
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

47

Comparing CORBA and Web-Services in view of a

Service Oriented Architecture

Hayyan R. Sheikh

 Regis University,
Graduate School of Computer

and Information Sciences.

ABSTRACT

The concept of Service Oriented Architecture revolves around

registering services as tasks. These tasks are accomplished

collectively by various disparate components seamlessly

connected to one another. The task of interlinking these

components may be considered amongst the most convoluted

and difficult tasks currently faced by software practitioners.

This paper attempts to show that although middleware

technologies can be solely utilized to develop service oriented

architecture, however such architecture would severely lack

quality, interoperability and ease of implementation. In order

to resolve these complexities and complications this paper

proposes Web Services as an alternative to Middleware, for

the realization of a fully functional interoperable and an

automated SOA which conforms to the characteristics of a

SOA. This paper provides an abstract implementation model

of a SOA using both middleware and web services. It then

attempts to point out the implementation and accepted

benefits of the latter, especially when legacy applications are

involved. Emphasize is laid out on the significance of

interoperability since it assists in mobility and other corporate

benefits. The paper concludes that when interoperability along

with its benefits of mobility, expansion, costs, simplicity and

enterprise integration are required in the construction of a

SOA then web services should be the definite integration

choice. The paper also highlights the importance of object

oriented middleware, along with situations in which it might

be preferred over web services.

Keywords

Middleware, CORBA, Web Services, SOA, Interoperability

1. INTRODUCTION
SOA is a popular methodology for seamlessly integrating

heterogeneous components with each other, leading to the

concept of service consumers and service providers.

According to this methodology a service can individually or

with the help of other services deliver and accomplish various

business functionalities and objectives.

This service may itself be a functionality of a centralized

application, or it may be constituted from the functionalities

of various disparate distributed applications that may be

spread over multiple heterogeneous enterprises.

Once established these services are then exposed for

utilization to consumers, which themselves may be other

services. Thus the application of services for shaping a SOA

involves two steps, the first involves the interlinking of

disparate applications with one another and the second step

consists of exposing these services for usability purposes.

Currently majority of software practitioners either employ

object oriented middleware components (COM, EJB and

CORBA) or web services for interlinking disparate

applications and then exposing them as services, thus reusing

existing applications saving both time and effort. Although

both of these techniques are feasible for establishing a SOA,

however a service architecture developed exclusively by

middle ware would not only severely lack critical SOA

qualities such as interoperability, ease of implementation,

configuration and connectivity but it would also strictly limit

the potential growth of a business enterprise in a number of

ways including the inability of an organization to freely

integrate with other organizations and potential business

entities functioning on different technology models.

Conversely an architecture model constructed from web

services is interoperable, business reliant and un-perplexed. It

offers ease of connectivity and is far more business friendly.

This paper is divided into three sections the second section

explains a service oriented architecture, its importance and

characteristics. The third section highlights the middleware

(EAI) approach to SOA. In view of the fact that the

fundamental concept behind any component interlinking

technology is to allow component reuse, this section provides

a functional sample of the mechanisms and hurdles involved

in establishing services using CORBA as a middleware

between legacy and modern applications. The fourth section

highlights how those drawbacks could be removed by

substituting middleware with Web Services.

2. SOA
Service Oriented Architecture assists in the development of

reusable components which are based on an existing

framework. This methodology basically compromises of an IT

infrastructure in which each loosely coupled heterogeneous

component supports interoperability and is independent.

These components have the ability to interact with one

another despite being developed in inconsistent platforms and

programming languages [1]. SOA facilitates and encourages

software practitioners into developing systems for users, who

would be shielded from the underlying software complexities

and still be able to take full advantage of the system [2]. By

employing this architecture, previous complex, manual and

tedious data processing tasks could be automated

2.1 Need for SOA
SOA caters to the demands of lighter, faster and more reliable

interoperability mechanisms along with B2B inter-

communication, assisting both the developers and the business

enterprises. A software developer can benefit from this

methodology by integrating and reusing existing

heterogeneous components with other components thus saving

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

48

time and effort. Moreover the developer is also shielded from

the underlying complexity and is capable of successfully

integrating complex components with one another despite

being oblivious to their internal working and structure. An

organization benefits by lower costs in IT infrastructure since

enterprise applications operating in SOA no longer need large

scale expensive mainframes for functioning, as the load can

be divided equally onto lighter machines.

This architecture extends the business functionality of an

enterprise by allowing B2B and B2C connectivity thus

opening new business prospects and diversifying the potential

customer base. Managers can benefit from SOA by securing a

greater customer base and easily integrating with other

enterprises.SOA can also prove to be beneficial to customers

as it could facilitate them with a list of available services that

could be graded on factors such as quality and cost. Since

SOA supports interoperability, customers can access these

services from modern light-weight devices.

2.2 Characteristics of a SOA
Abuosba and El-Sheikh state that “researchers have

provisioned various SOA implementations but a general

formal standardized definition of this methodology remains

absent”. SOA is not a specification but it is an implementation

methodology. There is no formal definition of SOA and to

date no formal specifications of its functions and

characteristics exist. The primary objective of SOA is to

address the problem of integrating heterogeneous components

to seamlessly integrate with each other, since this arduous task

is rarely easy and very challenging. Following is a list of

characteristics [4] that should be exhibited by services in a

SOA.

1-All the services in a particular system are autonomous and

self sufficient. Services can be dynamically located and

invoked during runtime.

2-Services support all modes of operation and are

interoperable. Services are distributed and can be accessed via

network.

3-Services should possess the tendency to expand and be

automated..

3. EAI APPROACH TO SOA
One of the fundamental motivations behind object oriented

EAI (Enterprise Application Integrators) was to boost

distributed computing by providing a mechanism of

communication between two heterogeneous, autonomous and

loosely coupled applications.

Geihs defines middleware as the “software layer between the

operating system including the basic communication protocols

and the distributed applications that interact via the network”.

This software infrastructure facilitates the interaction among

distributed software modules, in other words middleware

component facilitate the operating system with the ability to

communicate over the network [5][6]. None of these

proprietary integrators have ever been truly successful since

they provide a solution using a set of branded technologies

thus severely limiting its usability and compatibility. By using

proprietary technologies for integration purposes, developers

have to eventually confront the convoluted and the arduous

challenge of re-integrating an integrated solution thus

reducing an applications scalability and further intensifying its

perplexity [7].

In order to understand the limits and shortcomings of a SOA

built exclusively using middleware, it is necessary to

understand how middleware manages the flow of information

from one endpoint to another. Patterns such as the Proxy

Design Pattern and the Broker Architecture Pattern are

considerably similar to those employed by the proprietary

integrators. These patterns involve dividing an application

into various components. Armstrong et al. defines component

architecture as “a specification of a set of interfaces and rules

of interaction that govern the communication among

components and other necessary tools, such as repositories

and composition tools"[8].

3.1 Broker Architecture Pattern
The Broker architecture pattern depicted in Figure-1 is

basically an extension of the proxy design pattern and

addresses its shortcomings. The Broker architecture pattern

requires the presence of a broker which acts an intermediary

between the client and the server proxies. It should be noted

here that the client and server do not directly communicate

with the broker but instead use the client and the server

proxies as intercessors. Upon startup the broker registers the

server and assigns it a communication port. When the client

needs to communicate with the server, it passes the request to

the client proxy. The client proxy acquires the details of the

server from the broker, packages it with the request and

forwards it to the broker. The broker in return passes the

request to the Server Proxy which ultimately sends the request

to the Server. This cycle is followed in reverse for sending the

response to the client from the server. Once the broker

receives a response from the Server proxy, the broker passes

the response to the client proxy. The client proxy in turn

copies the result on to the clients memory for accessibility.

Most of the EAI integrators such as Microsoft COM+, OMG,

CORBA and Java RMI utilize patterns resembling the Broker

pattern for distributed computing [7].

Figure 1: Broker Architecture Pattern

3.2 Distributed computing using Broker

Architecture Pattern
Consider the example of a highly automated hotel resort with

various branches in a particular city. Assume that the

enterprise application employed commonly by each branch

consists of separate application components for booking,

billing and scheduling each of which has been developed in

different environments. These applications have all been

integrated using object oriented middleware Figure-2. These

branches are interconnected to each other using proprietary

middleware technologies; in this case CORBA is employed.

An overview of their interconnections, which gradually grew

with the passage of time using middleware technology based

on the broker architecture pattern, is depicted in Figure-3.

.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

49

From the figure it is practically easy to point out the

drawbacks of implementing a wide scale distributed enterprise

relying purely on an object oriented proprietary middleware

technology. A total of 3 broker components will be involved

when interconnecting two branches, one broker in each

branch and an external broker. This shows that as the

application grows, the quantity of its connectors also increase,

in this case the proxy components and the broker components.

CORBA is considered to be the most interoperable

middleware currently available in the market [9]. The abstract

implementation depicted in Figure 4 , without dwelling into

the details of memory management and exception handling

demonstrates an oversimplified version of how two disparate

application (one being legacy) could be interconnected with

each other using CORBA as a middleware. The purpose of

this model other than giving a simplified overview of the

CORBA architecture and its implementation is to demonstrate

the complexities in type mapping along with location and

configuration dependencies. In this example, the functionality

of the Booking Application which provides details of rooms is

exposed as a service. This service is then accessed and

consumed by the Billing Application. The first stage involves

the generation of stubs and skeletons from an IDL file. These

stubs and skeletons are then added to the client and server

applications and act as intercessor proxies.

These proxies connect to the ORB naming service. The

naming service allows objects to be registered using friendly

names thus simplifying accessibility. However the naming

service needs to be configured properly before it can be

utilized. The Booking application is developed in C++ which

would demonstrate CORBA capability to integrate with native

code and the Billing Application in JAVA. The Booking

Application registers its service using a friendly name on the

Broker employing the naming service .The billing application

is provided with the address of the naming service of the

Broker Application. The comments in the code would assist in

understanding its functionality.

3.3 Drawbacks of wide scale integration

using middleware EAI
Some of the drawbacks of wide scale integration using

middleware are as follows

3.3.1 Lack of Distributed Transparency
The objective of middleware is to hide implementation details

and complexities from the applications employing it for the

purpose of distributed communication. However this objective

is not accomplished in the current scenario because every time

a new component is added and the overall software

architecture is extended various previous components will

have to be reconfigured to accommodate the changes thus

restricting dynamic connectivity along with an increase in

overall configuration perplexity. This is apparent from the

above CORBA example as the Billing application requires the

address or the IOR (Interoperable object Reference) of the

Booking application .It also needs to be updated every time

the Booking Application is migrated.

3.3.2 Implementation Complexity and a

Maintenance Nightmare
The primary benefit of a SOA is to reuse the functionalities of

existing legacy applications. CORBA no doubt achieves this

benefit but with the huge added cost of complexity. CORBA

to C++ mapping is extremely complex and requires a

considerable understanding and experience. CORBA based

applications can also prove to be a maintenance nightmare. It

can be seen from the above implementation example that the

proxy components of the applications are generated using the

CORBA IDL .If any object is later extended or its properties

changed the IDL file will need to be modified as a result all

the proxy components will need to replaced by the newer

ones..

3.3.3 Limited Connectivity
The above system only supports a single communication

(TCP/IP) protocol and does not support the concept of generic

connectivity. The term generic connectivity refers to

connectivity provided by modern portable devices such as cell

phones. If the concept of generic connectivity was supported

by this system, a user could simply run queries against the

system using a cell phone. The middleware currently available

does not support modern computing devices since they are too

large and resource costly to run in mobile devices with limited

resources [10].

3.3.4 Increase in dependency
From Figure-3 it can be seen that an additional broker

component is required to integrate two branches with each

other. Thus using object oriented propriety middle ware

increases dependency on additional software components and

to some extent additional infrastructure is also required.

Although two distributed CORBA based applications can

interact with one another using IIOP, however these

applications would not be able to utilize extensive features

facilitated by CORBA such as security and transactions [10].

Furthermore such applications require extensive configuration

and are highly dependent on other components thus

significantly reducing the chances of encountering CORBA

based calls from everyday conventional systems. It can also

be seen from the above example that the applications are

Figure 2: Three components integrated using

middleware used by a single branch

Figure 3: Interconnecting branches using middleware

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

50

completely dependent on the CORBA generated proxy

components.

3.3.5 High Runtime Environments and

Configuration
ORPC (Object Remote Procedures Call) protocols such as

DCOM and CORBA require highly efficient and a specific

runtime environment [11]. In the implementation example the

naming service needs to be explicitly configured for proper

functionality. In some scenarios CORBA middleware would

be more resource costly than the actual application itself.

3.3.6 Limited Interoperability
Popular available middleware’s such as COM (Component

Object Model), DCOM (Distributed COM), and COM+

middleware technologies are Microsoft specific and EJB

(Enterprise Java Beans) is Java specific and CORBA

(Common Object Request Broker Architecture) though is

language and platform independent however as mentioned

above the interoperability level between different CORBA

products are limited [9]. Hence it can be safely assumed that

the integration mechanism in Figure-4 between different

branches using middleware would be highly technology and

platform dependant

4. WEB SERVICES
Web services are an emerging standard focused on providing

disparate application components the ability to integrate with

each other using open XML standards for communication

[11]. Web Services could be considered as an alternative to

CORBA since it provides a mechanism for disparate

components to communicate with each other. The following

section discusses the web services framework along with its

working and potential benefits over object oriented

proprietary middleware for developing enterprise friendly

service oriented architecture.

4.1 Need for Web Services
The initial working of middle ware components consisted of

developing "wrappers" around objects to expose visibility and

then using application "connectors" to connect and integrate

functionality of these components with other application

components. However as enterprise applications and

functionality requirements grew larger the number of these

connectors also grew exponentially, as shown in the hotel

resort example above. The exponential rise in these

"component connectors" not only increased application

requirement and dependencies but it also complicated

application architecture. In order to address these

complications the SOA methodology primarily using web

services is adopted. This methodology involves exposing the

generic functionality of an autonomous heterogeneous

application so that it may be used by other applications as a

loosely coupled component, thus reducing the number of

inter-application connectors from n(n-1) to n connectors since

the number of connectors tend to grow exponentially during

expansion [3] .

4.2 Web Services Framework
The Web Services Framework encapsulates three basic

categories - communication protocols, service descriptions,

and service discovery. The communication protocols

determine how data should be exchanged and transported

among different components in a SOA, service descriptions

provide details of a particular service and the service directory

provides a collective list of available services. An important

standard from each category is discussed below.

4.2.1 Communication Protocol – SOAP
Businesses now days interact with each other and its

customers mostly using the internet, hence it is necessary for

the communication mechanism to be platform independent,

international, secure and lightweight for speed and flexibility

thus setting a standard. Currently one of the most popular

protocols which conform to the above mentioned qualities is

the Simple Object Access Protocol also known as SOAP.

SOAP facilitates interoperability among a wide range of

programs and platforms’, making existing applications and

components accessible to a broader range of users. SOAP is

built on existing open transport protocols like HTTP, SMTP

and MQSeries. However web services mostly employ the

Http communication protocol thus the name "web services".

SOAP is basically an XML based message which is

transported over a communication protocol having the

primary advantage of http interoperability when it comes to

component-component interaction.

4.2.2 Service Descriptions – WSDL
No doubt communication protocols in a Web Services

framework plays an integral role in transporting a message

across a distributed environment however this communication

protocol would be of no practical value if there was no way to

interact with a web service. Fortunately the method of

interaction with a web service is defined in the WSDL.WSDL

is an XML based specification for the Service Description

category of the Web Services Framework and is an acronym

for Windows Services Descriptive Language. The WSDL

provides a description of the service, this description includes

the name of the function to call along with the parameters to

pass and expect from a function. The WSDL highlights the

type of operation whether it’s a one way operation, request-

response, solicit-response or simply a notification operation.

The parameters types required by WSDL are also specified in

the WSDL file. This in turn shows that Web Services are

strongly typed. By utilizing the WSDL a consumer can

establish meaningful communication with a service provider.

4.2.3 Service Discovery – UDDI
The UDDI is similar to a phone directory of web services and

divides the information about web services into 3 categories

known as - white, yellow and green pages. The white pages

includes the contact details, the yellow pages provides the

names of services categorized by business and services types

and green pages provide technical details of services.

The UDDI registry basically consists of four data types that

include Business Entity, Business Service, Binding Template,

and the TModel. The information and details of a business

including the type of services provided is included in the

Business Entity. The business is the actual service provider.

The technical details for a web service are defined in the

Business Service and its binding Templates. Each Binding

Template contains a reference to one or more TModels.

TModels are a vital constituent of UDDI and serve as a

conformance aid to a particular category, specification or an

identifier system. .

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

51

 CORBA – IDL JAVA STUB (PROXY COMPONENT)

 CORBA BROKER – ORB (NAMING SERVICE)

 IDL

Generated

 CORBA – IDL C++ SKELETON (PROXY COMPONENT)

 C++ BASED – BOOKING APPLICATION

#include "CustObj.hh" /* omniOrb CORBA generated Header */
……
Int main(int argc, char **argv)
{
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv); //Use Default

//Reference the Portable Object Adapter
CORBA::Object_var obj = orb-resolve_initial_references("RootPOA");

PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

//Create the object that we want to share with other Applications
CustObj_implimentation *obj_ptr = new CustObj_implimentation();

CustObj_Cont vctor_ = QueryDatabase(); //Function Provided Below
obj_ptr->set_obj(vctor_);

PortableServer::ObjectId_var myechoid = poa->activate_object(obj_ptr);
obj = obj_ptr->_this();

bindObjectToName(orb, obj) ; obj_ptr->_remove_ref();
PortableServer::POAManager_var pman = poa->the_POAManager(); }
pman->activate();
orb->run();

 JAVA BASED – BILLING APPLICATION

 Figure 4: Abstract implementation of interlinking two different components using CORBA

Try
{
 Properties props = new Properties();
 props.put("org.omg.CORBA.ORBInitRef", "NameService=corbaname::XPA::2809");
 ORB orb = ORB.init((String[])null, props);
 String names[] = orb.list_initial_services();

 org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");
 NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
 NameComponent nc[] = new NameComponent[1];
 nc[0]=new NameComponent("obj","obj");

 TestIntImpl = TestIntHelper.narrow(ncRef.resolve(nc));
 CustObj[] obj=TestIntImpl.get_obj();

 for(int i=0 ; i<obj.length;i++)
 {
 System.out.println("Room No : " + obj[i].Room_no);
 System.out.println("Room Status : " + obj[i].Room_status);
 System.out.println("Room Type : " + obj[i].type);
 System.out.println("Daily Rent :" + obj[i].daily_rent);
 }
}
catch (Exception e) { System.out.println("ERROR : " + e) ;
e.printStackTrace(System.out);}

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

52

Figure 4: Abstract implementation of interlinking two different components using CORBA

/* This Function Binds a Friendly Name to the
Registered object in this case the naming service so
that it could be accessed easily by other Applications
Each object will have an id and a name*/

static CORBA::Boolean bindObjectToName
(CORBA::ORB_ptr orb, CORBA::Object_ptr objref)
{
 //Since We are using CORBA Naming Service
 CosNaming::NamingContextExt_var NContext;

 // Obtain a reference to the Name service:
 CORBA::Object_var obj;
 obj = orb->resolve_initial_references("NameService");

/*Narrow the reference returned.The object is still
not a naming context until itis narrowed – narrowing
can be considered as a typecast*/

 NContext = CosNaming::NamingContextExt::_narrow(obj);

 CosNaming::Name contextName;
 contextName.length(1);
 contextName[0].id = (const char*) "obj";
 contextName[0].kind = (const char*) "obj";

 // Bind the context to root.
 NContext ->bind(contextName,objref);
 return 1;
}

 C++ bindObjectToName() Function

/*This Function Queries the Database and return the object
The following example employs SOCI an open source library
to connect and query the database. The object types have
been generated by the IDL , furthermore CORBA has its own
object types such as sequences a substitute of vectors */

CustObj_Cont QueryDatabase()
{
 int count; CustObj_Cont vctor_ ;
 session sql(oracle, "service=orcl user=hayyan
 password=admin");
 sql << "select count(*) from booking", into(count);
 std::vector<int> Room_No(count);
 std::vector<int> Daily_Rent(count);
 std::vector<std::string> Room_Availability(count);
 std::vector<std::string> Room_Category(count);
 //Run a SQL Statement
 sql << "select * from booking",
 into(Daily_Rent), into(Room_Availability),
 into(Room_Category), into (Room_No);
 vctor_.length(count);
 for(int i=0 ; i<count;i++) {
 CustObj obja;
 obja.daily_rent = Daily_Rent.at(i);
 obja.Room_status= (Room_Availability.at(i)).c_str();
 obja.type= (Room_Category.at(i)).c_str();
 obja.Room_no = Room_No.at(i);
 vctor_[i]=obja; }
 return vctor_;
 }

 C++ QueryDatabase() Function

/*This code impliments the object and is based on the IDL File used for generating
 The stubs and skeletons by CORBA IDL */

class CustObj_implimentation : public POA_TestInt
{
private:
 CustObj_Cont_var VctorHolderVar; //Notice the object contains member variables. The properties of these
objects
 CustObj_Cont VctorHolder; //had been defined in the IDL , in case the properties change the IDL file will
 //need to be rebuilt and in source segmented the _var is a CORBA type and
 //resembles safe pointers. This allows CORBA to manage memory.
public:
 virtual CustObj_Cont* get_obj();
 virtual void set_obj(const ::CustObj_Cont& rx);
};

void CustObj_implimentation::set_obj(const ::CustObj_Cont& rx)
{VctorHolder = rx ; //make a copy}

CustObj_Cont* CustObj_implimentation::get_obj() throw (CORBA::SystemException)
{
 VctorHolderVar = new CustObj_Cont(VctorHolder);
 return VctorHolderVar._retn(); //Let CORBA manage Memory
};

 C++ BASED – OBJECT IMPLIMENTATION

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

53

Figure 5: Abstract implementation of interlinking two different components using Web services

 Try
 {
 //WebServices Client using JAX-WS RI
 //Generated Stubs and Skeletons from WSDL file

 HotelService hs = new HotelService();
 HotelPort port = hs.getHotelPort();
 ShowResponse resp = port.show(); //call the method
 List<RoomInfo> info_obj = resp.name;

 for(int i=0 ; i<info_obj.size() ;i++)
 {
 RoomInfo info_inst = info_obj.get(i);
 System.out.println("Room No : " + info_inst.roomNo);
 System.out.println("Room Status : " + info_inst.rStatus);
 System.out.println("Room Type : " + info_inst.rType);
 System.out.println("Daily Rent :" + info_inst.dRent);
 }
 }
 catch (Exception e)
 {e.printStackTrace();}

 JAVA BASED – BILLING APPLICATION

 CORBA – GENERATED JAVA STUB (PROXY COMPONENT)

 WEBSERVER

 WSAPI – IDL C SKELETON (PROXY COMPONENT)

HRESULT CALLBACK ShowCallback(

__in const WS_OPERATION_CONTEXT* _context,
 __out __deref __range(1, 4294967295) unsigned int* nameCount,
 __deref_out_ecount(*nameCount) RoomInfo** name,
 __in_opt const WS_ASYNC_CONTEXT* _asyncContext,
 __in_opt WS_ERROR* _error)
{
 session sql(oracle, "service=orcl user=hayyan password=admin");
 sql << "select count(*) from booking", into(count);
 std::vector<int> Room_No(count);
 std::vector<int> Daily_Rent(count);
 std::vector<std::string> Room_Availability(count);
 std::vector<std::string> Room_Category(count);

 sql << "select * from booking", into(Daily_Rent), into(Room_Availability),
into(Room_Category), into (Room_No);

*nameCount=count;
 RoomInfo* roomObj = new RoomInfo[count];

 for(int i=0 ; i<count; i++)
 {
 RoomInfo *RI = new RoomInfo();
 RI->DRent = Daily_Rent.at(i);
 RI->RStatus = Convert_funct(Room_Availability.at(i));
 RI->RType = Convert_funct(Room_Category.at(i));
 RI->RoomNo = Room_No.at(i);
 roomObj[i]=*RI;
 delete RI;
}

*name=roomObj; //Make it available
}//End function

 C++ BASED – BOOKING APPLICATION

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

54

4.3 Functioning of Web Services
Figure-6 shows the basic working and flow of a web service.

The first step involves discovering the service provider from a

directory; in this case UDDI is employed. Once the details of

a service provider are acquired and processed by a client, it

can then access the services abstract descriptor. Using WSDL

the client can analyze the parameter requirements of the

service provider (i.e. the parameter that the service requires as

an input and the parameters that will be returned).The final

step involves the client querying the service itself. The service

might return the results to the clients instantly or it might

query other services and then return the results.

4.4 Web Services - Distributed Computing
In section 3 a functional service oriented model was

developed using CORBA, the same functional model could be

developed using Web Services. In the model shown in Figure-

5, the native web service has been developed using WSAPI.

The skeletons and stubs have been generated by WSUTIL

library in native C. This service is interoperable and could

cater to the needs of various clients running on distinct

platforms. Different open source and mature libraries such as

GSOAP are also available that facilitate developing Web

services for C++ based applications. The Java based billing

application, acts as a client consumer and connects to the

service provider using JAX-WS. Objects and types are

defined in the WSDL including the mode and address of

communication. From the following model it can be seen that

consuming and constructing a web service is simpler and far

less complicating than connecting to a middleware CORBA

naming service. Furthermore no external configuration is

required as in the case of a naming service for CORBA based

components; also in most scenarios no external libraries are

necessary for implementation.

Figure 6: Client communication order – discover to

dispatch

4.5 BENEFITS OF WEB SERVICES
Some of the potential benefits of Web Services are as follows:

1. Web services allow service providers and vendors to sell

services over the internet simply by publishing in the

UDDI. Notice there is no need of external brokers.

Furthermore incase the server (service provider) is

migrated only the address in the WSDL needs to be

modified. Clients can therefore inquire the WSDL before

establishing a connection with the service provider.

Figure 5: Abstract implementation of interlinking two different components using Web services

int main()
{
HRESULT hr = S_OK;WsError error;
HR(error.Create(0,0)); // property count
hr = Run(L"http://+:81/Hotel", error); //Hosting Address
}

/*This function allocates the space necessary to host and expose the function as a Webservice – The
exposed function is attached to the proxy through a callback */

HRESULT Run(__in PCWSTR url,__in_opt WS_ERROR* error)
{
WsHeap heap; HR(heap.Create(1200, 0,0,0, error));
const WS_STRING address ={static_cast<ULONG>(wcslen(url)), const_cast<PWSTR>(url)};

//Bind the Generated Stub with Functions to call
HotelBindingFunctionTable functions ={ShowCallback};

WS_SERVICE_ENDPOINT* endpoint = 0;
HR(HotelBinding_CreateServiceEndpoint(0,&address,&functions,0,0,0,heap,&endpoint,error));
const WS_SERVICE_ENDPOINT* endpoints[] = { endpoint };

//Create an endpoint and establish a connection.
WsServiceHost serviceHost;
HR(serviceHost.Create(endpoints,_countof(endpoints),0, 0,error));
HR(serviceHost.Open(0, error));
wprintf(L"Press any key to STOP the server.");
_getch();
HR(serviceHost.Close(0, error));
return S_OK;
}

 C++ (Booking Application) Boot-Up

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.6, February 2012

55

2. In web services the interface is separated from the

implementation and platform. This allows ease of

maintenance, simplicity along with extensibility.

3. Web services as mentioned above employ the SOAP

protocol, which is based on XML. The XML standard is

generic and interoperable thus facilitating web services

with the same qualities of cross-platform and language

interoperability. In our distributed hotel resort example

all the interlinked applications (Booking, Scheduling and

Billing) were based on the same operating system

platform. Now if web services were employed this

limitation would have been removed.

4. Web services are license free, thus less costly as

compared to their propriety object oriented counter parts.

5. CONCLUSION
Implementing and integrating a distributed information

system spanning across multiple enterprises comes across

heterogeneity and distribution issues. In order to address these

issues either middleware services or web services are

employed. Both have their benefits and potential drawbacks.

Middleware services as the name implies resides in the middle

between the components as an intermediary and facilitates the

operating system to carry out distributed task with other

components that use the network. Some of the necessary

qualities expected from a middleware are outlined below [12]

1. Scalability: refers to supporting a large number of clients

and server which is a very crucial requirement for

internet based distributed applications. If all the

components of a system are considered scalable then the

system is also considered to be scalable. It should

manage memory and network resources efficiently. This

means that events should only be sent over the network if

a subscriber is interested in them.

2. Interoperability: The entire concept of middleware

revolves around the idea of interoperability, meaning that

heterogeneous components built in different languages

and running on different platforms are able to

communicate with one another instantly and efficiently.

3. Reliability: The characteristic of reliability is very

important in a middleware. Each component that

interacts with the middleware will have specific concerns

regarding consistency, reliability and guarantee of

message delivery. A middleware can only guarantee

delivery of a message if it includes features such as

component failure verification, failure bypass and fault

tolerance. These features ascertain that a message will be

delivered to its destination even if a component failure

occurs. Techniques such as persistent events and

replication help to make a more durable middleware

4. Usability: It is necessary that mechanism for integrating

with middleware in any programming language is clear

and fully documented. Furthermore the interfacing

application should be oblivious and decoupled from the

underlying messaging complexities and internal event

architecture of the middleware.

5. Expressiveness: Applications based on distributive

components profit from articulated defined mechanisms

for dealing with and subscribing to events.

6. REFERENCES
[1] Newcomer.E , Lomow G., (2005). Understanding SOA

with Web Services, Addison Wesley.

[2] Foster, I. (2005, May 6). Service-Oriented Science.

Science , 308

[3] Welke, R., Hirschheim R. & Schwarz

A.(2011,Feburary). Service Oriented Architecture

Maturity. Computer ,IEEE, 44(10), 61-67

[4] Abuosba, K.A. & El-Sheikh

.A.(2008,August).Formalizing Service-Oriented

Architectures. IT Professional,13(5), 34-38

[5] Geihs, K. (2002, August 7). Middleware challenges

ahead . Computer , IEEE , 34(6), 24-31.

[6] Karastoyanova , D., & Buchmann, A. (2003).

COMPONENTS, MIDDLEWARE AND WEB

SERVICES. Proceedings of IADIS International

Conference WWW/Internet 2003,IADIS Press,2.

[7] Stal, M. (2002, October). Web services: beyond

component-based computing. Communications of the

ACM, 45(10), 71-76.

[8] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn,

S., & McInnes, L. (2006, August 3). Toward a Common

Component Architecture for High-Performance

Scientific Computing. Eighth IEEE International

Symposium on High Performance Distributed

Computing.

[9] Henning, M. (2006, June). The Rise and Fall of CORBA.

Queue - Component Technologies - ACM, 4(5)

[10] Box, D. (2000, March). A Young Person's Guide to The

Simple Object Access Protocol: SOAP Increases

Interoperability Across Platforms and Languages. MSDN

Magazine, (2000)

[11] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhy,

N., & Weerawarana, S. (2002, August 7). Unraveling the

Web services web: an introduction to SOAP, WSDL, and

UDDI . Internet Computing, IEEE , 6(2), 86-93

[12] Pietzuch, P., & Bacon, J. (2002, July). Hermes: A

Distributed Event-Based Middleware Architecture. 22nd

International Conference on Distributed Computing

Systems Workshops (ICDCSW '02)

