
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

28

Design and Performance Evaluation of an Optimized

Disk Scheduling Algorithm (ODSA)

Sourav Kumar Bhoi
Student, M.Tech

Department of CSE
NIT, Rourkela

Sanjaya Kumar Panda
Student, M.Tech

Department of CSE
NIT, Rourkela

Imran Hossain Faruk
Student, M.Tech

Department of CSE
NIT, Rourkela

ABSTRACT

Management of disk scheduling is a very important aspect of

operating system. Performance of the disk scheduling

completely depends on how efficient is the scheduling

algorithm to allocate services to the request in a better

manner. Many algorithms (FIFO, SSTF, SCAN, C-SCAN,

LOOK, etc.) are developed in the recent years in order to

optimize the system disk I/O performance. By reducing the

average seek time and transfer time, we can improve the

performance of disk I/O operation. In our proposed algorithm,

Optimize Disk Scheduling Algorithm (ODSA) is taking less

average seek time and transfer time as compare to other disk

scheduling algorithms (FIFO, SSTF, SCAN, C-SCAN,

LOOK, etc.), which enhances the efficiency of the disk

performance in a better manner.

General Terms

Operating system, Disk Scheduling

Keywords

Disk Scheduling, Sorting, Seek Time, Transfer Time, Average

Seek Time

1. INTRODUCTION
In multiprogrammed operating systems, many processes may

be generating requests for reading and writing disk records.

These processes sometimes make requests faster than they can

be serviced by the moving-head disks, waiting lines or queues

build up for each device [1]. Some of the computing systems

work on First Come First Serve (FCFS) technique in which

the request coming first is served first. Disk scheduling

technique is a process of allocating services to the requests in

well manner. It reduces the effect of starvation of the requests

which degrade the performance of the disk scheduling

process. There are many disk scheduling algorithms such as

FCFS, SSTF, SCAN, C-SCAN, LOOK etc. which helps in

reducing the average seek time. The main aim of disk

scheduling algorithms is to reduce or minimize the seek time

for a set of requests. The disk performance can be optimized

by installing a hard disk that can result in high transfer rates.

Hard disk is a collection of platters. We store information by

recording it magnetically on the platters. A read/write head is

located above the platter. The space of the platter is logically

divided into tracks. The tracks are then subdivided into

sectors. The set of tracks that are at one arm position forms a

cylinder. The heads are attached to a disk arm, which all the

heads as a unit. Disks are currently four orders of magnitude

slower than main memory, so to increase the performance

many researches are going on to enhance the efficiency of

disks [2]. By reducing the average seek time we can improve

the performance of disk I/O operation. In our proposed

algorithm, optimize disk scheduling algorithm (ODSA) is

taking less average seek time and transfer time as compare to

other disk scheduling algorithms (FIFO, SSTF, SCAN, C-

SCAN, LOOK, etc.), which enhances the scheduling of disk

I/O requests in a better manner.

1.1 Disk Performance Parameters
The disk I/O operations mainly depend on the computer

system, the operating system, and the nature of the I/O

channel and disk controller hardware [10]. The time taken to

position the head at the desired track is called Seek Time. The

time taken to reach the desired sector is called Latency Time

or Rotational Delay. The sum of seek time and rotational

delay is called Access Time. The Transfer Time mainly

depends on the rotational speed of the disk. The total number

of bytes transferred, divided by the total time between the first

request for service and the completion of the last transfer is

called Bandwidth [3]. These are some of the disk performance

parameters to enhance the efficiency of the disk by which we

can improvise or optimize the scheduling.

1.2 Disk Scheduling Algorithms
Disk scheduling algorithms are the algorithms to allocate the

services to the requests [11]. There are many disk scheduling

algorithms such as FCFS, SSTF, SCAN, C-SCAN, and LOOK

etc. which helps in scheduling the requests. First Come First

Serve (FCFS) serves the request coming first. But it does not

provide the fastest service. It is simple to implement. The

average head movement in the algorithm is too high. Shortest

Seek Time Next (SSTF) selects the request with minimum seek

time from the current head position. It gives substantial

improvement in comparison to FCFS. Scan algorithm is called

elevator algorithm. In this the disk arm moves from one end

of the disk and move towards other end, while in mean time

all requests are servicing until it gets other end of the disk.

Comparing with FCFS and SSTF it gives better performance.

C-Scan scheduling algorithm is called Circular scan. The

head moves from one end to other end of the disk, servicing

the request along the way. The waiting time increases in the

algorithm. Look scheduling the disk arm moves across the full

width of the disk. The arm goes as far as the final request in

each direction and reverses immediately. So these are some of

the disk scheduling algorithms to serve the requests.

1.3 Related Work Done
In the recent years many researches has been done for

enhancing the disk performance. Z. Dimitrijevic, R.

Rangaswami and E. Y. Chang have presented Semi-

preemptible I/O, which divides disk I/O requests into small

temporal units of disk commands to improve the

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

29

preemptibility of disk access [4]. Cheng - Han Tsai, Tai - Yi

Huang, Edward T. - H. Chu, Chun-Hang Wei and Yu - Che

Tsai propose a novel real-time disk-scheduling algorithm

called WRR - SCAN (Weighted-Round-Robin-SCAN) to

provide quality guarantees for all in-service streams encoded

at variable bit rates and bounded response times for aperiodic

jobs [5]. Daniel L. Martens and Michael J. Katchabaw

developed a new disk scheduling algorithm focuses on

dynamic scheduling algorithm selection and tuning [6].

Worthington and Ganger examined theimpact of complex

logical-to-physical mappings and large prefetching caches on

scheduling effectiveness [7]. Muqaddas and Abdulsalam

made a simulator (Disksims) [8]. Burkhard and Palmer

reduced the required flashmemory by a factor of more than

thirty therebyreducing the manufacturing cost per drive [9].

2. ODSA ALGORITHM
The main aim of our proposed ODSA algorithm is to improve

the disk performance by reducing average seek time of the

disk scheduling algorithm. So that there will be faster data

transfer. The main goal behind all is to enhance the system

performance.

2.1 Proposed ODSA Algorithm
In our proposed ODSA algorithm, the requests in the disk

queue are to be sorted according to the track number

requested. Then we calculate the absolute difference between

the initial disk head position (IDHP) and the lowest track

request (LTR) of disk queue and absolute difference of the

initial disk head position (IDHP) and the highest track request

(HTR)of the disk queue. If (|IDHP – LTR|) is greater than

(|IDHP – HTR|), then we scan the requests in ascending order

starting from the initial position and if (|IDHP – LTR|) is less

than (|IDHP – HTR|), then scanning starts in descending order

(Highest track number to lowest track number). If (|IDHP –

LTR|) is equal to (|IDHP – HTR|), then scanning can start

from any of the side. Finally, we calculate the average seek

time and the transfer time. We calculate the transfer time by

using the following formula shown in equation 1:

Ta = Ts + (1/2R) + (B/RN) (1)

Ta = Transfer Time

Ts = Average Seek Time

B = Number of bytes to be transferred

N = Number of bytes on track

R = Rotation speed in revolutions per second

The pseudocode of the algorithm is represented in figure 1

and figure 2 represents the flowchart of the algorithm.

1. if (DQ != NULL)

//DQ = a Disk Queue with requests for accessing

tracks

2. Read IDHP

//IDHP = Initial Disk Head Position

3. All the TRs present in DQ are sorted in ascending

order (numerical order)

//TR = Track Request

// n = number of TRs

4. if (| IDHP - LTR |) < (| IDHP - HTR |){

 IST = | IDHP - LTR |

 Scanning will start from the LTR}

else if (| IDHP - LTR |) > (| IDHP - HTR |) {

 IST = | IDHP - HTR |

 Scanning will start from the HTR}

else {

Scanning can be done from any of the end

IST = | IDHP - LTR | or| IDHP - HTR |

}

end if

//LTR = Lowest Track Request

//HTR = Highest Track Request

//IST = Initial Seek Time

5. ST ← 0

// initializing ST to 0

 //ST = Seek Time

6. for i = 1 to n

ST = ST + | TRi+1 - TRi |

end for

//i = loop variable

7. ST = ST + IST

8. Calculate AST and TT
//AST = Average Seek Time
//TT = Transfer Time
end if
Fig 1: Pseudocode of ODSA Algorithm

N Y

 Y

 N

 Y

 N

 N

 Y

Fig 2: Flowchart of ODSA Algorithm

Read IDHP

Calculate IST and

scan from the

highest track

number in

descending order

TRs present in DQ are

sorted in ascending

order

Calculate IST and

scan from the lowest

track number in

ascending order

Calculate IST and

scan from any of the

end

ST ← 0

i ← 1

|IDHP - LTR| >

|IDHP - HTR|

|IDHP - LTR|

<|IDHP - HTR|

i <= n?

ST= ST + | TRi+1 - TRi |

i = i+1

ST = ST + IST

Calculate

AST and TT
End

DQ! =

NULL?

Start

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

30

2.2 Illustration

We have the following requests to serve (25, 10, 151, 170, 62,

46, 74 and 111). Initially the disk header is at 45 and the

minimum track number is 0 and maximum track number

taken is 180. Then according to the algorithm we first sort the

requests as (10, 25, 46, 62, 74, 111, 151 and 170). Then we

calculate (| IDHP – LTR |) as 35 and (| IDHP – HTR |) as 125.

So (| IDHP – LTR |) is smaller than (| IDHP – HTR |), then we

scan in ascending order starting from 45 then 10 and so on.

After calculating the average seeks time 24.375 from the

algorithm we calculate the transfer time as 24.38691.

3. PERFORMANCE EVALUATION

3.1 Assumptions Taken
All requests are independent of each other and have equal

priority. The requests are initially stored in the request queue.

All the cases taken are ideal in nature. The disk storage

capacity is measured in Gigabytes. We have taken a disk of

400 Gigabytes containing sector per tracks = 63, sector size =

512 bytes, cylinders = 16,383, total sectors = 781,422,768, N

= 32,256 bytes, B = 30,000 bytes and R = 120 rps. By using

these data we calculate the transfer time. The minimum track

number is 0 and maximum track number taken is 180.

3.2 Performance Parameters

The performance parameters we have taken for experimental

analysis is as follows:

1) Seek Time (ST): The average seek time should be less for

better performance.
2) Transfer Time (TT): The transfer time should be less for

faster accessing of data.

3.3 Experiments Performed
To evaluate the performance of our proposed algorithm, we

have taken three different cases. In each case, we have

compared the experimental results of our proposed algorithm

with other disk scheduling algorithms.

Case 1: We have taken the following track requests for

accessing the tracks as (25, 10, 151, 170, 62, 46, 74 and 111)

and the initial disk head position is at 45. Table 1 shows the

comparison of all the algorithms with our proposed algorithm.

Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8

shows the representation of FIFO, SSTF, SCAN, C-SCAN,

LOOK and ODSA respectively. Figure 9 and Figure 10 shows

the comparison of average seek time and transfer time

respectively.

Table 1: Comparison of all algorithms with ODSA

Algorithms Average Seek Time Transfer Time

FIFO 48 48.01191

SSTF 35.625 35.63691

SCAN 38.125 38.13691

C-SCAN 42.5 42.51191

LOOK 37.5 37.51191

ODSA 24.375 24.38691

Fig 3: Representation of FIFO (Case 1)

Fig 4: Representation of SSTF (Case 1)

Fig 5: Representation of SCAN (Case 1)

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

FIFO

0
20
40
60
80

100
120
140
160
180

Tr
ac

k
N

u
m

b
e

rs

Time

SSTF

0

20

40

60

80

100

120

140

160

180

200

Tr
ac

k
N

u
m

b
e

rs

Time

SCAN

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

31

Fig 6: Representation of C-SCAN (Case 1)

Fig 7: Representation of LOOK (Case 1)

Fig 8: Representation of ODSA (Case 1)

Fig 9: Comparison of Average Seek Time (Case 1)

Fig 10: Comparison of Transfer Time (Case 1)

Case 2: We have taken the following track requests for

accessing the tracks as (16, 75, 24, 21, 30, 80, 116 and 63)

and the initial position of disk head is at 66. Table 2 shows the

comparison of all the algorithms with our proposed algorithm.

Figure 11, Figure 12, Figure 13, Figure 14, Figure 15 and

Figure 16 shows the representation of FIFO, SSTF, SCAN, C-

SCAN, LOOK and ODSA respectively. Figure 17 and Figure

18 shows the comparison of average seek time and transfer

time respectively.

Table 2: Comparison of all algorithms with ODSA

Algorithms Average Seek Time Transfer Time

FIFO 38.875 38.88691

SSTF 19.5 19.51191

SCAN 22.75 22.76191

C-SCAN 43.875 43.88691

LOOK 23.875 23.88691

ODSA 18.75 18.76191

0

20

40

60

80

100

120

140

160

180

200
Tr

ac
k

N
U

m
b

e
rs

Time

C-SCAN

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

LOOK

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

ODSA

0

10

20

30

40

50

60

FI
FO

SS
TF

SC
A

N

C
-S

C
A

N

LO
O

K

O
D

SA

Comparison of AST

Comparison
of AST

0

10

20

30

40

50

60

FI
FO

SS
TF

SC
A

N

C
-S

C
A

N

LO
O

K

O
D

SA

Comparison of TT

Comparison
of TT

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

32

Fig 11: Representation of FIFO (Case 2)

Fig 12: Representation of SSTF (Case 2)

Fig 13: Representation of SCAN (Case 2)

Fig 14: Representation of C-SCAN (Case 2)

Fig 15: Representation of LOOK (Case 2)

Fig 16: Representation of ODSA (Case 2)

0

20

40

60

80

100

120

140
Tr

ac
k

N
u

m
b

e
rs

Time

FIFO

0

20

40

60

80

100

120

140

Tr
ac

k
N

u
m

b
e

rs

Time

SSTF

0

20

40

60

80

100

120

140

Tr
ac

k
N

u
m

b
e

rs

Time

SCAN

0

20

40

60

80

100

120

140

160

180

200

Tr
ac

k
N

u
m

b
e

rs

Time

C-SCAN

0

20

40

60

80

100

120

140

Tr
ac

k
N

u
m

b
e

rs

Time

LOOK

0

20

40

60

80

100

120

140

Tr
ac

k
N

u
m

b
e

rs

Time

ODSA

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

33

Fig 17: Comparison of Average Seek Time (Case 2)

Fig 18: Comparison of Transfer Time (Case 2)

Case 3: We have taken the following track requests for

accessing the tracks as (25, 33, 54, 64, 40, 90,110 and 160)

and the initial disk position is at 125. Table 3 shows the

comparison of all the algorithms with our proposed algorithm.

Figure 19, Figure 20, Figure 21, Figure 22, Figure 23 and

Figure 24 shows the representation of FIFO, SSTF, SCAN, C-

SCAN, LOOK and ODSA respectively. Figure 25 and Figure

26 shows the comparison of average seek time and transfer

time respectively.

Table 1: Comparison of all algorithms with ODSA

Algorithms Average Seek Time Transfer Time

FIFO 35.375 35.38691

SSTF 29.375 29.38691

SCAN 35.625 35.63691

C-SCAN 40.625 40.63691

LOOK 29.375 29.38691

ODSA 21.25 21.26191

Fig 19: Representation of FIFO (Case 3)

Fig 20: Representation of SSTF (Case 3)

Fig 21: Representation of SCAN (Case 3)

0

10

20

30

40

50
FI

FO

SS
TF

SC
A

N

C
-S

C
A

N

LO
O

K

O
D

SA

Comparison of AST

Comparison
of AST

0

10

20

30

40

50

FI
FO

SS
TF

SC
A

N

C
-S

C
A

N

LO
O

K

O
D

SA

Comparison of TT

Comparison
of TT

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

FIFO

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

SSTF

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

SCAN

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

34

Fig 22: Representation of C-SCAN (Case 3)

Fig23: Representation of LOOK (Case 3)

Fig 24: Representation of ODSA (Case 3)

Fig 25: Comparison of Average Seek Time (Case 3)

Fig 26: Comparison of Transfer Time (Case 3)

4. CONCLUSION
The proposed ODSA algorithm shows better performance

than other disk scheduling algorithms (FIFO, SSTF, SCAN,

C-SCAN and LOOK). The average seek time and transfer

time has been improvised by this algorithm which increases

the efficiency of the disk performance. In future we can

implement this ODSA algorithm in real time systems.

5. REFERENCES
[1] H. M. Deitel, “Operating Systems”, 2nd Edn., Pearson

Education Pte. Ltd., 2002, ISBN 81-7808-035-4.

[2] W. Stallings, “Operating Systems”, 4th Edn., Pearson

Education Pte. Ltd., 2007, ISBN 81-7808-503-8.

[3] A. Silberschatz, P. B. Galvin and G. Gagne, “Operating

System Principles”, 7th Edn., John Wiley and Sons,

2008, ISBN 978-81-265-0962-1.

[4] Z. Dimitrijevic, R. Rangaswami and E. Y. Chang,

“Support for Preemptive Disk Scheduling”, IEEE

Transactions on computers, Vol. 54, No. 10, Oct 2005.

0

20

40

60

80

100

120

140

160

180

200
Tr

ac
k

N
u

m
b

e
rs

Time

C-SCAN

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

LOOK

0

20

40

60

80

100

120

140

160

180

Tr
ac

k
N

u
m

b
e

rs

Time

ODSA

0
5

10
15
20
25
30
35
40
45

FI
FO

SS
TF

SC
A

N

C
-S

C
A

N

LO
O

K

O
D

SA

Comparison of AST

Comparison
of AST

0
5

10
15
20
25
30
35
40
45

FI
FO

SS
TF

SC
A

N

C
-S

C
A

N

LO
O

K

O
D

SA

Comparison of TT

Comparison
of TT

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.11, February 2012

35

[5] C. Tsai, T. Huang, E. Chu, C. Wei and Y. Tsai, “An

Efficient Real-Time Disk-Scheduling Framework with

Adaptive Quality Guarantee”, IEEE Transactions on

computers, Vol. 57, No. 5, May 2008.

[6] D. L. Martens and M. J. Katchabaw, “Optimizing System

Performance Through Dynamic Disk Scheduling

Algorithm Selection”, Department of Computer Science,

The University of Western Ontario, London, Canada.

[7] B. L. Worthington, G. R. Ganger and Y. N. Patt,

“Scheduling Algorithms for Modern Disk Drives”,

Appeared in the Proceedings of the ACM Sigmetrics

Conference, May 1994, pp. 241-251.

[8] A. Muqaddas, H. Abdulsalam, and A. Salman, “S-

LOOK: A Preemptive Disk Scheduling Algorithm for

Offline and Online Environments”, CSIT, Lviv, Ukraine,

15-17th Oct 2009, pp. 1-4.

[9] W. A. Burkhard and J. D. Palmer, “Rotational Position

Optimization (RPO) Disk Scheduling”, FAST, Monterey,

California, 28-29th Jan 2002.

[10] C. Staelin, G. Amir, D. B. Ovadia, R. Dagan, M.

Melamed and D. Staas, “Real-time disk scheduling

algorithm allowing concurrent I/O requests”, HP

Laboratories, HPL-2009-344.

[11] M. Andrews, M. A. Bender and L. Zhang, “New

Algorithms For Disk Scheduling”.

