
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

16

A Modeling and Detection of Deadlock in Early

Stage of System using UML

Gufran Ahmad Ansari

College of Computer,
Department of Information Technology

Qassim University, Saudi Arabia.

ABSTRACT
As we know there is an increasing demand from the software

industry to develop software model which can communicate

and exchange information concurrently in multiprogramming

environment. This is very difficult to find and eliminate

concurrency problem like deadlock in a large and complex

system. There is a need of model to identify and recognize

concurrency problem such as deadlocks in the early stage in

system and design model to get rid of these kinds of problems.

In this paper author proposed a UML model for detecting the

concurrency in early stage of design system. The author has

also proposed a sequence diagram, activity diagram and use

case diagram for the above model.

Keywords
UML class model, Deadlock detection, Software,

Concurrency

1. INTRODUCTION
Unified Modeling Language (UML) is a well-known software

modeling language and it is accepted by the academia as well

as by the software industry people. It has also become a

standard language for software analysis and design [1]. The

modeling is an advance way of thinking about the scientific

research problems in a well organized manner in real-world

ideas. Some important model systems are designed and

explained in [2, 3, 4,]. UML is a combination of good

engineering practices that has proved to be successful in

modeling a software design of difficult or complex systems.

Modeling is very helpful to understand the process of input

and output of system [5]. Recently, Saxena & Ansari

proposed a different UML models which are based on specific

domain [6, 7, 8]. These models are very helpful to understand

the “UML modeling and design concepts”. A lot of literature

is available on modeling problems by the use of UML but

limited research papers are available in literature to finding

the deadlock in multiprogramming environment through UML

applications. The deadlock is situation where a process or set

of processes is blocked, waiting for some resources that is

holded by some other process [9].

Fig. 1 Deadlock Situation

The Fig. 1 shows the situation of deadlock. In this figure

system takes with a tape drive and a plotter. Let process P1

request the tape drive and process P2 request the plotter, both

the processes receive these resources, as both the resources

were initially free. Hence leaving these resources occupied

process p1 request to the plotter and process p2 requests the

tape drive. In this situation both the processes were not

granted with the resource and both the processes goes in an

indefinite wait and deadlock. The deadlock happen when a

thread is not capable to continue its execution as it is blocked

waiting for a lock that is held indefinitely by another thread

[10, 11]. A thread is a flow of execution through the process

code, with its own program counter, system register and stack.

Threads are a popular way to improve an application

performance through parallelism.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

17

Fig. 2 Single and multi-thread processes

A thread is sometimes called as light weight process. Process

is a dynamic entity that is a program in execution. A process

is a sequence of instruction execution. Concurrency

introduces the need for communication between executing

threads, which is need to synchronize their operations and

shared memory communication, which ensures that the shared

resources are accessed individually and appropriately [12].

Monitoring and authentication usually consists of examination

for communication faults such as deadlocks, infinite loops,

lovelocks and other communication pitfalls. As model-based

software development practices are getting more popularity

[13, 14], resource and communication deadlock models are

considered in message communication systems. Most

deadlock models in distributed systems are resource models

[15, 16].The author proposed a model for the detection of

concurrency problems that is based on design models

expressed in UML [17].

1.1 UML Process
Process can be explained in the form of collection or block of

instructions of program, macro subprogram or subroutine. To

explain this process there is a need of processing elements.

The processing element are defined as stereotype and

generally used to handle the concurrent processes. The given

Fig. 3 shows the UML process and the processing unit.

 (a) UML Process (b) Processing Unit

Fig. 3 UML Process & Processing Unit

2. UML CLASS MODEL FOR

DETECTION OF DEADLOCK
The class model for detection of deadlock in a system is

designed with the help of UML concepts and is shown below

in Fig. 4. The complete system for detection of deadlock is

shown with designed attributes and functions. The UML

model contains the six major classes which are Process, OS

Manager, Pre_Scheduler, Process_Exe, Check_Deadlock

andRemove_Deadlock.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

18

Fig. 4 UML Class Model for Deadlock Detection

The Process class is associated with OS Manager. Process

class has multiple associations with OS Manager and OS

Manager has a single association with the Process. Similarly

OS Manager Class has a multiple association with

Pre_Scheduler class and pre_Scheduler also have a multiple

association with OS Manager. Check_Deadlock and

Remove_Deadlock classes inherit from OS Manager. OS

Manager Class has a single association with Check_Deadlock

and Remove_Deadlock classes while Check_Deadlock and

Remove_Deadlock classes have multiple associations with OS

Manager Class. Check_Deadlock and Remove_Deadlock

classes also have multiple associations. The Check_Deadlock

and Remove_Deadlock classes also have multiple associations

with Pre_Scheduler class and Pre_Scheduler classes also have

multiple associations with Check_Deadlock and

Remove_Deadlock class. Process_Exe class has a multiple

association with Pre_Scheduler class and Pre_Scheduler class

also has multiple associations with Process_Exe class.

3. UML ACTIVITY DIAGRAM FOR

DETECTION OF DEADLOCK
An activity diagram is a self-motivated diagram that shows an

activity and an event. The activity diagram shows the variety

of activities step by step with the movement of both

conditional and parallel behaviors. Basically the activity

diagram is the modification of state diagram in which most of

the states are activities. The activity diagram of the above

UML class model for detection of deadlock in a system is

given in Fig 4.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

19

Fig. 4 UML Activity Diagram for Deadlock Detection

According to the activity diagram a number of jobs want to

run in a CPU. The operating systems manage all jobs which

are willing to run. The operating system manager first check

for the deadlock, if deadlock is found then first it removes

deadlock and wait till the processes are not removed from

resources which are holded by the other process. If the

process is not holding any resource of the other process, then

the process processed jobs and wait for the next job.

5. SEQUENCE DIAGRAM FOR

DETECTION OF DEADLOCK
A sequence diagram is made up of objects and messages. The

given sequence diagram below show the detection of deadlock

in a system. It has five major objects which are shown on the

top of the diagram through the rectangular box with the

underlined class name. The five objects are jobs, OS Manager,

Deadlock, Remove deadlock and CPU Process Jobs.

Jobs OS Manager

Request to process jobs

Deadlock

Jop shedule and check for dead lock

Remove deadlock CPU Process Jobs

Deadlock found

Frist remove deadlock then process jobs

No deadlock found

Process Jobs

Job process and inform

stop wait for next job

Fig. 5 UML Sequence Diagram for Deadlock Detection

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

20

The communication of information between two objects is

represented by an arrow and the massages on that arrow. In a

sequence diagram an object is shown at the top of the diagram

with underline and vertical lines shows the life of the object.

According to the sequence diagram a number of jobs requests

OS Manager to execute? OS Manager schedules all jobs and

checks for the deadlock. If any process is holding the

resources of the other process, then first free the resources of

other processes and then jobs can be executed other wise it

can not be executed, it goes in deadlock situation. If process is

not holding the resources of other jobs, then OS Manger sends

to execute a job and waits for the next jobs.

6. CONCLUSION
From the above work it is concluded that UML is a powerful

modeling language which is used to represent the scientific

research problem. In this paper author has done a complete

modeling for finding out the deadlock situation in a system.

The UML model is very efficient and useful for the software

developers who develop high quality software’s and avoids

the deadlock situation in a system. This UML model is

flexible and easily extendible.

7. ACKNOWLEDGEMENTS
Author is very grateful to Prof. Dr. Khaled Bin Abdul

Rahman Al Hamoudi, Rector of the Univesity and Dean

College of Computer Qassim University Saudi Arabia for

providing the excellent and tremendous research facility in the

College of Computer.

8. REFERENCES
[1] G., Booch, J.Rumbaugh, and I Jacobson. 1999. “The

Unified Modelling Language User Guide”, Addison-

Wesley, Reading, MA.

[2] Grady Booch. 1994. "Object-Oriented Analysis and

Design with Applications", second Edition, Addison-

Wesley.

[3] Graig Larman 1998. "Applying UML and Pattern"

Prentice Hall.

[4] Ansari, G.A., “A Domain Oriented Modeling of Indian

Education System through UML” the Icfai Journal of

Systems Management (IJSM) (ICFAI Press India), Vol.

VIII; No.3; August, 2010.

[5] Lieberherr, K., Holland, I., and. Rie, Al. “Object-oriented

programming: An objective sense of style”, Proc.

OOPSLA’88 as ACMSIGPLAN 23, 11, pp.323–33.1198.

[6] V. Saxena and G. A. Ansari,“ UML Modeling &

Protection of Domain Based System”, International

Journal of Computer Science and Network Security

(IJCSNS), Vol. 8, No. 7, pp.338-344.,2008.

[7] V. Saxena and Ansari, G.A. “ UML Modeling for Patient

Registration System” International Conference on

Quantitative Methods, Operations and Information

Technology for Managerial Decision Making ICQMOIT-

2008, 24-25 Oct. at IBS, Hyderabad, India,2008.

[8] V. Saxena and Ansari, G.A., Ajay Pratap. “Enhancing

Security through UML”, International Journal of

Computer Sciences, Software Engineering and Electrical

Communication Engineering". Vol.2,(1), pp 31-36, 2011.

[9] A. Silberschatz, et. all 2008. “Operating System

Concepts”. John Wiley India Pvt., Ltd. 6th edition.

[10] Downey, A. B.2008. The Little Book of Semaphores,.

Green Tea Press, 2nd Edition.

[11] Crowley. 2006 “Operating Systems: A Design-Oriented

Approach” Tata McGraw – Hill.

[12] Pender, T.2003 UML Bible, Wiley.

[13] Object Management Group (OMG) 2007. "UML 2.1.1,

Superstructure Specification".

[14] Nariman Mani, Vahid Garousi, Behrouz H. Far

“Monitoring Multi-Agent System for Deadlock

Detection Based on UML Models” 978-1-4244-1643-

1/08, IEEE, 2008.

[15] V.Gligor and S. Shattuck "Deadlock detection in

distributed systems," IEEE Trans. Soft. Eng. pp. 435-

440, 1980.

[16] K. M. Chandy, J.Misra .and L. M. Haas." Distributed

Deadlock Detection."ACM Trans. on Computer Systems,

vol. 1, pp. 144-156, 1983.

[17] OMG 2005. UML Profile for schedulibility, Performance

and Time Specification. Adopted Specification

http://www.omg.org/docs/formal/05-01-02.pdf

9. AUTHOR’S BIOGRAPHY

Dr. Gufran Ahamd Ansari received his Bachelor degree

(B.Sc. Computer Science) from Shia P.G. College, Lucknow

in 1997, Post graduate diploma from NIIT Lucknow, MCA

from DR. B.R. Ambedkar University Agra in 2002 and

Ph.D(Computer Science) from Babasaheb Bhimrao Ambedkar

(A central) University, Lucknow, U.P., India in 2009. He is

currently working as an Assistant Professor Department of

Information Technology, Qassim University, Saudi Arabia.

Earlier he worked as Associate Professor and head

Department of Computer Science and Engineering at MIT

Meerut. lecturer at Azad Institute of Engineering &

Technology (AIET) Lucknow, Lecturer, Senior Lecturer and

Assistant Professor at Institute of Foreign Trade &

Management (I.F.T.M), Moradabad U.P., India. He has over

10 years of experience in teaching undergraduate as well as

postgraduate students of Computer Science and Computer

Applications. Currently he is actively engaged in the research

work on domain based of real-time system modeling through

the Unified Modeling Language (UML). He has produced

several outstanding publications in National & International

Journal on various research problems related to the domain

based UML modeling & Security, Testing and Designing.

