
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.10, February 2012

33

Graph based Approach for Mining Frequent

Sequential Access Patterns of Web pages

Dheeraj Kumar Singh

SoIT, R.G.P.V,

 Bhopal (M.P.), India

Varsha Sharma
SoIT, R.G.P.V,

 Bhopal (M.P.), India

Sanjeev Sharma
SoIT, R.G.P.V,

 Bhopal (M.P.), India

ABSTRACT

The Internet has impacted almost every aspect of our society.

Since the number of web sites and web pages has grown

rapidly, discovering and understanding web users’ surfing

behavior are essential for the development of successful web

monitoring and recommendation systems. To capture users’

web access behavior, one promising approach is web usage

mining which discovers interesting and frequent user access

patterns from web logs. Sequential Web page Access pattern

mining has been a focused theme in data mining research for

over a decade with wide range of applications. The aim of

discovering frequent sequential access (usage) patterns in

Web log data is to obtain information about the navigational

behavior of the users. This can be used for advertising

purposes, for creating dynamic user profiles etc. We propose a

new approach for mining the web usage data by creating

graph using web access sequence of sorted web log and

mining the useful sequential access pattern.

Keywords

Analysis on Web Usage Data, Graph Based Web Usage

Mining, Mining Frequent Sequential Access Patterns From

Web Log.

1. INTRODUCTION
The expansion of the World Wide Web has resulted in a large

amount of data. The different types of data have to be

managed and organized in such a manner that they can be

accessed by different users efficiently [4]. Maintaining a

website is as important as building it. To maintain website we

need to improve its design. To improve the design of website

we should find out how it is used [5]. To achieve this, web

usage mining is a promising way to provide enhanced web

services. Web usage mining, also known as web log mining,

aims to evaluate interesting and frequent user browsing

behavior from web browsing data that are stored in web server

logs, browser logs, proxy server logs [11].

Web Usage mining [1] is the process of applying data mining

techniques to the discovery of usage patterns from Web data,

targeted towards various practical applications such as

personalized web search and surfing, web recommendation

systems. Data mining efforts associated with the Web, called

Web mining, can be broadly divided into three classes, i.e.

web content mining, web structure mining, and web usage

mining .The primary task of Web Usage mining is pattern

discovery & analysis, that is the only reason it is also called

Web access pattern mining [7]. Many approaches [4-11] have

been proposed for discovering sequential patterns from web

data. However, most of the pervious works based on recursive

process of candidate generation and testing the candidates,

that is costly in terms of both time and space. Also there are

some methods based on tree structure like FP-

growth,MFP,that are suffering from problem of repetition of

same item node resulting more space requirement to store

many copies of same item. The main advantage of using

graph is that there is only one node for a page or item. This

requires less memory.

Specially for finding sequential access patterns, graph mining

can be used to discover useful access patterns through

complex user’s browsing behavior. The structure of Web site

can be modeled as a graph, in which, web pages represent by

nodes, and edges represent hyperlinks between the pages.

User’s navigation on the Web site can be modeled as

traversals on the graph. Capturing user’s access patterns in

such environments is referred to as mining usage patterns.

Each traversal can be represented as a sequence of nodes.

Once the graph is created, valuable information such as

frequent sequential usage patterns can be discovered. For

example, when a user visits several pages of a web site within

a particular time limit called session, we can simulate the

navigation path as a graph and apply graph mining to discover

sequential web usage pattern [6].

2. MINING FREQUENT SEQUENTIAL

ACCESS PATTERNS FROM WEB LOG
Frequent patterns are item sets, subsequences, or substructures

that appear in a data set with frequency no less than a user-

specified threshold called minimum support. For example, a

set of items, such as milk and bread that appear frequently

together in a transaction data set is a frequent item set. A

subsequence, such as buying first a PC, then a digital camera,

and then a memory card, if it occurs frequently in a shopping

history database, is a frequent sequential pattern. A

substructure can refer to different structural forms, such as sub

graphs, sub trees, or sub lattices, which may be combined

with item sets or subsequences. If a substructure occurs

frequently in a graph database, it is called a frequent structural

pattern [2].

The sequential pattern mining problem was first introduced by

Agrawal and Srikant [3]. Given a set of sequences, where

each sequence consists of a list of elements and each element

consists of a set of items, and given a user-specified minimum

support threshold, sequential pattern mining is to find all

frequent subsequences, i.e., the subsequences whose

occurrence frequency in the set of sequences is no less than

minimum support. By applying these mining approaches on

web data, we can get Frequent Sequential Web Access

Patterns.

3. PROPOSED METHODOLOGY
The proposed algorithm constructs a graph to capture the

user’s web access behavior of a website and then uses the data

mining steps in order to find out the Frequent Sequential Web

Access Patterns.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.10, February 2012

34

In this approach, firstly we are applying the pre-processing

step on Input Web server logs to get the list of accessed web

page sequence within different sessions, and then will

construct a Web Usage Graph using accessed web page

sequence in all sessions. Finally applying pruning and mining

steps to mine the useful sequential user access patterns. Figure

1 gives an overview of the proposed Graph-based web usage

mining technique for mining Frequent Sequential Access

Patterns of webpages for a particular website. The proposed

approach consists of the following four steps:

(I) Preprocessing; (II) Constructing Web Usage Graph; (III)

Pruning the Web Usage Graph; and (IV) Mining Frequent

Sequential Web Access Patterns from Web Usage Graph.

Figure 1: Overview of the Graph-based web usage mining approach.

3.1 Preprocessing
The preprocessing [4] task contains three separate phases.

Firstly, the collected data must be cleaned, which means that

graphic and multimedia entries are removed. Secondly, the

different sessions belonging to different users should be

identified. Third one is to identify the sessions from the raw

data. A session is a group of activities performed by a user

when he is navigating through a given site. For web server

logs, all users’ access activities of a website are recorded by

the Web server of the website. Each user access record

contains the client IP address, request time, requested URL,

HTTP status code, etc. Users are treated as anonymous since

the IP addresses are not mapped to any user-identifiable

profile database. Web logs can be regarded as a collection of

sequences of access events from one user or session in

timestamp ascending order. Preprocessing tasks can be

applied to the original web Log files to obtain all web access

sessions [10].Table 1 shows the preprocessing step applied on

a sample raw web log data shown in figure 2.Here we are

defining different sessions according to their time stamp

order, with a time interval of 1 hour for each session. For

example, the Session S1 includes all the web pages accessed

during time duration of 09:30-10:30 that are P1,P2,P1,P3,P4,

similarly S2 has P1,P3,P5 page sequence and S3 has P4,P1

page sequence.

Figure 2: Example of Web log from a server

Table 1. Table of Accessed web page sequence with their

respective sessions.

Session Id Accessed web page sequence

S1 P1,P2,P1,P3,P4

S2 P1,P3,P5

S3 P4,P1

3.2 Constructing Web Usage Graph
Based on list of accessed web page sequence within different

sessions, a Directed Graph can be constructed called web

usage graph. Graph consists of vertices (nodes) and edges

(links) in which, nodes are for web pages, and edges represent

sequential access between the pages. The number of nodes in

the graph is equal to number of distinct web pages accessed

during all sessions. Each node in graph contains weight as

node count that stores the number of occurrence of particular

pages within different sessions and node id. Each edge in

graph contains weight as link count, that represents the

frequency of edge, edge id & session id list, list of sessions

involved in that path or edge. Algorithm for constructing Web

Usage Graph from given Table of Accessed web page

sequence is given below.

3.2.1 Algorithm to create a Web Usage graph
Input: Web_Access_Sequence S – Table of Session id with

accessed page list within that session.

Output: Web_Usage_graph<Node, Edge> G – Directed

Sparse Multigraph where WebPages are represented by nodes

and user navigation are represented by edges.

Create_graph (Web_Access_Sequence S)

 {

 For(Each Session Si in Web_Access_Sequence S)

 {

 For(Each webpage Pj in page sequence of Si)

 {

 If (i=j=1) {

 create_node(Pj)

 set node_count(Pj) =1

 }

 Else If (Pj does not exists in all nodes generated so far){

 create_node(Pj)

2012-01-15 00:09:33 192.168.15.194GET /P1.htm 200

2012-01-15 00:09:34 192.168.15.194GET /P2/images/t.gif200

2012-01-15 00:10:30 192.168.15.194GET /P4.php 200

2012-01-15 00:10:04 192.168.15.194GET / P1.htm 200

2012-01-15 00:10:04 192.168.15.194 GET /P3.php 200

2012-01-15 00:22:38 209.188.67.130 GET /P1.htm 304

2012-01-15 00:22:52 209.188.67.130 GET /P3.php 200

2012-01-15 00:23:00 209.188.67.130 GET /P5.php 304

2012-01-16 00:00:30 192.168.15.194GET /P4.php 200

2012-01-16 00:01:04 209.188.67.130GET / P1.htm 200

Web

Server

Log

Frequent

web

access

Pattern

Constructing

Web Usage

Graph

Pruning the

Web Usage

Graph

Mining

Frequent

Sequential

Web Access

Patterns

Preprocessing

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.10, February 2012

35

 set node_count(Pj) =1

 }

 Else If (Pj does not exists in all nodes generated

so far in page sequence of Si)

 set node_count(Pj) = node_count (Pj) +1

 For(Each adjacent pair of webpage Pj in page sequence)

 {

 If (i=j=1) {

 create_edge(source node(Pj),destination node(Pj+1))

 set link_count= 1

 add session_id Si in session_id_list

 }

Else If (an edge with same source, destination does not exists

in all edges generated so far) {

 create_edge(source node(Pj), destination node(Pj+1))

 set link_count= 1

 add session_id Si in session_id_list

}

 Else If (an edge with same source, destination does not

exists in all edges generated so far in Si) {

 link_count = link_count + 1

 add session_id Si in session_id_list on

the existing edge

 }

 }

 }

For(All edges of graph, If there exist an ordered but not

adjacent sequence between nodes in non existing session_id

Si in session_id_list of that edge) {

 link_count = link_count + 1

 add session_id Si in session_id_list on the existing edge

 }

}

3.3 Pruning Web Usage Graph
In this phase we remove all the nodes having node count less

than minimum support threshold and readjust the edges

accordingly. While pruning graph if direct edge exists

between two frequent nodes, then edge is kept intact. But if

there exist edges between two infrequent nodes, then delete

that edge .We remove all infrequent nodes and connect the

frequent node with edge by which first infrequent node of

sequence was connected. Also we check if there exists an

edge having link count less than minimum support threshold

in the pruned graph, then remove that edge. This step results a

Pruned web usage graph that have only frequent nodes and

edges. Following Algorithm is for pruning the input web

usage graph.

3.3.1 Algorithm to prune the graph
Input: 1. Web_Usage_graph<Node, Edge> G - Directed

Sparse Multigraph with,

 Node : node containing weight as node_count and node id,

and

 Edge :edge containing weight as link_count ,edge id &

session_id_list.

2. min_count - Threshold For node_count & link_count

calculated through given percentage of minimum

support,Mathematically expressed as :

min_count=total number of sessions × (% of minimum

support)/100

Output: Pruned_Web_Usage_graph<Node,Edge> G’– A

directed graph with only frequent nodes and edges.

prune_Graph(Web_Usage_graph G<N,E>, min_count)

 {

// This part of algorithm will find and remove all infrequent

nodes of input web usage graph. //

For(Each nodes N in Web_Usage_graph G)

 {

 If(node_count(N) < min_count) {

 add node N to non-frequent_node list

 remove node N from Web_Usage_graph G

 }

Return(Pruned_Web_Usage_graph G’)

 }

// This part of algorithm will readjust the edges with their

link_count and create new edges if required in

Pruned_Web_Usage_graph G’. //

 For(Each nodes N in non-frequent_node list)

 {

 find all incident edges

 add them to incident_list

 find all out edges

 add them to out_list

 create an edge E’ with source node Form incident_list and

destination from out_list

 If (an edge E with same source, destination exists as of

E’ in Pruned_Web_Usage_graph G) {

 link_count(E) = link_count(E) + 1

 add session_id of E’ in session_id_list of the existing

edge E

 }

 Else {

 add edge E’ to Pruned_Web_Usage_graph G

 link_count(E’) =1

 add session_id in session_id_list of E’

 }

 }

// This part of algorithm will check and remove all infrequent

edges of pruned web usage graph. //

For (Each edge E in Pruned_Web_Usage_graph G)

 {

 If(link_count(E) < min_count)

 remove edge E from Pruned_Web_Usage_graph G

 }

 }

}

3.4 Mining Frequent Sequential Web

Access Patterns from Web Usage Graph
This process of mining begins with searching for biggest

sequence of nodes, i.e. the longest path with maximum length.

Where length is the total number of nodes involved in the

sequence. By traversing nodes of Pruned Web Usage graph

starting through each node, we get the frequently occurred

sequence of nodes that represents frequent web access

patterns. The frequency of the sequence will be the minimum

link count of all the edges involved in that sequence. In such

manner, traverse all the existing path in the Pruned Web

Usage graph and enlist all frequent patterns along with their

frequencies and arrange them by order of length. Frequent

sequence with length of 1 are all the nodes in Pruned Web

Usage graph itself, node count will represent their frequency.

Following Algorithm is for mining the pruned web usage

graph to get set of frequent sequential web access patterns.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.10, February 2012

36

3.4.1 Algorithm to mine Frequent Sequential Web

Access Patterns

Input: Pruned_Web_Usage_graph <Node, Edge> G’.

Output: Frequent_Web_Access_Patern – Table of

frequent_pattern with their respective frequency, arranged

according to length of sequence.

Mining_graph(Pruned_Web_Usage_graph G’)

{

For (All nodes & edges in Pruned_Web_Usage_graph G’)

 {

Traverse the longest path

add the visited nodes in the path as sequence

set length=number of nodes in longest sequnce

while (length>1)

 {

Traverse all paths with number of nodes=length, in

Pruned_Web_Usage_graph G’

add the visited nodes in the path as frequent_pattern

add frequent_pattern to frequent_pages_list

set frequency of frequent_pattern=minimum of link_count of

visited edges in the frequent_pattern

length=length-1

Return (frequent_pattern, frequency, length)

 }

 }

If(length==1) {

For (All nodes in Pruned_Web_Usage_graph G’)

 {

add the node to frequent_pattern

add frequent_pattern to frequent_pages_list

set frequency of frequent_pattern=node_count

Return (frequent_pattern, frequency, length)

 }

 }

}

4. PROBLEM STATEMENT
The problem of web usage access pattern mining is: Given a

list of web access sequence of web server log of a website and

minimum support threshold and we have to determine the

complete set of frequent access patterns with their frequency

of occurrence and length.

5. EXPERIMENT RESULT
The above algorithms were implemented in Java

Programming language using Net Beans IDE 6.9.1.

Given a dummy set of accessed webpage sequence {ABDAC,

EAEBCAC, BABFAE, AFBACFC}, where (A,B,C,D,E,F)

are different pages of given website. Table 2, shows the result

after session identification step of preprocessing on the given

set, which contains a session id for each sequence.

Table 2. Web access sequence Table

Session ID Web Access Pattern

S1 ABDAC

S2 EAEBCAC

S3 BABFAE

S4 AFBACFC

Using table 2 ,we have constructed a graph called Web Usage

Graph, having total 6 nodes (A,B,C,D,E,F) representing

distinct web pages accessed within all sessions, shown in

figure 3.Each nodes and edges have their respective number

of occurrence in distinct sessions.

Figure 3: Web Usage Graph

Now we will remove all the infrequent nodes having

frequency less than minimum support threshold and readjust

the edges of web usage graph shown in figure 3.With

minimum support of 75%, we calculated threshold for node

count & link count using following formula:

Min count=total number of sessions × (% of minimum

support)/100

i.e. Min count=3; So we have removed the nodes D:1,E:2,

and F:2 and edges readjusted according to their previous

connections. Since the link count of edge ‘CA’ is 1(i.e. less

than 3) after edge readjustment in pruned graph, we have

deleted it. Figure 4 shows the Pruned Web Usage Graph.

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.10, February 2012

37

Figure 4: Pruned Web Usage Graph

Finally we traverse the entire existing path from each node in

the pruned web usage graph shown in figure 4 and enlist

frequent patterns (sub-sequences) with their respective

frequencies, according to their length. Table 3 shows the

result of mining the pruned web usage graph.

Table 3. List of Frequent Sequential Access Patterns

S.No Length Pattern Frequency

1 4 ABAC 3

2 3 BAC 3

3 3 BAB 4

4 3 ABA 4

5 3 ABC 3

6 2 BC 3

7 2 BA 4

8 2 AB 4

9 2 AC 3

10 1 A 4

11 1 B 4

12 1 C 3

6. CONCLUSION AND FUTURE WORK
In this paper we have presented a graph based approach to

mine the frequent sequential web page access patterns from

web server logs. The contribution of the paper is to introduce

a new way of web usage mining, and to show how frequent

pattern discovery tasks can be accomplished by capturing

complex user’s browsing behavior in to a graph data structure

in order to obtain hidden useful user’s access patterns

information. In future we can extend this algorithm as an

efficient tool for generating web recommendations.

7. REFERENCES
[1] Jaideep Srivastava, Robert Cooley, Mukund Deshpande,

Pang-Ning Tan. 2000. Web Usage Mining: Discovery

and Applications of Usage Patterns from Web Data.

SIGKDD Explorations, Vol. 1, No. 2.

[2] Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan. 2007.

Frequent pattern mining: current status and future

direction. Springer Science+Business Media, LLC.

[3] Agrawal, R. and Srikant, R. Mining sequential patterns.

1995. Int. Conf. Data (ICDE’95), p.3–14.

[4] Renáta Iváncsy, István Vajk. 2006. Frequent Pattern

Mining in Web Log Data. Acta Polytechnica Hungarica

Vol. 3, No. 1.

[5] Mehdi Heydari, Raed Ali Helal, Khairil Imran Ghauth.

2009. A Graph-Based Web Usage Mining Method

Considerind Client Side Data. International Conference

on Electrical Engineering and Informatics 5-7 August

2009, Selangor, Malaysia.

[6] P. Deepa1 and Dr. V.Subbiah Bharathi. 2010. A Level-

Wise Approach for Mining Frequent Web Usage

Patterns. Proceedings of the Int. Conf. on Information

Science and Applications.

[7] S.Vijayalakshmi, V.Mohan, S.Suresh Raja. 2010. Mining

of User’s Access Behaviour for Frequent Sequential

Pattern from Web Logs.

[8] Jlawei Han, Jian Pei, Yiwen Yin, Runying Mao. 2001.

Mining Frequent Patterns without Candidate Generation:

A Frequent-Pattern Tree Approach.

[9] Liping Sun and Xiuzhen Zhang. Efficient Frequent

Pattern Mining on Web Logs. School of Computer

Science and Information Technology, RMIT University,

Melbourne, VIC 3001, Australia.

[10] D. Vasumathi, Dr. A. Govardhan. 2005 - 2009. Efficient

Web Usage Mining Based on Formal Concept Analysis.

Journal of Theoretical and Applied Information

Technology.

[11] D. Vasumathi, Dr. A. Govardhan, K.Venkateswara Rao.

2005 - 2009. Performance Improvements and Efficent

Approach for Mining Periodic Sequential Access

Patterns. International Journal of Computer Science and

Security, (IJCSS) Volume (3): Issue (5).

