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ABSTRACT 

Focus of this paper is to present a new method based on 

transactional matrix for finding association rules more 

efficiently. Apriori algorithm is one of the classical algorithms 

for finding association rules, but it has limitations of number of 

times database scanned is too large and number of candidate 

itemsets generated is large.To reduce these two limitations a 

new method tries to find the association rules directly from a 

matrix which is generated from the  transactional database .  
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1.  INTRODUCTION 

Association rule mining [1] finds the frequent patterns, 
associations, correlations or casual structures among the sets of 
items of transactional database, relational database, or other 
information repositories. Association rule [1] specifies the 
interesting relationship between different data elements of the 
database or datasets. An association rule  is of the form: 

XY [Support= s%, Confidence=c%]    where         
 
1. Support s, is the probability that rule contains {X, Y} 

  
   Support (XY) = P (XUY),                                    

 
2. Confidence c, is the conditional probability that specify the 
c% of the transactions of database considered must specify 
XY 

 
Confidence(XY) =P(Y/X)=P(XUY)/support_count(X)   
                                                                                                
 Minimum Support and Minimum Confidence are needed to 
eliminate the unimportant association rules. The association rule 
holds iff it has the support and confidence value greater than or 
equal to minimum support and minimum confidence threshold 
value. 
 
APRIORI algorithm [2] proposed by R. Agrawal and R. Srikant 
is one of the classical algorithms for finding frequent itemsets 
and then generating association rules from these itemsets. 
However, Apriori algorithm has the limitation of producing a 
large number of candidate itemsets and scanning  the database 
too many times.  Many researchers have given  different 
approaches for improving the performance of Apriori algorithm. 
Changsheng Zhang and Jing Ruan [3] had worked on the 
improvement of Apriori algorithm by applying dataset reduction 
method and by reducing the I/O spending. Changsheng and Jing 
Ruan applied the modified algorithm for instituting cross selling 
strategies of the retail industry and  to improve the sales 
performance. Wanjun Yu, Xiaochun Wang and et.al [4] 
proposed a novel algorithm called as Reduced Apriori 
Algorithm with Tag (RAAT), which improves the performance 
of Apriori algorithm by reducing the number of frequent itemset 

generated in pruning operation, by applying transaction tag 
method. Dongme Sun, Sheohue Teng and et.al [5] presented a 
new technique based on forward and reverse scan of database. It 
produces the frequent itemsets more efficiently if applied with 
certain satisfying conditions. Sixue Bai, Xinxi Dai [6] presented 
a method called P-matrix algorithm to generate the frequent 
itemsets. It is found that the P-Matrix algorithm is more 
efficient and fast algorithm than Apriori algorithm to generate 
frequent itemsets. 

 
In this paper, a new method based on transactional matrix is 
presented to find the association rules from the large 
transactional database. In this approach a transactional matrix is 
generated directly from the database and then frequent itemsets 
and support of each frequent itemset is generated directly from 
the transactional matrix . It is found that the new proposed 
approach finds the frequent itemsets more efficiently. The 
performance of new method is compared with that of Apriori 
algorithm with the help of an example.  

2.  DESCRIPTION OF THE CLASSICAL 

APRIORI ALGORITHM 

Apriori algorithm employs an iterative approach known as 
level-wise search, where k-itemsets are used to explore (k+1)-
itemsets. First, the set of frequent 1-itemsets L1 is found. Next, 
L1 is used find the set of  frequent 2-itemsets L2. Then L2 is 
used to find the set of frequent 3-itemsets L3.The method 
iterates like this till no more frequent k-itemsets are found. 

 
Apriori algorithm finds the frequent itemsets from candidate 
itemsets. It is executed in two steps: first, it retrieves all the 
frequent itemsets from the database by considering those 
itemsets whose support is not smaller than the minimum support 
(min_sup). Secondly, it generates the association rules 
satisfying the minimum confidence (min_conf) from the 
frequent itemsets generated in first step. The first step consists 
of join and pruning action.  While joining, the candidate set Ck 
is produced by joining Lk-1 with itself and pruning the 
candidate sets by applying the Apriori property i.e. All the non-
empty subsets of a frequent itemset must also be frequent.  
 
The pseudo code for generation of frequent itemsets is given 
below. 
 
Ck: Candidate itemset of size k 
Lk: Frequent itemset of size k 
{ 

L1= frequent 1-itemset 
For (k=1; k! =NULL; k++) 
  { 
     Ck+1=Join Lk with Lk to generate Ck+1; 
      Lk+1= Candidate in Ck+1 with support greater than  

          or equal to min support;      
  } 
 End; 
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Return Lk; 
} 

   An example of All Electronics transactional database D 
[1] is presented below in TABLE I to specify the process of 
Apriori Algorithm. Let minimum support value be 2 
(min_sup=2) and minimum confidence (min_conf) be 50% 
(min_conf=50%).  
 
The process of generating frequent itemsets by Apriori 
algorithm is shown below in Figure 1. 

TABLE  I.     ALL ELECTRONICS TRANSACTIONAL DATABASE   

TID Itemsets              

T001 

T002 

T003 
T004 

T005 

T006 
T007 

T008 

T009 

I1, I2, I5 

I2, I4 

I2, I3 
I1, I2, I4 

I1, I3 

I2, I3 
I1, I3 

I1, I2, I3, I5 

I1, I2, I3 

 

C1 L1 

Itemsets         Support 
    I1                    6 

    I2                    7 

    I3                    6 
    I4                    2 

    I5                    2 

Itemsets         Support 
     I1                    6 

     I2                    7 

     I3                    6 
     I4                    2 

     I5                    2 

C2 L2 

Itemsets         Support 

 I1, I2               4 

 I1, I3               4 
 I1, I4               1 

 I1, I5               2 

 I2, I3               4 
 I2, I4               2 

 I2, I5               2 

 I3, I4               0 
 I3, I5               1 

 I4, I5               0 

Itemsets         Support 

 I1, I2               4 

 I1, I3               4 
 I1, I5               2 

 I2, I3               4 

 I2, I4               2 
 I2, I5               2 

 

  

C3 L3 

Itemsets         Support 
  I1, I2, I3         2 

  I1, I2, I5         2 

   Itemsets         Support         
    I1, I2, I3          2 

     I1, I2, I5         2         

    

Figure 1.  Generation of frequent itemsets by applying 

Apriori    Algorithm        

             In Apriori algorithm it is found that in the join step, 

Lk+1 is produced from Ck+1, which is produced by joining of 

Lk with itself. So it may produce large number of candidate 

itemsets. For example if there are 104 frequent 1-itemsets 

Apriori algorithm may produce 107 candidate2-itemsets while 

performing join operation [1]. So with large database the 

number of candidate itemsets generated by Apriori algorithm is 

too large and it  scans  the database too many times.              

3.  PROPOSED ALGORITHM 

In this method the frequent itemsets are generated directly from 
the matrix which is generated from the transactional database. 
The matrix formed in this method is called as Transactional 
Matrix T shown below in Figure 2, where T1, T2, T3, Ti, Tn 
represents the various transactions; I1, I2, I3, Ik, Im represents 
the various items occurring in the transactional database. Rep 
represents the number of times the transaction is repeated in the 
transactional database. The entries y11, y12, y13 …… and so on 
represent either 1 or 0. If a transaction contains  the item 

mentioned in the column then the value of that item in the 
corresponding row is written as 1 otherwise  0. 
 
The proposed algorithm uses two properties: 
1. All the non empty subsets of a frequent itemset must also be 
frequent.  
So, there is no need to consider those frequent itemsets which 
are having non frequent subsets. 
2. Number of times transaction repeated in the database is 
represented by the count in the repetition column of the 
Transactional matrix. 
So, there is no need to add the repeated transaction again into 
the transactional matrix. 

  
               I1        I2         I3     Ik….  Im      rep 
 
    T1      y11       y12       y13

        y1k         y1m      r1               
 

    T2       y21      y22      y23
        y2k          y2m       r2               

 
      …        ….      …..    …..     ….      …..     … 
 
     Ti       yi1       yi2       yi3

       yik           yim        ri 

     …  
      Tn     yn1       yn2       yn3

       ynk            ynm       rn 

Figure 2.  Generation of Transactional matrix  T      

The  steps of proposed algorithm are as follows: 
1.First scan the database to find the different items occurring in 
the database and then make the transactional matrix by writing  
all the transactions along the row side and all the items 
occurring  in the database along the column side. Don’t repeat 
the transaction in the transactional matrix. If a transaction is 
occurring more than once in the transactional database then 
update the rep column of the transactional matrix accordingly 
with respect to the particular transaction. If the transaction 
doesn’t repeat then rep i.e. repetition value for the transaction is 
set to 0. 
 
2. Now complete the Transactional matrix, if the transaction 
contains the item mentioned in the column then write 1 
otherwise 0 in the row corresponding to that transaction. 
 
3. The candidate set C1 is generated directly from the 
transactional matrix and the support count value is counted by 
counting the occurrence of particular item in the transactional 
matrix. If a transaction has rep value 1 or some value other than 
zero i.e. transaction  is repeated more than once in the database 
then support count must be incremented by rep value for that 
particular row item. 
 
4. For generation of L1, use C1. Move all those transactions 
from C1 to L1 whose support count value is not less than 
min_support. 
 
5. Now for the generation of C2,  consider the transactional 
matrix again. Scan each row of the transactional matrix in such 
a way so as  to generate 2-itemsets by considering the 
combinations of two items out of those items of the row which 
have value of 1. Write all those 2-itemsets in the candidate 
itemset table C2. Then find the support count of each 2-itemset 
generated by using transactional matrix. Then move only those 
itemsets from C2 to L2 whose support count value is not less 
than minimum support.  
 
6. Similarly generate L3, L4….and so on. 
NOTE: While generating  itemsets, it is also considered not to 
count the support of  those itemsets which are not frequent   and 

exclude them from candidate set straight way. 
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4. COMPARISON OF  THE PROPOSED 

ALGORITHM  
Comparison between the Apriori algorithm and new proposed 

method is presented with the help of an example assumed 

above. The  formation of  the transactional matrix T and 

generation of frequent itemsets by the proposed method is 

shown below in Figure 3 and Figure 4.  

 
          I1       I2       I3        I4       I5    rep 

 
          I1 I2 I5      1          1          0

          0              1       0            
              I2 I4      0          1          0

          1               0       0               
          I1 I2 I4      1          1          0

          1              0       0  
              I1 I3      1          0          1

          0               0       1              
              I2 I3      0          1          1

          0               0       1               
      I1 I2 I3 I5     1          1          1

          0               1       0  
          I1 I2 I3      1         1          1

          0               0       0 
                           

Figure 3 Generation of Transactional matrix  T                              

Items 

combination 

C1 L1 

     Itemsets 

I1 
I2 

I3 

I4 
I5 

Itemsets    Support 

    I1                    6 
    I2                    7 

    I3                    6 

    I4                    2 
    I5                    2 

 

 

Itemsets       Support 

     I1                    6 
     I2                    7 

     I3                    6 

     I4                    2 
     I5                    2 

 

 
 

Items 

combination 

C2 L2 

Itemsets 
I1, I2 

I1, I5 

I2, I5 
I2, I4 

I1, I4 

I1, I3 
I2, I3 

I3, I5 

 

Itemsets    Support 
 I1, I2               4 

 I1, I5               2 

 I2, I5               2 
 I2, I4               2 

 I1, I4               1 

 I1, I3               4 
 I2, I3               4 

 I3, I5               1 

  

Itemsets      Support 
 I1, I2               4 

 I1, I5               2 

 I2, I5               2 
 I2, I4               2 

 I1, I3               4 

 I2, I3               4 
 

  

Items 

combination 

C3 L3 

Itemsets 

I1, I2, I5 

I1, I2, I4 

I1, I2, I3 

I2, I3, I5 
I1, I3, I5 

Itemsets    Support 

  I1, I2, I3         2 

  I1, I2, I5         2 

   

 

   Itemsets     Support         

    I1, I2, I5          2 

     I1, I2, I3         2    

 

 
 

 

    

Items 

combination 

C4 L4 

Itemsets 

I1, I2, I3, I5 

Itemsets    Support 

  

   Itemsets     Support         

 
 

 

 
    

Figure 4 Generation of Frequent itemsets by applying New 

Method 

In this method first transactional matrix T is generated as 

shown above in Figure 3.  It is found that transactional 

database shown in TABLE  I have same set of items in {T003, 

T006} and {T005, T007} therefore they are considered only 

once in the transactional matrix T and their respective 

repetition value is set to 1 as they have one repetition in there 

occurrence . Now when ever any itemset of these transactions 

is considered their support count value is incremented by the 

value of repetition counter. The generation of frequent itemsets 

is shown in Figure 4. For C1 the items combinations {I1}; 

{I2}; {I3}; {I4}; and {I5} are considered and then their 

respective support count is counted by using transactional 

matrix T. It is found that all the items in C1 have the support 

count more than min_sup. Therefore, Move all the items of C1 

to L1. For generation of L2 ,scan every row of the transactional 

matrix and consider all the 2-itemsets combinations  of the 

elements which have value 1 in the rows. Then count the 

support for each itemset and move only those itemsets from C2 

to L2 whose support is not less than min_sup. Therefore, 

itemsets {I1, I4}; {I3, I5} are not moved to L2. Next, Consider 

all the 3-itemsets combinations of the items having value 1 in 

the rows.The various combinations possible are {I1, I2, I5}; 

{I1, I2, I4}; {I1, I2, I3}; {I2, I3, I5}; {I1, I3, I5}. Now, by 

using first property i.e. all the non empty subsets of a frequent 

itemset must also be frequent,it is found that itemsets {I1, I2, 

I4};{I2, I3, I5};{I1, I3, I5} contain subsets which are not 

frequent. Therefore these itemsets are not included in C3. C3 

will contain {I1, I2, I3} and {I1, I2, I5}. Then count the 

support of these itemsets by using transactional matrix 

T.Similarly, 4-itemsets combinations possible is considered i.e. 

{I1, I2, I3, I5}. This itemset doesn’t satisfy the first property of 

this method. Therefore C4=NULL and L4= NULL. Hence all 

the frequent itemsets are generated. 

5. CONCLUSION 

The association rule mining is the process of finding out 

relationship between data from a large existing database. 

Apriori algorithm suffers from two limitations of large number 

of candidate itemsets generation and database is scanned too 

many times. The proposed new method based on transactional 

matrix provided in this paper solves both these problems of 

Apriori algorithm. It helps in mining association rules 

efficiently. In this new method once the transactional matrix is 

generated it is easy to generate the frequent itemsets directly 

from the transactional matrix. 
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