
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

13

An Effective Method for Association Rule Mining

based on Transactional Matrix

Harpreet Singh
Department of Computer Science and Engineering

National Institute of Technology
Jalandhar, India

Renu Dhir
Department of Computer Science and Engineering

National Institute of Technology
 Jalandhar, India

ABSTRACT

Focus of this paper is to present a new method based on

transactional matrix for finding association rules more

efficiently. Apriori algorithm is one of the classical algorithms

for finding association rules, but it has limitations of number of

times database scanned is too large and number of candidate

itemsets generated is large.To reduce these two limitations a

new method tries to find the association rules directly from a

matrix which is generated from the transactional database .

Keywords— Apriori algorithm, Association rule,

Frequent itemsets, Transactional matrix

1. INTRODUCTION

Association rule mining [1] finds the frequent patterns,
associations, correlations or casual structures among the sets of
items of transactional database, relational database, or other
information repositories. Association rule [1] specifies the
interesting relationship between different data elements of the
database or datasets. An association rule is of the form:

XY [Support= s%, Confidence=c%] where

1. Support s, is the probability that rule contains {X, Y}

 Support (XY) = P (XUY),

2. Confidence c, is the conditional probability that specify the
c% of the transactions of database considered must specify
XY

Confidence(XY) =P(Y/X)=P(XUY)/support_count(X)

 Minimum Support and Minimum Confidence are needed to
eliminate the unimportant association rules. The association rule
holds iff it has the support and confidence value greater than or
equal to minimum support and minimum confidence threshold
value.

APRIORI algorithm [2] proposed by R. Agrawal and R. Srikant
is one of the classical algorithms for finding frequent itemsets
and then generating association rules from these itemsets.
However, Apriori algorithm has the limitation of producing a
large number of candidate itemsets and scanning the database
too many times. Many researchers have given different
approaches for improving the performance of Apriori algorithm.
Changsheng Zhang and Jing Ruan [3] had worked on the
improvement of Apriori algorithm by applying dataset reduction
method and by reducing the I/O spending. Changsheng and Jing
Ruan applied the modified algorithm for instituting cross selling
strategies of the retail industry and to improve the sales
performance. Wanjun Yu, Xiaochun Wang and et.al [4]
proposed a novel algorithm called as Reduced Apriori
Algorithm with Tag (RAAT), which improves the performance
of Apriori algorithm by reducing the number of frequent itemset

generated in pruning operation, by applying transaction tag
method. Dongme Sun, Sheohue Teng and et.al [5] presented a
new technique based on forward and reverse scan of database. It
produces the frequent itemsets more efficiently if applied with
certain satisfying conditions. Sixue Bai, Xinxi Dai [6] presented
a method called P-matrix algorithm to generate the frequent
itemsets. It is found that the P-Matrix algorithm is more
efficient and fast algorithm than Apriori algorithm to generate
frequent itemsets.

In this paper, a new method based on transactional matrix is
presented to find the association rules from the large
transactional database. In this approach a transactional matrix is
generated directly from the database and then frequent itemsets
and support of each frequent itemset is generated directly from
the transactional matrix . It is found that the new proposed
approach finds the frequent itemsets more efficiently. The
performance of new method is compared with that of Apriori
algorithm with the help of an example.

2. DESCRIPTION OF THE CLASSICAL

APRIORI ALGORITHM

Apriori algorithm employs an iterative approach known as
level-wise search, where k-itemsets are used to explore (k+1)-
itemsets. First, the set of frequent 1-itemsets L1 is found. Next,
L1 is used find the set of frequent 2-itemsets L2. Then L2 is
used to find the set of frequent 3-itemsets L3.The method
iterates like this till no more frequent k-itemsets are found.

Apriori algorithm finds the frequent itemsets from candidate
itemsets. It is executed in two steps: first, it retrieves all the
frequent itemsets from the database by considering those
itemsets whose support is not smaller than the minimum support
(min_sup). Secondly, it generates the association rules
satisfying the minimum confidence (min_conf) from the
frequent itemsets generated in first step. The first step consists
of join and pruning action. While joining, the candidate set Ck
is produced by joining Lk-1 with itself and pruning the
candidate sets by applying the Apriori property i.e. All the non-
empty subsets of a frequent itemset must also be frequent.

The pseudo code for generation of frequent itemsets is given
below.

Ck: Candidate itemset of size k
Lk: Frequent itemset of size k
{

L1= frequent 1-itemset
For (k=1; k! =NULL; k++)
 {
 Ck+1=Join Lk with Lk to generate Ck+1;
 Lk+1= Candidate in Ck+1 with support greater than

 or equal to min support;
 }
 End;

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

14

Return Lk;
}

 An example of All Electronics transactional database D
[1] is presented below in TABLE I to specify the process of
Apriori Algorithm. Let minimum support value be 2
(min_sup=2) and minimum confidence (min_conf) be 50%
(min_conf=50%).

The process of generating frequent itemsets by Apriori
algorithm is shown below in Figure 1.

TABLE I. ALL ELECTRONICS TRANSACTIONAL DATABASE

TID Itemsets

T001

T002

T003
T004

T005

T006
T007

T008

T009

I1, I2, I5

I2, I4

I2, I3
I1, I2, I4

I1, I3

I2, I3
I1, I3

I1, I2, I3, I5

I1, I2, I3

C1 L1

Itemsets Support
 I1 6

 I2 7

 I3 6
 I4 2

 I5 2

Itemsets Support
 I1 6

 I2 7

 I3 6
 I4 2

 I5 2

C2 L2

Itemsets Support

 I1, I2 4

 I1, I3 4
 I1, I4 1

 I1, I5 2

 I2, I3 4
 I2, I4 2

 I2, I5 2

 I3, I4 0
 I3, I5 1

 I4, I5 0

Itemsets Support

 I1, I2 4

 I1, I3 4
 I1, I5 2

 I2, I3 4

 I2, I4 2
 I2, I5 2

C3 L3

Itemsets Support
 I1, I2, I3 2

 I1, I2, I5 2

 Itemsets Support
 I1, I2, I3 2

 I1, I2, I5 2

Figure 1. Generation of frequent itemsets by applying

Apriori Algorithm

 In Apriori algorithm it is found that in the join step,

Lk+1 is produced from Ck+1, which is produced by joining of

Lk with itself. So it may produce large number of candidate

itemsets. For example if there are 104 frequent 1-itemsets

Apriori algorithm may produce 107 candidate2-itemsets while

performing join operation [1]. So with large database the

number of candidate itemsets generated by Apriori algorithm is

too large and it scans the database too many times.

3. PROPOSED ALGORITHM

In this method the frequent itemsets are generated directly from
the matrix which is generated from the transactional database.
The matrix formed in this method is called as Transactional
Matrix T shown below in Figure 2, where T1, T2, T3, Ti, Tn
represents the various transactions; I1, I2, I3, Ik, Im represents
the various items occurring in the transactional database. Rep
represents the number of times the transaction is repeated in the
transactional database. The entries y11, y12, y13 …… and so on
represent either 1 or 0. If a transaction contains the item

mentioned in the column then the value of that item in the
corresponding row is written as 1 otherwise 0.

The proposed algorithm uses two properties:
1. All the non empty subsets of a frequent itemset must also be
frequent.
So, there is no need to consider those frequent itemsets which
are having non frequent subsets.
2. Number of times transaction repeated in the database is
represented by the count in the repetition column of the
Transactional matrix.
So, there is no need to add the repeated transaction again into
the transactional matrix.

 I1 I2 I3 Ik…. Im rep

 T1 y11 y12 y13

 y1k y1m r1

 T2 y21 y22 y23
 y2k y2m r2

 … …. ….. ….. …. ….. …

 Ti yi1 yi2 yi3

 yik yim ri

 …
 Tn yn1 yn2 yn3

 ynk ynm rn

Figure 2. Generation of Transactional matrix T

The steps of proposed algorithm are as follows:
1.First scan the database to find the different items occurring in
the database and then make the transactional matrix by writing
all the transactions along the row side and all the items
occurring in the database along the column side. Don’t repeat
the transaction in the transactional matrix. If a transaction is
occurring more than once in the transactional database then
update the rep column of the transactional matrix accordingly
with respect to the particular transaction. If the transaction
doesn’t repeat then rep i.e. repetition value for the transaction is
set to 0.

2. Now complete the Transactional matrix, if the transaction
contains the item mentioned in the column then write 1
otherwise 0 in the row corresponding to that transaction.

3. The candidate set C1 is generated directly from the
transactional matrix and the support count value is counted by
counting the occurrence of particular item in the transactional
matrix. If a transaction has rep value 1 or some value other than
zero i.e. transaction is repeated more than once in the database
then support count must be incremented by rep value for that
particular row item.

4. For generation of L1, use C1. Move all those transactions
from C1 to L1 whose support count value is not less than
min_support.

5. Now for the generation of C2, consider the transactional
matrix again. Scan each row of the transactional matrix in such
a way so as to generate 2-itemsets by considering the
combinations of two items out of those items of the row which
have value of 1. Write all those 2-itemsets in the candidate
itemset table C2. Then find the support count of each 2-itemset
generated by using transactional matrix. Then move only those
itemsets from C2 to L2 whose support count value is not less
than minimum support.

6. Similarly generate L3, L4….and so on.
NOTE: While generating itemsets, it is also considered not to
count the support of those itemsets which are not frequent and

exclude them from candidate set straight way.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.9, February 2012

15

4. COMPARISON OF THE PROPOSED

ALGORITHM
Comparison between the Apriori algorithm and new proposed

method is presented with the help of an example assumed

above. The formation of the transactional matrix T and

generation of frequent itemsets by the proposed method is

shown below in Figure 3 and Figure 4.

 I1 I2 I3 I4 I5 rep

 I1 I2 I5 1 1 0

 0 1 0
 I2 I4 0 1 0

 1 0 0
 I1 I2 I4 1 1 0

 1 0 0
 I1 I3 1 0 1

 0 0 1
 I2 I3 0 1 1

 0 0 1
 I1 I2 I3 I5 1 1 1

 0 1 0
 I1 I2 I3 1 1 1

 0 0 0

Figure 3 Generation of Transactional matrix T

Items

combination

C1 L1

 Itemsets

I1
I2

I3

I4
I5

Itemsets Support

 I1 6
 I2 7

 I3 6

 I4 2
 I5 2

Itemsets Support

 I1 6
 I2 7

 I3 6

 I4 2
 I5 2

Items

combination

C2 L2

Itemsets
I1, I2

I1, I5

I2, I5
I2, I4

I1, I4

I1, I3
I2, I3

I3, I5

Itemsets Support
 I1, I2 4

 I1, I5 2

 I2, I5 2
 I2, I4 2

 I1, I4 1

 I1, I3 4
 I2, I3 4

 I3, I5 1

Itemsets Support
 I1, I2 4

 I1, I5 2

 I2, I5 2
 I2, I4 2

 I1, I3 4

 I2, I3 4

Items

combination

C3 L3

Itemsets

I1, I2, I5

I1, I2, I4

I1, I2, I3

I2, I3, I5
I1, I3, I5

Itemsets Support

 I1, I2, I3 2

 I1, I2, I5 2

 Itemsets Support

 I1, I2, I5 2

 I1, I2, I3 2

Items

combination

C4 L4

Itemsets

I1, I2, I3, I5

Itemsets Support

 Itemsets Support

Figure 4 Generation of Frequent itemsets by applying New

Method

In this method first transactional matrix T is generated as

shown above in Figure 3. It is found that transactional

database shown in TABLE I have same set of items in {T003,

T006} and {T005, T007} therefore they are considered only

once in the transactional matrix T and their respective

repetition value is set to 1 as they have one repetition in there

occurrence . Now when ever any itemset of these transactions

is considered their support count value is incremented by the

value of repetition counter. The generation of frequent itemsets

is shown in Figure 4. For C1 the items combinations {I1};

{I2}; {I3}; {I4}; and {I5} are considered and then their

respective support count is counted by using transactional

matrix T. It is found that all the items in C1 have the support

count more than min_sup. Therefore, Move all the items of C1

to L1. For generation of L2 ,scan every row of the transactional

matrix and consider all the 2-itemsets combinations of the

elements which have value 1 in the rows. Then count the

support for each itemset and move only those itemsets from C2

to L2 whose support is not less than min_sup. Therefore,

itemsets {I1, I4}; {I3, I5} are not moved to L2. Next, Consider

all the 3-itemsets combinations of the items having value 1 in

the rows.The various combinations possible are {I1, I2, I5};

{I1, I2, I4}; {I1, I2, I3}; {I2, I3, I5}; {I1, I3, I5}. Now, by

using first property i.e. all the non empty subsets of a frequent

itemset must also be frequent,it is found that itemsets {I1, I2,

I4};{I2, I3, I5};{I1, I3, I5} contain subsets which are not

frequent. Therefore these itemsets are not included in C3. C3

will contain {I1, I2, I3} and {I1, I2, I5}. Then count the

support of these itemsets by using transactional matrix

T.Similarly, 4-itemsets combinations possible is considered i.e.

{I1, I2, I3, I5}. This itemset doesn’t satisfy the first property of

this method. Therefore C4=NULL and L4= NULL. Hence all

the frequent itemsets are generated.

5. CONCLUSION

The association rule mining is the process of finding out

relationship between data from a large existing database.

Apriori algorithm suffers from two limitations of large number

of candidate itemsets generation and database is scanned too

many times. The proposed new method based on transactional

matrix provided in this paper solves both these problems of

Apriori algorithm. It helps in mining association rules

efficiently. In this new method once the transactional matrix is

generated it is easy to generate the frequent itemsets directly

from the transactional matrix.

6. REFERENCES

[1] Jiawei Han and Micheline Kamber, (2001), “Data mining

Concepts and Techniques”, Morgan kaufman academic

press

[2] R.Agrawal, “Mining association rules between sets of

items in large databases”, Proceeding of the 1993 ACM

SIGMOD conference, Washington, pp.207-216

[3] Changsheng Zhang and Jing Raun, (2009), “A Modified

Apriori Algorithm with its application in Instituting

Cross-Selling strategies of the Retail Industry”, pp.515-

518

[4] Wanjun Yu, Xiachun Wang and et.al, (2008), “The

Research of Improved Apriori Algorithm for Mining

Association Rules”, pp. 513-516

[5] Dongme Sun and et.al, (2007), “An algorithm to improve

the effectiveness of Apriori Algorithm”, In Proc. 6th ICE

Int. Conf. on Cognitive Informatics”, pp.385-390

[6] Sixue Bai, Xinxi Dai, (2007), “An efficiency Apriori

algorithm:P_matrix algorithm”, First International

Symposium on Data, Privacy and E-Commerce, pp.101-

103

