
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

41

Security Concerns of Object Oriented Software

Architectures

Dinesh Kumar Saini
Associate Professor, Faculty of Computing and IT, Sohar University, Oman

Research Fellow, Faculty of Engineering, Information Technology and Architecture
University of Queensland, Brisbane, Australia

ABSTRACT
Testing and measuring the security of software system

architectures is a difficult task. An attempt is made in this

paper to analyze the issues of architecture security of object-

oriented software’s using common security concepts to

evaluate the security of a system under design. Object

oriented systems are based on various architectures like

COM, DCOM, CORBA, MVC and Broker. In object oriented

technology the basic system component is an object.

Individual system component is posing it own risk in the

system. Security policies and the associated risk in these

software architectures can be calculated for the individual

component. Overall risk can be calculated based on the

context and risk factors in the architecture. Small risk factors

get accumulated together and form a major risk in the systems

and can damage the systems.

General Terms
Software, Object Orientation, Architecture, Software

Engineering,

Keywords— Security, COM, DCOM, CORBA, Test

Strategy, risk, SDLC

1. INTRODUCTION
Software is a trillion dollar business and the amount of effort

and time spend for developing software is huge [1]. While

developing software different architectures are used for

development and security is one of the main concerns in the

software components [2]. Security related issues should be

resolved in the early phases of the development and the

expenses incurred for removing defects is minimal if it get

detected at the architectural level [3]. Higher level of

understanding is required if the software development is in

coding phase and design defects are not easy to detect in the

code [4]. Risk analysis must be carried out for architectures

because it plays very important role in software security

program [5,9]. Risk identification is very helpful and software

security measures can be taken with help of it. Risk

quantification and its impact must be calculated in the

software development environment because it has direct

concerns in the business. System level concerns with

probability and impact measures must be handled carefully

while developing the software. One of the major questions

organizations often face is ―how secure are my systems?‖

Answering such a question is often difficult. The root of most

security problems is software that fails in unexpected ways

when under attack [7, 10]. Despite extensive research in

security engineering, measuring security is still a difficult

problem [12, 13, and 14]. While we do not have security

measurements with absolute certainty, we often rely on

measurement of risk in assessing security. Using risk of

violations to evaluate security decisions is a common practice.

It provides a systematic mechanism for optimizing cost and

resources. The difficult part lies in providing accurate

information on attacks and their likelihood [25, 29]. Since

systems are typically exposed to constant changes, associated

risks are often affected by such changes. However, risk

assessments are not typically repeated as often as changes are

introduced into systems. Over time, initial risk estimates

become outdated possibly leading to less secure systems.

2. SOFTWARE ARCHITECTUR
Software architecture knowledge is essential for applying the

proposed hierarchical analysis Approach. The individual

components need to be identified and their interaction with

other components needs to be taken into account for

constructing the DTMC model corresponding to the system.

Software systems architecture is to be made available in the

standard form [30, 50].The information regarding interaction

among components must be estimated with experience gained

with similar software components. A standard method to

estimate the control flow transition probabilities among

components from the occurrence probabilities of various

execution scenarios based on the operational profile of the

system. Reliability, performance and demands, etc., are the

quantitative information regarding the individual

characteristics of the components [32]. As the software

development continues, the estimates become better and the

analysis thus improves with time in terms of accuracy.

3. TEST STRATEGY

Architecture provides a structure through which a large or

complex system can be understood and reasoned about.

Weaknesses can be identified before the system is built. In

creating this structure, the system architect chooses to

represent a set of components and various connections

between the components while abstracting away other details

of the system, thus forming a particular perspective [1]. The

architecture of a software system defines that system in terms

of components and of interactions among those components

[6]. Different choices of components or connections will

provide different architectures, and therefore different

perspectives, of the system. Testing must be an integral part

of the complete software development cycle [3]. The exact

way of the testing process is dependent on the type of the

software development life cycle. The cycle may be

incremental or iterative and accordingly the testing software

should be developed using the same techniques as the

production software. Object-oriented design techniques of

encapsulation and information hiding require different testing

techniques. Testing for object-oriented software system is

more difficult and more complex than for traditional system

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

42

life cycle [44, 45]. Certain areas of the code are "unreachable"

due to the information hiding techniques available in object-

oriented languages. This may hinder usual testing techniques.

A dedicated test class can be given special access privileges

without compromising the integrity of the design. In fig.1 the

different phases of Software Development Life Cycle (SDLC)

are demonstrated. If we allow requirements to be changed in

later phases other than Software Requirement Specification

(SRS) it will means that the needs of the users of a software

system may change over time, invalidating the requirements

laid down in an earlier phase. In object-oriented software

design the emphasis is on easy maintenance and reuse of the

components [10]. Software quality attributes like correctness,

robustness, extensibility, and compatibility must also be

addressed during design.

The primary focus of testing at the design phase is integration

testing. Integration testing is the systematic composition of

components into sub-systems and systems [11]. Tests ensure

the consistency of component interfaces and whether the

components pass data and control correctly, which results in

successful integration of dependent components [44].

Integration testing requires that functional or black box testing

and structural or white box testing be applied intermittently as

necessary to isolate component functions and determine

correct behavior of integrated units [45]. Specialized testing

tools test drivers and stubs are needed to isolate components

and test separate components as they are integrated. Figure 1

describes all the stages of object oriented software stating

from SRS to maintenance. Key process areas of software

quality with software architectures and design mythologies

are described in the figure1. Error or bug can appear any time

from SRS to maintenance even when the system is in the

operation. Object oriented approach is modular in nature so it

helps in easy maintenance and correction of bugs.

4. TESTING OBJECT ORIENTED

SYSTESM
Software testing techniques have evolved over the years and

in order to handle the unique testing issues of the object

oriented software, the conventional software testing

techniques need to be adapted and new ones need to be

developed [26,27]. The architecture of the object-oriented

software differs from the conventional software architecture.

Features like encapsulation, inheritance, polymorphism and

reusability are unique to object oriented software. Thereby,

some issues involved in the testing of the object-oriented

software are different from the testing issues of the

conventional software. The key advantage of the object-

oriented paradigm is that it provides a uniform structure for

all components in the form of a procedural interface [12].

Class is the focus of unit testing in object-oriented software.

Resolution of relationships at runtime due to dynamic binding

complicates testing. Moreover, the paradigm shift from the

waterfall model of software development to the iterative and

incremental style of software development has resulted in

object-oriented software testing being iterative and

incremental in nature. A bug may appear anywhere in the

code. The object oriented class methodology helps to detect

bugs by providing for both compile-time and run-time type

checking of pointers (handles) to class objects. This run-time

type checking catches a lot of bugs since invalid object

handles (the cause of a lot of bugs) are automatically detected

and reported. For better performance of the system the

programming language must avoid the memory leakage

problem [43, 49]. A memory leak is an error in a program's

dynamic store allocation logic that causes it to fail to reclaim

discarded memory. That is, objects that are no longer required

are not reclaimed. Unexpectedly large numbers of such

instances may suggest a memory leak. A memory leak, if

severe, can lead to the collapse of the application due to its

running out of memory [22, 23]. Memory leaks are caused by

objects that continue to hold references to other objects, thus

preventing garbage collection from reclaiming the held

objects. The Object References table can be used to help

identify such references.

5. OBJECT ORIENTED SOFTWARE

ARCHITECTURE
Object oriented systems may be based on following

architectures:

5.1 Component Object Model (COM)

COM has application-programming interface (API) which

supports for the creation of components for use in integrating

custom applications. COM has diverse components to interact

while designing the API. However, in order to interact,

Key Process Area in

Software Quality

Correctness

Usability

Efficiency

Reliability

Integrity

Adaptability

Accuracy

Robustness

Consistency

Maintainability

Flexibility

Portability

Reusability

Readability

Testability

Understandability

Completeness

Conciseness

Structuredness

Security

SRS

Design

Coding

Testing

Maintenance

Domain Analysis

Software Architectural Decision

Communication Protocols

Platform Decisions

Top-down Design

Bottom-up Design

Programming Language

decision

Black Box Testing

White Box Testing

Client Side

 Structural

 C

 Pascal

 Fortran

 C++

 Java

 C#

 Effile

 Small Talk

 Regression

 Load

 Performance

 Stress

 Time & cost

 Trouble-shooting

 Maintaining software

Design Document:

Algorithm, Flow Chart,

Structured Language.

Design Document:

UML/OOAD methodology

(use case, class, object,

sequence, collaboration,

state, extended state

diagrams)

 Layered

 Client/Server

 Broker

 CORBA

 COM

 DCOM

 MVC

 Pipes &Filters

 Hybrid

Fig.1 SDLC activities for software development

 Object
Oriented

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

43

components must adhere to a binary structure specified by

Microsoft. As long as components adhere to this binary

structure, components written in different languages can

interoperate.

5.2. Distributed COM (DCOM)

DCOM is an extension to COM that allows network-based

component interaction. While COM processes can run on the

same machine but in different address spaces, the DCOM

extension allows processes to be spread across a network.

With DCOM, components operating on a variety of platforms

can interact, as long as DCOM is available within the

environment. To get a secure COM/DCOM architecture

component-level testing is important [13]. Three types of

properties should be included in a comprehensive component

specification from which the functional test cases can be built.

Individual operations are specified in terms of constraints on

their inputs and outputs. These are expressed as pre and post-

conditions. The state of the object is constrained by an

invariant that specifies limits on each of the attributes of the

object. Objects protocols which are specified in the state

transition diagram define the specific sequence of operations

and it should be cheeked correctly, security concerns should

be addressed. Object interaction diagram which models

interaction between methods and attributes should be well

documented so that it should have any security flow.

Methods which implement component operation and

component attributes must be handled properly so that

interaction happens properly.

5.3 Common Object Request Broker

Architecture (CORBA)

Object Management Group (OMG) provides CORBA

architecture which allows objects to communicate with other

objects and each other irrespective of their location in the

network or in the internet [18]. It support multi-tier client

server distributed objects approach and data processing

require processing additional processing in another computer

to require completing the transaction. Objects get a platform

which is transparent from location point of view and sharing

point of view, because it shares resources. Bugs or errors must

be tested before the object or component is integrated into the

distributed system, it must be tested in isolation to find and

remove the bugs or errors [15]. It is done with unit testing,

integration testing [16]. All the ambiguities and

inconsistencies must be found out before the implementation

of the interface specification [17].

5.4Model-View-Controller (MVC)

Application’s data model, user interface, and control logic are

separated in three distinct components in MVC; modifications

to one component can be made with minimal impact to the

others in the MVC. [15].

MVC have three main classes Model, View and Control,

which is needed to build an application.

1) Model: It is in the domain layer and the domain-

specific representation of the information on which the

application operates. Domain logic adds meaning to

raw data.

2) View: Renders the model into a form suitable for

interaction, typically a user interface element. MVC is

often seen in web applications, where the view is the

HTML page and the code which gathers dynamic data

for the page.

3) Controller: it involves user actions, and invokes

changes on the model and perhaps the view.

Data get stored by applications which use a persistent storage

mechanism. There is no specific mention for data access layer

in MVC because it is understood to be underneath or

encapsulated by the Model itself. MVC components are

highly interdependent in terms of interface component and

this makes very difficult to test MVC. It is very complex to

test such component and it requires complex setup to test

these components. Separation of concerns is architecture

driven and MVC support separation in displaying, updating

data and storage and all of them should be tested individually

with its own concerns. Frameworks that support user interface

and interdependencies are very difficult to test; it requires

error prone manual testing and some sort of simulations

which simulate user’s actions. MVC separates presentation

logic and reduction in the number of user interface test cases.

6. SECURITY CONCERNS
Software security concerns are emerging from the first stage

of software development even before deciding the particular

architecture for the problem domain. All most all the well-

known security system Architectures and models, like

including Common Object Request Broker Architecture,

EJB, COM and DCOM, are considering security as the main

issue in the software architecture Since COM/DCOM

components have access to a version of the Microsoft

Windows API, "bad actors" can potentially damage the user's

computing environment. In order to address this problem,

Microsoft employs "Authenticode" which uses public key

encryption to digitally sign components. Independent

certification authorities such as VeriSign issue digital

certificates to verify the identity of the source of the

component. However, even certified code can contain

instructions that accidentally, or even maliciously,

compromise the user's environment [42]. Various security

threats are present to CORBA like masquerading (attacker

pretends to be an authorized user of a system), spoofing and

eavesdropping. Besides these integrity violations like trapdoor

and viruses can cause problem. Denial of service (because of

Flooding), Security of communication between objects, which

is often over insecure lower layer communications also pose

threat to security.

7. SECURITY RSIK ANALYSIS
We use the term risk analysis to refer to the activity of

identifying and ranking risks at some particular stage in the

software development lifecycle. Risk analysis is particularly

popular when applied to architecture and design-level artifacts

[16]. A majority of risk analysis process descriptions

emphasize that risk identification, ranking, and mitigation is a

continuous process and not simply a single step to be

completed at one stage of the development lifecycle. Risk

analysis results and risk categories thus drive both into

requirements (early in the lifecycle) and into testing (where

risk results can be used to define and plan particular tests) [33,

34].

A prototypical architectural risk analysis approach

involves several major activities that often include a number

of basic sub steps:-

Learn as much as possible about the target of analysis [35].

 Read and understand the specifications, architecture

documents, and other design materials.

 Play with the software (if it exists in executable form).

 Discuss and brainstorm about the target with a group.

 Determine system boundary and data

sensitivity/criticality.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

44

 Study the code and other software artifacts (including the

use of code analysis tools).

 Identify threats and agree on relevant sources of attack.

Discuss security issues surrounding the software [37, 39].

 Argue about how the product works and determine areas

of disagreement or ambiguity.

 Identify possible vulnerabilities, sometimes making use

of tools or lists of common vulnerabilities.

 Map out exploits and begin to discuss possible fixes.

 Gain understanding of current and planned security

controls.

Determine probability of compromise.

 Map out attack scenarios for exploits of

vulnerabilities.

 Balance controls against threat capacity to determine

likelihood.

 Perform impact analysis.

 Determine impacts on assets and business goals.

 Consider impacts on the security posture.

 Rank risks.

 Develop a mitigation strategy.

 Recommend countermeasures to mitigate risks.

 Report findings.

 Carefully describe the major and minor risks, with

attention to impacts.

 Provide basic information regarding where to spend

limited mitigation resources.

During the process of architectural risk analysis, we follow

basic steps. Risk management is in some sense fractal. In

other words, the entire continuous, ongoing process can be

applied at several different levels [40, 41]. The primary level

is the project level. Each stage of the validation loop clearly

must have some representation during a complete

development effort in order for risk management to be

effective. Another level is the software lifecycle artifact level.

The validation loop will most likely have a representation

given requirements, design, architecture, test plans, and so on

[48]. The validation loop will have a representation during

both requirements analysis and use case analysis. Thus we

need economic models of software that take into account

costs, benefits, and risks.

8. COST BENEFIT ANALYSIS
Architecture selection and analysis is done with cost benefit

analysis and it helps in determining the economic aspects of

the software. Cost Benefit Analysis Methods (CBAM) helps

in determining the suitability of the software architecture for

the problem and solution domain in the software environment

[21]. CBAM has many stages and each stage is examined in

detail and then implemented so that the cost of the software

development can be justified.

The steps of CABM is described in details which helps in

evaluating the economic aspect of the architecture, the steps

are given below

1. Particular scenarios are chosen and architectural strategies

are taken into account for the given aspect.

2. Assess Quality Assurance benefits

3. The architectural strategies’ advantages and benefits is

quantified.

4. Quantify the architectural strategies’ costs and schedule

implications

5. Calculate desirability for the architecture

6. Make decisions and evaluate

While choosing the scenario of the concern system security

and architectural strategies for the same is considered and are

designed that address these scenarios. Architectural strategy

should be chosen for the particular scenario like for example,

if there were a scenario that called for increased availability,

then a particular architectural strategy should be chosen which

adds some redundancy and a failover capability to the system

[24]. Quality Assurance and quantify the architectural

strategies, it elicits benefit information from the relevant

stakeholders: Quality Assurance which benefits from business

implications and systems conditions (who, presumably, best

understand the business implications of changing how the

system operates and performs); [47], it helps the architectural

strategy. Benefits from the architects (who, presumably, best

understand the degree to which a strategy will, in fact, achieve

a desired level of a quality attribute) [4]. In the fourth step,

Quantify the architectural strategies’ costs and schedule

implications, it elicits cost and schedule information from the

stakeholders. There is no special technique for this elicitation;

it assumes that some method of estimating costs and schedule

already exists within the organization to achieve it. Based on

these elicited values, calculation for desirability for the

architecture is carried out. A desirability metric (a ratio of

benefit divided by cost) for each architectural strategy is

carried out. The inherent uncertainty in each of these values,

which aids in the final step, making decisions can also be

calculated. The above six steps, helps to calculate the elicited

values as a basis for a rational decision making process—one

that includes not only the technical measures of an

architectural strategy but also business measures that

determine whether a particular change to the system will

provide a sufficiently high return on investment (ROI) and

Suitability.

9. ARCHITECTURE SECURITY MODEL
Security is not easy to build at component level in the

software and Architecture Security Model, which is supposed

to provide a means for eliciting, categorizing, and prioritizing

security requirements for information technology systems and

applications, should have to embed the security needs at the

architecture level itself [25]. The focus of this methodology

seeks to build security concepts into the early stages of the

development lifecycle. The model may also be useful for

documenting and analyzing the security aspects of fielded

systems, and could be used to steer future improvements and

modifications to these systems. Fig.2 shows the model used

for design of software architecture. This model is elaborated

to develop the Architecture Security Model [28]. The various

steps of this model are:

Fig.2 Architecture Design Model

a. Software: From the beginning itself it must be clear

what is needed and we need to decide what the type

of software is under the development process.[30]

In the software concept the input passed in this is

the statement of the purpose. How it should be done

Software Concept
Software

Requirement

Specification and

engineering
Software

Architecture

Design

Security

Concern

and

Issues

javascript:popUp('/content/images/chap5_0321356705/elementLinks/ch05fn03.html')

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

45

is by understanding the area of the software in full

detail. What is expected output of this module is

types of software like system or application,

Business software, Engineering/Scientific software,

Embedded software, Artificial Intelligence software

etc.

b. Software Security: This is needed to avoid the

unnecessary ambiguous stuff from the security

definitions. This step avoids ambiguity in security

definitions [31]. The input to this module is

candidate definitions and standards and this applies

to all types of the software. The methodology

adopted for this module is formal structured

interviews and forming the focus groups and

standards for access of data and sources. After

whole process of interviews and focus groups what

is expected output is agreed definitions of the

standards and security aspects.

c. Organizational Security Goals: It’s important to

identify ideas of security goals of the organization

because each organization has its own security

requirement and while deciding he architecture for

the systems this must be also taken into

consideration[32]. Input to this module is:

Definitions, candidate goals, business drivers,

policies and procedures. Methodology used for

deciding the organizational goals is facilitated work

session, surveys, interviews in the organization. The

expected output is security goals required for the

specific organization.

d. Requirements elicitation Process: These are

required to address problem of scope, of

understanding and problem of volatility. While

carrying out the requirement elicitation the desired

input to this module is definitions, goals, candidate

techniques, organizational style, culture, level of

security needed, cost benefit analysis etc. How it is

carried out is by organizing work sessions. The

expected output is Selected elicitation techniques

and requirement which are not needed while

designing the system.

e. Developing system artifacts: This module is

required to support elicitation techniques. The

expected input to this module is elected elicitation

techniques, potential artifacts, threat models, attack

patterns. The method used is again by working

sessions while finalizing the system artifacts. The

desired output is scenarios, misuse cases, models,

templates and other important aspect of the system.

f. Elicit security requirements: Elicit the

requirements using the techniques selected in step 4

and the support of the artifacts developed in step 5.

How it is done is by selected techniques and

artifacts. Technique used is by carrying out

interviews, surveys, model-based analysis, safety

analysis, checklists, lists of reusable requirements

types, document reviews. The expected output of

this module is initial shape of safety and security

requirements of the system under the design.

g. Requirements Categorization: Categorize the

requirements and assess whether they are really

requirements or other kinds of constraints. The

input given in this module is Initial requirements

and architecture. Methods used are by organizing

work session using a standard set of categories of

the requirement and systems specifications. The

expected output is well defined categorized

requirements.

h. Prioritization of the requirements: Select a

method for prioritizing requirements and go through

the prioritization process. Deciding the priority of

the requirement is also very critical issue in the

system design and architectural specification of the

particular requirement also plays important role.

The input given to this module is categorized

requirements. Methods used for prioritization are

the methods such as Triage, Win-Win, etc. The

expected output of this module is prioritized

requirements

i. Perform risk assessment: Risk is very vital in the

software systems and it is always required to

perform a risk assessment activity. There is a wide

variety of choices. Input to this module is

categorized requirements and targeted operational

environment. Methods used for assessing is risk

assessment method, analysis of anticipated risk

against organizational risk tolerance. The expected

output of the system is risk assessment results,

added mitigation requirements to bring exposure

into acceptable level in the systems.

j. Requirements inspection: Finally the requirements

must be inspected using a standard inspection or

review process to ensure that they are consistent,

complete, and testable, and can be achieved or not.

Methods used are prioritized requirements,

candidate formal inspection techniques, which are

used for formal inspection. The methods used for

the inspection is inspection method such as Fagan,

peer reviews, etc. The expected output is initial

selected requirements, documentation of decision-

making process and rationale. After all the process

adopted in engineering the requirement and risk the

rational for security can be established while

designing the software.

Each step describes the necessary inputs, the recommended

participants and methods to be followed, and the step’s final

output. The output from each step then flows to the sequential

steps that follow. The participants for each step vary

depending on the organization under study. Generally, a

requirements engineer is tasked with each step, and should

consider the input of all relevant stakeholders with respect to

the environment of the organization and the study [19,20]. It

begins when an organization agrees upon a common base that

will serve the methodology to follow. The first task for the

organization is to agree upon a common set of security

definitions, followed by the definition of organizational

security goals. Once the organization has defined a common

ground, it can begin to transform its ideas about security goals

into actionable security requirements deliverable. Next, the

organization chooses from various elicitation techniques, and

then can begin documenting important functional information

in order to develop artifacts (such as network maps and

diagrams, attack tree diagrams, and use and misuse cases).

These artifacts are then used to develop initial requirements,

which are subsequently categorized to meet the needs of the

organization’s business goals. Risk assessment allows for the

organization to discover how the combination of impact and

likelihood of various threats affect the organization’s risk

tolerance with regard to each categorized requirement.

Following this prioritization, a final list of requirements is

produced and is inspected by all relevant stakeholders. The

final output of this model is a security requirements document

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

46

that is designed to satisfy the security goals of the

organization [50].
Static analysis approach for the security can also be adopted

like ESP, which is a large scale property verification

approach, model checkers like SLAM and BLAST which

examines program safety and security parameters and some

other light weights like Find Bugs can also be used.

10. CONCLUSION
Security issues of the software architectures are discussed in

the detail. All the software architectures used for developing

the software is discussed in the paper. Security for software

architecture is essentially required as it removes loopholes

from the system and this can be done by risk analysis. In this

approach, business goals determine risks, risks drive methods,

methods yield measurement; measurement drives decision

support, and decision support drives rework and application

quality. We used common concepts in security engineering to

create a model for security assessment. The model is based on

risk, the most widely accepted form of security measurement.

Our approach emphasizes that every part of the system carries

a risk, no matter how small. Software components, people and

communication channels present security risks. Only a

comprehensive analysis of all of them would provide realistic

conclusions on the security of a system. Security requirements

of the system should be finalized in the architecture design

step itself.

11. FUTURE RESEARCH WORK
The architectural specifications must be tested well before the

selection of the architecture so the test bed for the same and

the test cases must be written for the same. Empirical result

and claims can be established for the security claims which

are not done in the current paper.

12. ACKNOWLEDGEMENT

The Author is very thankful to the reviewers for giving

important feed for the manuscript. Author would also like to

thank Sohar University and University of Queensland for their

support and encouragement.

13. REFERENCE

[1] Dinesh Kumar Saini, Lingaraj A. Hadimani and Nirmal

Gupta ―Software Testing Approach for Detection and

Correction of Design Defects in Object Oriented

Software‖ Journal of Computing, Volume 3, Issue 4,

April 2011, ISSN 2151-9617, Page No. 44-50.

[2] R. Allen, D. Garlan, ―A Formal Basis for Architectural

Connection‖ ACM Trans. Software. Engineering.

Methodology, 1997. 6(3): pp. 213-249

[3] D. Garlan and M. Shaw, ―An introduction to software

architecture‖, Advances in Software Engineering and

Knowledge Engineering, edited by V. Ambriola and G.

Tortora, World Scientific Publishing Company, 1993.

[4] D. Gelperin, B.Hetzel,"The growth of software testing"

Commun. ACM 31(6), Jun. 1988, pp.687-695

[5] G. McGraw, "Managing Software Security Risks", IEEE

Computer, 35(4), March 2002, pp. 99–101.

[6] Dinesh Kumar Saini and Hemraj Saini ―Proactive Cyber

Defense and Reconfigurable Framework for Cyber

Security‖ International Review on computer and

Software (IRCOS) Vol.2. No.2. March 2007, Pages 89-

98. ITALY

[7] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M.

Young, G. Zelesnik, "Abstractions for Software

Architecture and Tools to Support Them", IEEE

Transactions on Sqftware Engineering, 21(4), April

1995, pp.314-335.

[8] K.S.Hoo, J.W.Sudbury, J.R.Jaquith,―Tangible ROI

Through Secure Software Engineering‖, Secure Business

Quarterly: Special Issue on Return on Security

Investment, 1(2), A publication of @stake, 2001.

[9] D.Verdon, G.McGraw, "Risk Analysis in Software

Design", IEEE Security & Privacy, July/August 2004,

pp.32-37.

[10] Dinesh Kumar Saini and Nirmal Gupta ―Fault Detection

Effectiveness in GUI Components of Java Environment

through Smoke Test‖, Journal of Information

Technology, ISSN 0973-2896 Vol.3, issue3, 7-17

September 2007.

[11] H.Y.Chen, "The design and implementation of a

prototype for data flow analysis at the methodlevel of

object-oriented testing", Proceedings of the 2002 IEEE

International Conference on Systems, Man, and

Cybernetics (SMC 2002), IEEE Computer Society Press,

Los Alamitos, California, 2002, pages 140–145.

[12] Dinesh Kumar Saini and Nirmal Gupta ―Class Level Test

Case Generation in Object Oriented Software Testing,

International Journal of Information Technology and

Web Engineering, (IJITWE) Vol. 3, Issue 2, pp. 19-26

pages, march 2008. USA

[13] Dinesh Kumar Saini and Hemraj Saini "VAIN: A

Stochastic Model for Dynamics of Malicious Objects",

the ICFAI Journal of Systems Management, Vol.6, No1,

pp. 14- 28, February 2008. INDIA

[14] Hemraj Saini and Dinesh Kumar Saini "Malicious Object

dynamics in the presence of Anti Malicious Software‖

European Journal of Scientific Research ISSN 1450-

216X Vol.18 No.3 (2007), pp.491-499 © Euro Journals

Publishing, Inc. 2007

http://www.eurojournals.com/ejsr.htm EUROPE

[15] P.C.Jorgensen and C.Erickson, "Object-oriented

integration testing", Commun. ACM, 37(9), Sep. 1994,

pp.30-38.

[16] M.Kolling,J.Rosenberg,"Support for object-oriented

testing", Proceedings of the Technology of Object-

Oriented Languages and systems, 23-26 Nov. 1998,

IEEE Computer Society, Washington, pp.204 - 215.

[17] Y.M. Wang, O.P. Damani, and W.J. Lee,"Reliability and

Availability Issues in Distributed Component Object

Model (DCOM)", Proceedings of International

Workshop on Community Networking", May 1997,

IEEE Computer Society, Washington, pp.59-63.

[18] F.J.Hauck, R.Kapitza, H.P.Reiser, A.I.Schmied,"A

flexible and extensible object middleware: CORBA and

beyond", Proceedings of the 5th international Workshop

on Software Engineering and Middleware (Lisbon,

Portugal, September 05-06,2005), ACM Press, New

York, NY, pp.69-75.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

47

[19] M.Veit, S.Herrmann,"Model-view-controller and object

teams: a perfect match of paradigms", Proceedings of the

2nd international Conference on Aspect-Oriented

Software Development (Boston, Massachusetts, March

17 - 21, 2003), ACM Press, New York, NY, pp.140-149.

[20] L.Rosenberg, R.Stapko, A. Gallo,"Risk-based object

oriented testing", Twenty-Fourth Annual Software

Engineering Workshop, NASA, Software Engineering

Laboratory, December 1999.

[21] T.M.Khoshgoftaar, E.B.Allen, W.D.Jones,

J.P.Hudepohl,"Cost-Benefit Analysis of Software

Quality Models", Software Quality Control 9(1) (Jan.

2001),Kluwer Academic Publishers, Manufactured in

The Netherlands, pp.9-30.

[22] S.A.Butler,"Security attribute evaluation method: a cost-

benefit approach", Proceedings of the 24rd International

Conference on Software Engineering, ICSE 2002, IEEE

Computer Society, Washington, pp.232-240.

[23] Dinesh Kumar Saini, Jabar H. Yousif, and Wail M.

Omar ―Enhanced Inquiry Method for Malicious Object

Identification‖ ACM SIGSOFT Volume 34 Number 3

May 2009, ISSN: 0163-5948, USA.

[24] Wail M.Omar, Dinesh K. Saini and Mustafa Hassan

―Credibility Of Digital Content in a Healthcare

Collaborative Community‖ Software Tools and

Algorithms for Biological Systems in book series

"Advances in Experimental Medicine and Biology,

AEMB" Springer, Volume 696, Part 8, Page No. 717-

724, DOI: 10.1007/978-1-4419-7046-6_73,

[25] Dinesh Kumar Saini ―Sense the Future‖ Campus Volume

1- Issue 11, Page No14-17, February 2011.

[26] Dinesh Kumar Saini and Moinuddin Ahmad ―Modeling

of Object Oriented Software Testing Cost‖ The 2011

International Conference on Software Engineering

Research and Practice (SERP'11), World Congress in

computer Science and Engineering, July 18-21, 2011,

Las Vegas, USA. Pp. 333-339.

[27] Dinesh Kumar Saini and Moinuddin Ahmad ―Enhanced

Software Quality Economics for Defect Detection

Techniques Using Failure Prediction‖ The 2011

International Conference on Software Engineering

Research and Practice (SERP'11) World Congress in

computer Science and Engineering July 18-21, 2011, Las

Vegas, USA, PP. 346-351.

[28] Nr.Mead, V.Viswanathen, Deepa, et.al ―Incorporating

Security Quality Requirements Engineering (SQUARE)

to Standard Life-Cycle Models, Technical notes CMU,

2008.

[29] S L Saini, Dinesh Kumar Saini, and Jabar H. Yousif

―Cloud Computing and Enterprise Resource Planning

Systems‖ The 2011 International Conference of

Manufacturing Engineering and Engineering

Management (ICMEEM-2011), World Congress in

Engineering, July 6-9th London UK, PP.681-686.

[30] Dinesh Kumar Saini and Raj Kumar Somani ―Malicious

objects propagation dynamics in the network‖,

International Conference on Emerging Trends in

Networks and Computer Communications (ETNCC),

2011, Digital Object Identifier:

10.1109/ETNCC.2011.5958484, Publication Year: 2011

, Page(s): 47 – 51.

[31] Dinesh Kumar Saini, Lingaraj A Hadimani, Poonam V

Vaidya and Sanad Al Maskari ―Software Quality Model

Six Sigma Initiatives‖ The 2011 International

Conference of Computer Science and Engineering

(ICCSE-2011), World Congress in Engineering, July 6-

9th London UK, PP. 1226-1231.

[32] Dinesh Kumar Saini, Nebras N. Hasoon, Feras N.

Hasoon and Mustafa Hasan. ―Review of Query

Processing in Distributed Systems‖, Proceedings of the

INFORMATICS 2011 IADIS, International Association

for Development of the Information Society, July 20-26,

2011, Rome Italy. Pp 117-123

[33] Dinesh Kumar Saini, Sanad Al Maskari, R G Dabhade,

Sandhya V Khandage and Lingaraj A. Hadimani ―Broker

Architecture for Quality of Service‖ The 2011

International Conference of Information Security and

Internet Engineering, (ICISIE-2011), World Congress in

Engineering, July 6-9th London UK, PP 484-490.

[34] Lingaraj A. Hadimani, Dinesh Kumar Saini, Vaishali P

Khoche and Sanad Al Maskari, ―Comparison of

Software and Hardware Design Tools (CASE vs.

Simulators)‖ The 2011 International Conference of

Manufacturing Engineering and Engineering

Management, (ICMEEM-2011), World Congress in

Engineering, July 6-9th London UK

[35] Sanad Al Maskari, Dinesh Kumar Saini, Swati Y Raut

and Lingraj A Hadimani, ―Security and Vulnerability

Issues in University Networks‖ The 2011 International

Conference of Information Security and Internet

Engineering (ICISIE-2011) World Congress in

Engineering, July 6-9th London UK

[36] Jabar H.Yousif, Dinesh Kumar Saini and Hassan S.

Uraibi, ―Artificial Intelligence in E-Leaning-Pedagogical

and Cognitive Aspects‖ The 2011 International

Conference of Computational Intelligence and Intelligent

Systems (ICCIIS-201), World Congress in Engineering,

July 6-9th London UK

[37] Nitin B Raut, Jabar H. Yousif, Sanad Al Maskari, and

Dinesh Kumar Saini ―Cloud for Pollution Control and

Global Warming‖ The 2011 International Conference of

Information Engineering (ICIE-2011), World Congress

in Engineering, July 6-9th London UK

[38] Dinesh Kumar Saini, N.Hasson, F.Hasson, Mustafa

Hassan, ―Review of Query Processing in Distributed

Systems‖ Informmatics-2011, IADIS International

Conference Italy July 21-26 , 2011.

[39] N.Hasson, F.Hasson, Dinesh Kumar Saini, ―Generic

Framework for Monitoring Air Pollution in Sohar

Industrial Region‖, ICT, Society and Human Being-

2011, IADIS International Conference Italy July 21-26,

2011.

[40] Dinesh Kumar Saini, Sanad Al Maskari and Hemraj

Saini, ―Malicious Object Trafficking in the Network‖

IEEE IDCTA-2011, Korea, August 13-16, 201.

[41] Dinesh Kumar Saini, Sanad Al Maskari and Lingraj

Hadimani ―Mathematical Modeling of Software

Reusability‖ 3rd IEEE International Conference on

Machine Learning and Computing

(ICMLC,2011)Singapore, February 26-28, 2011,

IEEEXplore, 978-1-4244-9253-4/11.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

48

[42] 40. Dinesh Kumar Saini, Wail M. Omar ―Software

Testing For Semantic Service Oriented Architecture for

E-Health Software Services‖ SERP’10 - 9th international

Conference on Software Engineering Research and

Practice (USA) http://www.world-academy-of-

science.org/, P.No. 240-246

[43] Dinesh Kumar Saini, Osama Abu Rahmeh, H. Saini,

Wail M. Omar ―Extended Secure Architecture of HIS:

HL7‖ BIOCOMP'10 - 11th International Conference on

Bioinformatics and Computational Biology (July 12-15,

2010, USA) http://www.world-academy-of-science.org,

P.No. 617-623.

[44] Dinesh Kumar Saini and Hemraj Saini "Achieving

Quality Through Testing Polymorphism in Object

Oriented Systems,"3rd International Conference on

Quality, Reliability and INFOCOM Technology (Trends

and Future Directions), 2-4 December, 2006, Indian

National Sciences and Academics, New Delhi (India).

Conference proceeding.

[45] Dinesh Kumar Saini and Hemraj Saini ―Static Code

Analysis‖, NSCOMCS-2005 Proceeding of National

Seminar on Mathematics and Computer Science

sponsored by UGC.

[46] Dinesh Kumar Saini and Hemraj Saini ―Identification

and characterization of software testing process for

object oriented systems‖, National Conference on

Mathematical Analysis and its Applications in Real -

World Problems, Berhampur University, September

[47] Dinesh Kumar Saini and Hemraj Saini ―Software

Metrics and Mathematical Models in the Software

Development Environment for Improving its Quality‖,

National Conference on Mathematical Modeling, BITS

Pilani, Oct.2005

[48] Dinesh Kumar Saini and Hemraj Saini ―Analytical Study

of Mathematical Models For Software Reusability

Metrics in Software Development Environment‖

National Conference on Mathematical Modeling and

Analysis – October 2004.

[49] Dinesh Kumar Saini and Hemraj Saini ―Statistical

Modeling of Extensibility in software‖ 3rd International

Conference on Quality, Reliability and INFOCOM

Technology (Trends and Future Directions), 2-4

December, 2006, Indian National Sciences and

Academics, New Delhi (India). ISBN 81–7446–434–4

Conference proceeding.

[50] Dinesh Kumar Saini, Lakshmi Sunil Prakash and Wail M

Omar ―Review of Technological Challenges in Web -

Based Learning Content Management Systems (LCMS)

with special emphasis on extraction of Learning

Contents‖ International Symposium, College of Applied

Science, Ministry of Higher Education, April 13-16,

2010, Oman, P.No. 43-49.

