
|F(z)| 

1 0.61619 14 0.35866 

2 0.5189 15 0.35835 

3 0.288 16 0.35852 

4 0.43079 17 0.35842 

5 0.32218 18 0.35848 

6 0.37886 19 0.35845 

7 0.34703 20 0.35846 

8 0.36492 21 0.35845 

9 0.35484 22 0.35846 

10 0.36049 23 0.35846 

11 0.35732 24 0.35846 

12 0.3591 25 0.35846 

13 0.3581 26 0.35846 

 

Fig.20: Observation : the value converges to a fixed point 

after 22 iterations 

 

Fixed points for cubic polynomial [2]: 

Table 5: Orbit of F(z) at s=0.4 and s’=0.2  

for (z0=-0.0189704705+0.02867852789i) 

Number of 

iteration i 
|F(z)| 

Number of 

iteration i 
|F(z)| 

18 0.6098 28 0.50274 

19 0.45643 29 0.50223 

20 0.52977 30 0.50252 

21 0.4871 31 0.50236 

22 0.51134 32 0.50245 

23 0.49733 33 0.5024 

24 0.50536 34 0.50243 

25 0.50073 35 0.50241 

26 0.50339 36 0.50242 

27 0.50186 37 0.50242 

 

Fig.21: Observation : we skipped 17 iteration and the value 

converges to a fixed point after 36 iterations 

 

Generation of Relative Superior Mandel-bar Set: 

Fig.22: For quadratic function: s=0.6, s’=0.2 
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Fig.23: For cubic function: s=0.4, s’=0.2 

 

Fig.24: For bi-quadratic function: s=0.6, s’=0.2 

 

Fig.25: Generalization of RSMB : s=0.5, s’=0.2, n=19 

 

Generation of Relative Superior Julia Sets for Mandel-bar 

set: 

Fig.26: For quadratic function: s=0.6, s’=0.2, 

c=0.08166620257+0.00739899807i 

 

Fig.27: For cubic function: s=0.8, s’=0.3, c=-

0.003854849909+0.01666833389i 

 

6. CONCLUSION 
 The z plane fractal image for the function 

2z z c  , 2n   showed that the stable region 

is bounded by unstable region. Besides this, the non 

integer value change brought the embryonic structure 

in the form of lobe. 

 On the other hand the c plane geometrical analysis of 

the function 
1( )nz z c   , 2n   represented 

the planetary type structure comprising of central 

planet with satellites. Here non integer value change 

showed the embryonic self similar growth in satellite 

pattern. 

 Relative Superior Mandelbrot of inverse function 

showed lace like structure with multi-coloured small 

circles. Geometrical analysis of Relative Superior 

Julia sets of inverse function shows that the boundary 

of fixed point region forms a (n+1) hypocycloid. 
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 The geometry of Relative Superior Mandelbrot set 

and Relative Superior Julia sets of inverse function 

showed their rotational as well as reflection 

symmetry. One of the most fascinating results is the 

central planet with satellite like structure obtained for 

biquadratic Relative Superior Julia sets. 

 Further, for the odd value of n, all the Relative 

Superior Mandelbar sets are symmetrical objects, and 

for the even values of n, all the relative superior 

Mandelbar sets are symmetrical about x-axis. 

Besides this, our antifractals are different from the 

normal Tricorns and Multicorns as they have (n-1) 

wings. 
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