
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.7, February 2012

35

A Novel Scalable Group Key Management Protocol

Amrutasagar Kavarthapu

Gudlavalleru Engineering College
Gudlavalleru 521356

Andhra Pradesh, India

Seshagirirao Ganta
Gudlavalleru Engineering College

Gudlavalleru 521356
Andhra Pradesh, India

ABSTRACT

Secure and reliable group communication is an active area of

research. The main issue in secure group communication is

group dynamics and key management. Group key

management brings challenges on scalability for multicast

security. Member joining and member leaving from the group

is the main challenge in designing secure and scalable group

communication for dynamic update of keys. Most of the

proposed solutions are not considering this parameter and so

suffer from the one-affects-n scalability problem. In this

paper, we present a new group key management protocol and

e x p re s s t hat it has better scalability when compared with

other important protocols.

General Terms

Network security.

Keywords

Group communications, group key management, key,

multicast security and scalability.

1. INTRODUCTION
Multicasting is nothing but delivery of messages to a group of

destination computers simultaneously in a single transmission

from a source. Now a day‟s Multicast applications have

grown and greatly influenced our life along with the growth of

the Internet. Examples of such applications include

teleconference, information services, and distributed

interactive simulation. As an important and mandatory

building block for multicast applications, multicast security

has been extensively researched in the past decades for

protecting multicast communications. The research on

multicast security addresses authentication, confidentiality,

and access control, among other areas, where group key

management is a key component. However, scalability is still

a hard problem and a sizable challenge for group key

management technologies. To make sure that group

communication confidentiality, a group key management

protocol must create and distribute a symmetric encryption

key called traffic encryption key (TEK) or group key. In

addition to the group key secrecy, the group key management

protocol must provide forward secrecy and backward secrecy.

Forward secrecy prevents an accessing current

communication by old member after it leaves from the group.

Backward secrecy prevents an accessing of the

communication sent before a new member joins to the group.

To do so, a rekey process should be performed after every join

or leave operation within the secure group. It consists in

generating a new TEK and distributing it to all group

members. The main problem with any rekey technique is

scalability: as the rekey process should be performed after

every member join or leave, the computational and

communication overhead induced may be important in case of

frequent join and leave operation to group.

In this paper we propose A Novel Scalable Group Key

Management Protocol based on Chinese Remainder Theorem

(CRT) and a hierarchical graph B-Tree, in which each node

consists of keys and a modulus. The new protocol reduces

number of rekeying operations from 𝑙𝑜𝑔2
𝑛 to 𝑙𝑜𝑔𝑚

𝑛 when

compared with the SGKMP [1], where n is the number of leaf

nodes and m is the order of the B-Tree. In this paper we are

taken order of B-Tree is 3(i.e. m=3).

The remainder of the paper is organized as follows. Section 2

presents our new protocol. Section 3 presents compares the

new protocol with others. Section 4 shows the testing

performance of the new protocol. Section 5 gives our

conclusion.

2. A NOVEL SCALABLE GROUP KEY

MANAGEMENT PROTOCOL
Our novel scalable group key management protocol

(NSGKMP) is based on the following: the Chinese Remainder

Theorem and a hierarchical graph B-Tree, in which each node

contains two keys and a modulus. The protocol is designed to

minimize Re-keying operations.

2.1 Chinese Remainder Theorem
Let m1,m2, ...mn be n positive integers where they are pair wise

relatively prime (i.e.gcd(mi,mj)=1 for i ≠ j, 1≤i,j≤n), R1,R2,

...Rn be any positive integers, and M=m1m2...mn. Then the set

of linear congruous equations X≡R1 mod m1, ...X≡Rn mod mn

have a unique solution as: X= 𝑅𝑛
𝑖=1 𝑀𝑖𝑦𝑖mod M, where

Mi=M/mi and yi=𝑀𝑖
−1 mod mi..

In the new protocol, the keys and moduli are constructed as a

B-tree and maintained by the key server. Here each node of

the B-Tree in the new protocol is assigned three values: two

keys and a modulus. Figure 1 depicts the key and modulus

graph, where TEK is a traffic encryption key,𝑘𝑖𝑗 is a key

encryption key, and 𝑚𝑖𝑗 is a modulus.

2.2 Moduli Maintenance
The key server needs to store 3𝑙𝑜𝑔3

𝑛
 moduli and each

member needs to store 𝑙𝑜𝑔3
𝑛 moduli but they do not need to

keep the moduli secret. The sibling nodes in the tree graph are

assigned with three different moduli (i.e.𝑚𝑖1 ,𝑚𝑖2 and

𝑚𝑖3 where i is the depth of the tree) and the nodes in the

different level of the tree are assigned with the different

moduli but each three of siblings at the same tree depth are

assigned with the same three moduli under the different

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.7, February 2012

36

Fig 1: A B-Tree with nodes contains keys and modulus

parents (see Figure 1). This means there are only 3𝑙𝑜𝑔3
𝑛

different moduli in the B-tree graph, i.e.𝑚𝑖𝑗 (1≤i≤𝑙𝑜𝑔3
𝑛

,

j=1,2,3) where i is the depth of the node in the tree, and the

nodes (except the root) on a path from a leaf to the root and its

direct children exactly cover all moduli. For instance, in

Figure 1, for a path from 𝑢1 to the root, the moduli on the

path include 𝑚11 and 𝑚21 , and the moduli on its direct

children include 𝑚12 ,𝑚13 ,𝑚22and 𝑚23 . In addition, all

different moduli in the tree graph should be pair wise

relatively prime (i.e., gcd(𝑚𝑖𝑗𝑚𝑠𝑡 ,)=1 for i≠s or j≠t), and

each modulus should be bigger than the key encryption value,

i.e., 𝑚𝑖𝑗 >𝐸𝑘𝑖𝑙
(𝑘𝑠𝑡) where 𝑚𝑖𝑗 and 𝑘𝑖𝑙 belong to the same

node and 𝑘𝑠𝑡belongs to its parent node.

2.3 Key Maintenance
The key server needs to store 3n-2 keys, i.e., TEK and

𝑘𝑖𝑗 (1≤i≤𝑙𝑜𝑔3
𝑛 , 1≤j≤3𝑖) where i is the depth of the node in the

tree and j is the ordinal number of the node in the 𝑖𝑡𝑕depth of

the tree, and each member needs to store 𝑙𝑜𝑔3
𝑛 keys. The key

server shares the keys with each member on the path from its

leaf to the root. The keys on its path from the leaf to the root

need to be updated in the protocol when a member joins or

leaves the group but all moduli must be kept fixed[8].

To update the keys on the tree graph, the key server generates

a new key for each update node and encrypts it with its

children keys on its path from the leaf to the root. For

instance, the key server needs to generate new keys {𝑇𝐸𝐾′,

𝑘𝑖𝑙
′ } to update {TEK,𝑘𝑖𝑙 } for the arrival of member 𝑢𝑑 (its leaf

key is 𝑘𝑤𝑑 ,w=𝑙𝑜𝑔3
𝑛) to the group, where 1≤i≤𝑙𝑜𝑔3

𝑛 and

l= 2𝑖2 + 1 𝑑/𝑛 , and encrypts the updated keys using the

following formula,

Where

 e= (𝑚2 − 1)𝑑/(𝑛 − 𝑖 − 1) and v= 𝑚𝑖𝑑/𝑛 .

 𝐸𝑘𝑠𝑡
 𝑘𝑖𝑙

′ if 1≤i<𝑙𝑜𝑔3
𝑛 ,t≠e

where s=i+1,t=3l-2 or t=3l-1 or

t=3l or t=3l+1 if l is odd

 𝐾𝑠𝑡= otherwise t=3l-1 or t=3l

 𝐸𝑘𝑠𝑡
′ 𝑘𝑖𝑙

′ if 1≤i<𝑙𝑜𝑔3
𝑛 ,t=e where s=i+1

 𝐸𝑘𝑠𝑡
 𝑇𝐸𝐾′ if l≠v , where s=1

 𝐸𝑘𝑠𝑡
′ 𝑇𝐸𝐾′ if l=v, where s=1

The key server then calculates a lock L as follows and

multicasts the lock with the indices of keys (i.e., st in the

following formula) to all valid members.

L= 𝐾𝑠𝑡
𝑧+5
𝑡=𝑧 𝑀𝑠𝑗𝑦𝑠𝑗

𝑙𝑜𝑔3
𝑛

𝑠=1 mod M.

Where

z=6a(s-1) +1

𝑎 =
 𝑑/6 − 1, 𝑖𝑓 𝑑 𝑖𝑠 6 𝑜𝑟 12 𝑜𝑟 18 𝑜𝑟 24
 𝑑/6 , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

𝑗 =
1, 𝑖𝑓 𝑡 ≡ 1𝑚𝑜𝑑 3
2, 𝑖𝑓 𝑡 ≡ 2𝑚𝑜𝑑 3
3, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

M= 𝑚𝑠𝑗
3
𝑗=1

𝑙𝑜𝑔3
𝑛

𝑠=1 ,𝑀𝑠𝑗 = 𝑀/𝑚𝑠𝑗 and

 𝑦𝑠𝑗 = 𝑀𝑠𝑗
−1𝑚𝑜𝑑 𝑚𝑠𝑗 .

Each member decrypts the updated traffic encryption key and

related key encryption keys based on their own moduli and

keys[8].

For the departure of member ud from the group, the process is

as same as the above except calculating Kwd (i.e., Kwd=0).

As an illustration, we are giving the following example for the

Re-key process in Figure 1, where the member u18 requests to

join the group. The key server generates new keys {𝑇𝐸𝐾′,𝑘16
′ }

to update {TEK, k16} and does the following encryption:

𝐾218 = 𝐸𝑘218
 𝑘16 ,𝐾217 = 𝐸𝑘217

 𝑘16 ,𝐾16 = 𝐸𝑘16
′ 𝑇𝐸𝐾′ ,

𝐾15 = 𝐸𝑘15
′ 𝑇𝐸𝐾′ .

Update member

m23 m22 m21 m23 m22 m21 m23 m22 m21

m13 m12 m11

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18

 k15 k16 k13 k14 k11 k12

 TEK TEK

 k21 k22 k23 k24 k25 k26 k27 k28 k29 k210 k211 k212 k213 k214 k215 k216 k217 k218

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.7, February 2012

37

The key server then calculates a lock as

L=𝐾218𝑀23𝑦23+𝐾217𝑀23𝑦23+𝐾216𝑀22𝑦22+𝐾215𝑀22𝑦22+

𝐾214𝑀21𝑦21+𝐾213𝑀21𝑦21+𝐾16𝑀13𝑦13+𝐾15𝑀13𝑦13+

𝐾14𝑀12𝑦12+𝐾13𝑀12𝑦12+𝐾12𝑀11𝑦11+𝐾11𝑀11𝑦11 mod M,

where M=m11m12m13m21m22m23,𝑀𝑖𝑗 =M/𝑚𝑖𝑗 ,

 𝑦𝑖𝑗 = 𝑀𝑖𝑗
−1 𝑚𝑜𝑑 𝑚𝑖𝑗 .

In the protocol, we can see that the key server uses the same

modulus (M) and parameters (𝑀𝑖𝑗 , 𝑦𝑖𝑗) to calculate the lock

for any Re-key process but the key encryption value (i.e.,𝐾𝑠𝑡)

for calculating the lock are changed based on the Re-key

requested by the different members. This means the key

server can pre-calculate the modulus (M) and parameters

(𝑀𝑖𝑗 ,𝑦𝑖𝑗) to be used for later Re-key processing steps and

only needs to calculate them once for a fixed tree graph.

3. SCALABILITY OF GROUP KEY

MANAGEMENT PROTOCOLS
In order to measure the scalability of group key management

protocols more accurately, we propose the following

scalability metrics: „storage‟, Level of processing Difficulty

and „number of Re-keying operations‟. Storage measures the

total number of keys maintained by the key server. The Level

of processing Difficulty indicates applicability for small

mobile devices. The number of rekeying operations is the

number of new keys are generated due to a member join or

leaving from the group. Table 1 gives a comparison on level

of processing difficulty. Table 2 gives a comparison of the

new protocol with the SGKMP[8]. Table 3 gives sample

values for 𝑙𝑜𝑔𝑚
𝑛 .

In [1] binary tree structure is used. When the group is large,

the number of levels in the binary tree will be more which

increases number of keys at member. Extending this scheme

to B-Tree will reduce the height of the tree reducing number

of keys at each member. At the same time we should consider

server side storage i.e. number of keys at the level of the tree.

In [1] 𝑙𝑜𝑔2
𝑛 keys are maintained by the every member in the

tree, extending the scheme to B-tree will result in maintaining

𝑙𝑜𝑔𝑚
𝑛 keys by the members of the B-tree (where m is the order

of B-tree). In [3] m-way tree structure is used, it will also

reduce the height of the tree, here m keys are maintained by

the each member, but in B-Tree scheme the member need to

maintain only 𝑙𝑜𝑔𝑚
𝑛 keys. In [3] number of keys at server in

m-ary tree in terms of d can be represented as m*(d/𝑙𝑜𝑔2
𝑚),

where d is the height of the tree. According to [3] m-ary tree

can maintain less number of keys at server when m≤4, but in

B-tree scheme if m increases it will maintain less number of

keys in respect to number of members in the group.

From the Table 2 we see that NSGKMP reduces the number

of Re-keying operations from 𝑙𝑜𝑔2
𝑛 to 𝑙𝑜𝑔3

𝑛 when compared

with [1], NSGKMP can store more number of keys when

compared with the [1].

From the Table IV we see that NSGKMP need to store less

number of keys at the key server when compared with the [3].

Table 1. A comparison of Level of Processing Difficulty

Protocols GKMP
Secure

Lock LKH SGKMP
NSGK

MP

Level of

processing

Difficulty

Low

High

Low

Low

Low

Table 2. A comparison of NSGKMP with SGKMP

Scalability metrics

Number of Re-

keying operations
Storage

Protocols J L

NSGKMP 𝑙𝑜𝑔3
𝑛 3n-2

SGKMP 𝑙𝑜𝑔2
𝑛 2n-1

 J: Join; L: Leave

Table 3. Sample values for 𝒍𝒐𝒈𝟑
𝒏

n

m

2 3 4 5 6 7 8

2 1 1.58 2 2.32 2.58 2.80 3

3 0.63 1 1.26 1.46 1.63 1.77 1.89

5 0.43 0.68 0.86 1 1.11 1.20 1.29

Table 4. Comparison of NSGKMP with NSMGKM

Number of keys need to

maintain at the key server NSGKMP NSMGKM
m

2 3.16 4

3 2 3.79

5 1.36 4.31

7 1.12 5

4. PERFORMANCE OF THE NEW

PROTOCOL
In this session we provide overview of simulation model and

some of the results by comparing NSGKMP with the protocol

of [1].From Figure 2 NSGKMP has the less number of Re-

keying operations when a member joins or leave from the

group. From Figure 3 NSGKMP needs to store less number of

keys when compared with the [3].

Fig 2: Number of Re-keying operations Vs group size

Fig 3: Order of tree Vs Number of keys needs to maintain

at the key server

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.7, February 2012

38

5. CONCLUSION
To improve the scalability of the Group key management we

propose A Novel Scalability Group Key Management

Protocol and demonstrates it has better scalability in terms of

number of Re-keying operations and storage (from

Calculations in Table II). If we increase the order of B-Tree

then we can automatically decrease number of Re-keying

operations further more.

6. REFERENCES
[1] Ronggong Song and George O. M. Yee, “A Scalable

Group Key Management Protocol (SGKMP)”, IEEE

Communication Letters, VOL. 12, NO. 7, pp.541-543,

JULY 2008.

[2] D. Wallner, E. Harder, and R. Agee, “Key management

for multicast: issues and architecture,” National Security

Agency, RFC 2627, June 1999.

[3] R. Varalakshmi and Dr. V. Rhymend Uthariaraj, “A New

Secure Multicast Group Key Management

(NSMGKM)Using Gray Code” IEEE –International

Conference on Recent Trends in Information

Technology, ICRTIT 2011, Anna University, june 2011.

[4] G. H. Chiou and W. T. Chen, “Secure broadcast using

secure lock,” IEEETrans. Software Engineering, vol. 15,

no. 8, pp. 929–934, Aug. 1989.

[5] H. Harney and C. Muckenhirn, “Group Key Management

Protocol (GKMP) architecture,” RFC 2093, July 1997.

[6] H. Harney and C. Muckenhirn, “Group Key Management

Protocol (GKMP) specification,” RFC 2094, July 1997.

[7] D.SAMANTHA, Classic Data Structures, Prentice-Hall

of India Private Limited, New Delhi-110001, 2006.

[8] M. Rameeya and S. Oswalt, “Tree Based Scalable Secure

Group Communication”. Bonfring International Journal

of Research in Communication Engineering, Vol. 1,

Special Issue, December 2011.

