
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.5, February 2012

25

Comparative Study of Different Path Planning

Algorithms: A Water based Rescue System

S. M. Masudur Rahman Al-Arif, A. H. M. Iftekharul Ferdous, Sohrab Hassan Nijami

Department of Electrical and Electronic Engineering

Islamic University of Technology (IUT)

Boardbazar, Gazipur – 1704, Bangladesh.

ABSTRACT

There are many countries in the world where water is the

main medium for earning livelihood and transportation. Such

countries are situated mainly in the over-populated South

Asian region. As the water is the meaning of life there; it is

also the main reason of threat. Many water borne natural

disasters, mechanical failure of manmade water vehicles and

sometimes manmade inventions like looting, hijacking put the

people in dangerous situation. For rescuing people from being

stuck in water, we present a system which can provide a

minimum cost, least time rescue operation automatically. We

are going to use artificial intelligence (AI) and the concept of

mobile robots to represents the proposed system. To find the

minimum cost and time, we will consider all available search

algorithms. We will also present a comparative result, to find

out the most suitable algorithm that can provide us the best

results.

General Terms

Path Planning, Rescue System, Algorithms.

Keywords

Artificial Intelligence, Mobile Robot, A-Star, Dijkstra.

1. INTRODUCTION
To rescue people from a water affected area generally two

types of approaches are applied: one is air vehicles; another is

water (automatic boat). To conduct an air based rescue

operation is too expensive to bear in the South Asian

developing countries. So, in the view of economic conditions

of these countries, automated water vehicles show better

efficacy.

In this paper we are going to present a real prototype of an

automated rescue system. Artificial Intelligence (AI) is

applied on the Mobile Robot to perform this rescue operation.

For a mobile robot path planning is one of the most important

things. In this paper we will plan the path for the robot using

four different search algorithms. All algorithms used here are

very common and popular to the researchers.

Firstly we will present the background work done to propose

our design. Then the systems will be discussed. After the

design is proposed; all used algorithms will be discussed.

Then the simulation results will be revealed and finally we

will compare all the results to find out the best algorithms.

2. BACKGROUND
The field of robotics is closely related to AI. Intelligence is

required for robots to be able to handle such tasks as objects

manipulation and navigation, with sub-problems of

localization (knowing where you are) mapping and motion

planning. Different artificial intelligence (AI) techniques are

used to provide the robots with intelligence and flexibility so

that it can operate in dynamic environments and in the

presence of uncertainty. Those techniques belong to three

areas of artificial intelligence: Learning, Reasoning and

Problem solving. A number of researchers have considered

intelligent robotic systems. There are several research works

in the area of using robot as rescue system.

An intelligent autonomous control method is proposed for

tele-operated robotic system [1]. Multi-sensor is used in tele-

operated robotic system to obtain the environment states and

the sensory information is fused into different level

autonomous controller to meet the need of the change of

environment. A sensor based network system for the rescue

robot working under a disaster situation is also presented in a

work [2]. Here a network system is proposed and an algorithm

for a rescue robot to obtain its position under collapsed area is

also considered.

A lot of other works are going on about different algorithms

that we are going to compare here. Dijkstra algorithm is a

very commonly used algorithm. Researchers are working

around the world to improve this algorithm more and more

[3], [4], [5]. Here in this paper we will compare Dijkstra

algorithm with others to find out the most suitable path for

rescue operation. A-Star (A*) Algorithm is also very useful

for search and rescue operations [6]. Works are going on

around the world to make an efficient hardware engine for this

algorithm [7] and to use this algorithm in hazardous

environment [8].

3. THE PROPOSED SYSTEM
In the system there will be Base Station (BS), Endangered

boat (EB) and Rescue Boat (RB). Primarily three rescue boats

(RB) are considered to take part in rescue operation in the

Endangered boat (EB) and to rescue people to a safe place.

There will be a sensor in EB and when EB falls in danger, it

will send a signal to the Base station (BS). This signal will

have the location and other necessary information. After

receiving EB’s signal, BS will find out which RB is the

nearest to that EB and will send signal to that RB to perform

rescue operation and hence that RB reach to that EB and

rescue the victims.

This process will ensure the minimum cost, minimum rescue

period and it will keep other RB free so that they can perform

another operation if needed.

4. PATH PLANNING ALGORITHMS
Path planning is an important issue as it allows a robot to get

from one point to another. Path planning algorithms are

measured by their computational complexity. The feasibility

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.5, February 2012

26

of real-time motion planning is dependent on the accuracy of

the map, on robot localization and on the number of obstacles.

Topologically, the problem of path planning is related to the

shortest path problem of finding a route between two nodes in

a graph [9]. The most known algorithms for the shortest path

problem are: The graph search algorithm, Breadth-first

algorithm, Dijkstra algorithm and A* (A Star) algorithm. In

this paper, all these algorithms are summarized and simulated

to find a suitable algorithm for our rescue operation. The

advantages and disadvantages of different algorithms are

defined and experiments for the comparison of the algorithms

on various type grid based maps are performed. Some

assumptions are taken into account before starting. The map

used is a real map which is divided into same size square

cells. The ability of traversing is accepted 900 and 4-adjacent

traversable neighbor’s is considered [10].

4.1 The Graph Search Algorithm
The graph search algorithms are based on node-edge notation

but this notation lacks when a system like GPS gets an image

frame, converts it to a map matrix and uses this map matrix as

the grid based map. In these situations using matrix notation

gives the advantage of simplicity and comprehension.

4.2 The Breadth-First Algorithm
Breadth-first algorithm works with the method branching

from the starting cell to the neighbor cells (just traversable

cells), (untraversable cells and cells out of boundaries are

discarded) until the goal cell is found.

Fig 1: Breadth-first algorithm

Every traversable neighbor cell is added to an array which is

called OPEN LIST. OPEN LIST is the array of neighbor cells

which must be reviewed in order to find the goal cell. OPEN

LIST elements are reviewed if one is the goal cell or not. The

steps of breadth-first algorithm can be listed as follows:

i. Define the starting and goal cells.

ii. Load the map matrix.

iii. Add the starting cell to OPEN LIST.

iv. Add the neighbor cells to OPEN LIST.

v. If OPEN LIST is empty, no possible path.

vi. If goal cell is added to OPEN LIST, define the

PATH using map matrix. Else compute the cost of

neighbor cells.

vii. Pull out the reviewed cells from OPEN LIST. viii.

Go to step iv.

4.3 The Dijkstra Algorithm
This algorithm is like Breadth-first algorithm but adds the

computation of different cost cells (not only the shortest path

but also the lowest cost path). In this algorithm, again the

neighbor cell array OPEN LIST exists. Like the previous

algorithm here the steps are:

i. Define the starting and goal cells.

ii. Load map matrix.

iii. Add the starting cell to OPEN LIST.

iv. Add the neighbor cells to OPEN LIST compute the

costs, record their parent cell to PARENTS.

v. If OPEN LIST is empty, no possible path.

vi. If goal cell is added to OPEN LIST define the

PATH using PARENTS matrix. Else go on.

vii. If neighbor cell is added OPEN LIST before find its

new cost and compare to its old cost. If it is lower,

update the cost and PARENTS matrix.

viii. Pull out the reviewed cells from OPEN LIST.

ix. Go to step iv.

4.4 A-Star (A*) Algorithm
This is the most common and efficient used algorithm in

shortest path finding problems. This algorithm has two list

arrays:

i) OPEN LIST

ii) CLOSED LIST.

OPEN LIST does the same work and CLOSED LIST holds

the cells that have to be saved. Again first the neighbors of the

starting cell are added to the OPEN LIST. And again these

cells are reviewed according to their costs. But this time two

cost functions exist. G = cost of moving from the starting cell

to the current cell. H = cost of moving from the current cell to

the goal cell. Cost at any point n, F(n)=G(n) + H(n).

First the G cost function is the cost of moving from the

starting cell to the current cell and the H cost function is the

cost of moving from the current cell to the goal cell. The G

cost function can be computed but the H cost function can just

be estimated. That’s why this cost function is called heuristic

cost function. There are several methods for this estimation.

For 4-adjacent traversable cells Manhattan method is the most

used method.

 H(currentcell)=abs(currentX-goalX)+abs(currentY-goalY)

This method directs the search to the goal cell. The total cost

function F = G + H is the comparison criterion for the cells.

OPEN LIST has to be sorted and in addition as the

comparison criterion the F cost array has to be sorted. The

parents of the neighbor cells are stored in PARENTS array.

Again in this algorithm if the cell exists in OPEN LIST its

new cost must be compared to the old cost. If it is lower the

cell becomes the parent and G and F costs must be re-

computed. The reviewed cells are placed in the CLOSED

LIST. Again after the goal cell is added to OPEN LIST,

following the parent cells gives the shortest path. If the OPEN

LIST is empty at anytime, it means that there is no possible

path. The algorithm can be summarized as follows:

i. Define the starting and goal cell.

ii. Load the map matrix.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.5, February 2012

27

iii. Add the starting cell to OPEN LIST.

iv. Add the staring cell to CLOSED LIST.

v. Add the neighbor cells to OPEN LIST: - If

traversable; - If not in OPEN LIST before; - If not

in CLOSED LIST; With the order compute G, H

and F cost function values. Record the parent to

PARENTS matrix. Locate the F cost function value

in the right place- If in OPEN LIST before;

Compute the G cost function value. If it is better

than the old value, chance the parent with this

parent in PARENTS matrix. Update G and F cost

functions.

vi. If OPEN LIST is empty, no possible path.

vii. If the goal cell is added to OPEN LIST define the

PATH using PARENTS matrix.

viii. Find the lowest cost neighbor cell. Add it to

CLOSED LIST and continue the search on this cell.

ix. Pull out the reviewed cells from OPEN LIST. Go to

step v.

5. MULTI-GOAL CELLS
The above presented algorithms are applicable only for one

starting cell - one goal cell. But in reality one starting cell-

multiple goal cells scenario like the figure below is most

common. So a RB may have to rescue more than one EB (rare

case). There is no order between the EB’s. In such cases all

possible paths have to be calculated. First we need to find n!

Paths between the points (n = number of goal points, |SG1|,

|SG2 |, |SG3| , |G1G2| , |G1G3| , |G2G3|) and then the shortest

path from starting point to multi-goal points (all points have to

be visited once) have to be selected.

Fig 2: One starting-multi-goal points

(S: starting point, G1-G2-G3 : goal points)

6. RESULT AND SIMULATION
All algorithms are simulated for both cases:

i. One starting cell - one goal cell and

ii. One starting cell- multi goal cells.

At first the algorithms are compared for one starting cell-one

goal cells. As mentioned before, the Breadth-first algorithm is

lack of computing different cost cells. So two maps are used

for this case. One with same cost cells (Breadth-first, Dijkstra,

A*) and One for different cost cells (Dijkstra , A*).

Fig 3: Same cost cell-map for Breadth-first Algorithm

Fig 4: Same cost cell-map for Dijkstra Algorithm

Fig 5: Same cost cell-map for A* Algorithm

The map is a photo from MATLAB Image Processing

Toolbox. First it is converted to a map matrix then the path is

computed from this matrix. The dimension of the matrix is

256*256 cells. The white cells are assumed as the obstacles

and the grey cells are assumed as traversable cells. The left

top side is assumed (0,0). The coordinates of the starting cell

and goal cell are (2,2) and (255,255). The black curve in the

figure is the path found.

Table-1 lists the comparison of algorithms for CPU time, the

sum of the cells, the cells visited, and the path cells. It can be

seen that although the Breadth-first algorithm visits more

cells, its CPU time is better than Dijkstra and A*.

The cause of this efficiency is the simplicity. Dijkstra and A*

algorithm need a lot of matrix operations and in a map with

same cost cells, the costs of the cells must be updated very

frequently.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.5, February 2012

28

Table 1. Comparison of algorithms for same cost cell-map

Algorithm CPU Time (s)
Sum of the

cells visited

Sum of the

path cells

Breadth-First 1.078 43002 506

Dijkstra 2.625 43004 506

A* 2.297 25134 506

Fig 6: Different cost cell map for Dijkstra

Fig 7: Different cost cell map for A*

Fig 6 and Fig 7 show the maps with different cost cells and

the paths for the algorithms. Again the dimensions are

256*256 cell and the coordinates of starting cell and goal cell

are (3, 3) and (255, 255).This map is created by hand. Two

layers with costs 60 and 20 surround the big obstacles and the

empty spaces in the map are filled with randomly generated

different cost cells. They were shown with cells with white

and tones of gray according to the cost. (White: 10, white-like

grey: 20, grey: 30, darkgrey: 40, black-like grey: 60). The

black curve shows the path found. Table-2 lists the

comparison of algorithms for CPU time, sum of the cells, the

cells visited, the path cells and cost sum of the path cells. It

can be seen from the table that A* algorithm doesn’t give the

shortest and the lowest cost path. The quality of A* algorithm

depends on the quality of the heuristic cost function H. If H is

close to the true cost of the remaining path, A* algorithm

guarantees finding the shortest and lowest cost path. In other

condition A* gives no guarantee but it is still efficient.

Table 2. Comparison of algorithms for different cost cell-map

Algorithm
CPU Time

(s)
Sum of the

cells visited

Sum of the

path cells

Cost sum of

the path cells

Dijkstra 2.097 35280 537 6970

A* 1.718 26990 545 7000

Table-2 shows that the cost sum of the path cells found by A*

is 0.4 % higher than Dijkstra’s but it is 21.9 % faster and it

needs 30.7 % less memory according to the sum of the cells

visited. In the second group algorithms are compared for one

starting-multi goal cells. Again the map with different cost

cells is used. Three goal cells are defined on the map. The

coordinates of starting cell and goal cells are given below.

S: (3,3) G1: (120,5) G2: (190,140) G3: (70,185)

Fig 8: Maps and path for algorithms

Figure 8 shows the map and the path for the algorithms.

Table-3 lists the comparison of algorithms for different start-

goal points , CPU times , sum of the path cells cost sum of the

path cells and selected path ,total CPU time , sum of the path

cells and the cost sum of the path cells. This time A* gives the

shortest path. It can be seen that the total CPU times are very

close. This result comes from the advantage of computing

paths using visited cells. In Dijkstra |SG1|, |SG3| and |G1G2|

cells are visited in the previous path and there is no need to re-

compute the cells. A* is lack of this advantage but it is still

more efficient in computing operations.

Table 3. Results for Dijkstra Algorithm

Algorithm

Start Goal

points

(farthest)

CPU Time

(s)

Sum of

the path

cells

Cost

sum of

the path

cells

Dijkstra

|SG2| 1.453 359 4770

|SG1|* 0.078 198 2900

|SG3|* 0.094 276 4220

|G1G3| 1.594 265 3380

|G1G2|** 0.078 210 2490

|G2G3| 1.875 198 2820

* visited in |SG2| **visited in |G1G3|

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.5, February 2012

29

Selected Path

Total

CPU

Time (s)

Sum of

the path

cells

Cost

sum of

the path

cells

|SG1|- |G1G2|-|G2G3|-|G3S| 5.172 882 12430

Table 4. Results for A* Algorithm

Algorithm

Start Goal

points

(farthest)

CPU

Time (s)

Sum of

the path

cells

Cost

sum of

the

path

cells

A*

|SG2| 1.156 359 4770

|SG1| 0.672 200 2900

|SG3| 0.953 272 4220

|G1G3| 0.891 265 3380

|G1G2| 0.704 210 2490

|G2G3| 0.781 198 2820

Selected Path

Total

CPU

Time (s)

Sum of

the path

cells

Cost

sum of

the

path

cells

|SG1|- |G1G2|-|G2G3|-|G3S| 5.157 880 12430

7. CONCLUSION
This paper presents three path planning algorithms for a

mobile robot on grid based map for one starting-one goal cell

and one starting-multi goal cells. From the results of the

experiments and the inferences from the algorithms some

suggestions can be done for path planning for maps with same

cost cells, different cost cells and with one starting-one goal

and one starting-multi goal cells. For maps with same cost

cells, with one starting-one goal cell and multi goal cells,

using Breadth-first algorithm is the best if the computational

time is the first desire criteria. But if the size of memory is the

first criteria using A* can be a better alternative. For maps

with different cost cells and with one starting - one goal cell

A* is best in computational time and size of memory. But the

heuristic function H for A* must be chosen carefully in order

to make sure of the shortest and lowest cost path. For maps

with different cost cells and with one starting-multi goal cells

A* is best in computational time with no guarantee for the

shortest path. But it must be noted that Dijkstra, using visited

cells advantage especially in enormous multi-goal cells and

shortest path guarantee, can be a good choice in these maps.

The algorithms use 4-adjacent traversable cells related to the

mobile robot. If a mobile robot with more movement abilities

is accepted, using 8- and 16- adjacent traversable cells give

better results. In the experiments A* uses Manhattan method

as the heuristic function. Using other functions may give

better results. Choosing the shortest path for multi goal cells

using the TSP solving methods can be the next step of this

study and it is planned to use real geographical maps instead

of the imaginary generated maps.

8. REFERENCES
[1] Chou Wusheng, Wang Tianmiao, You Song, “Sensor-

based autonomous control for telerobotic system,”

Proceedings of the 4th World Congress on Intelligent

Control and Automation, 2002, vol.3, pp. 2430 - 2434.

[2] Miyama, S.; Imai, M.; Anzai, Y.; “Rescue robot

under disaster situation: position acquisition with Omni-

directional Sensor”, IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2003. (IROS 2003),

27-31 Oct. 2003, vol.3, pp. 3132 – 3137.

[3] Yin Chao, Wang Hongxia, “Developed Dijkstra shortest

path search algorithm and simulation”, International

Conference on Computer Design and Applications

(ICCDA), 2010, 25-27 June 2010, vol.1, pp. 116-119.

[4] Hwan Il Kang, Byunghee Lee, Kabil Kim, “Path

Planning Algorithm Using the Particle Swarm

Optimization and the Improved Dijkstra Algorithm”,

Pacific-Asia Workshop on Computational Intelligence

and Industrial Application, 2008. PACIIA '08, 19-20

Dec. 2008, vol.2, pp.1002-1004.

[5] Zhang Fuhao, Liu Jiping, “An Algorithm of Shortest

Path Based on Dijkstra for Huge Data”, 6th International

Conference on Fuzzy Systems and Knowledge

Discovery, 2009. FSKD '09, 14-16 Aug. 2009, vol.4,

pp.244-247.

[6] Xiang Liu, Daoxiong Gong, “A comparative study of A-

star algorithms for search and rescue in perfect maze”,

International Conference on Electric Information and

Control Engineering (ICEICE), 2011, 15-17 April 2011,

pp. 24-27.

[7] Woo-Jin Seo, Seung-Ho Ok, Jin-Ho Ahn, Sungho Kang,

Byungin Moon, “Study on the hazardous blocked

synthetic value and the optimization route of hazardous

material transportation network based on A-star

algorithm”, 5th International Joint Conference on INC,

IMS and IDC, 2009. NCM '09, 25-27 Aug. 2009, pp.

1499 –1502.

[8] Ma Changxi, Diao Aixia, Chen Zhizhong, Qi Bo, “Study

on the hazardous blocked synthetic value and the

optimization route of hazardous material transportation

network based on A-star algorithm”, 7th International

Conference on Natural Computation, 26-28 July 2011,

vol.4, pp. 2292 – 2294.

[9] Amerongen, J. van, "Ship Steering", Theme: Control

Systems, Robotics and Automation, edited by

Unbehauen, H.D. , in Encyclopedia of Life Support

Systems, (EOLSS), Developed under the Auspices of the

UNESCO, EOLSS Publishers, Oxford, UK , 2003.

[10] Donoso-Aguirre, F. et al. “Mobile robot localization

using the Hausdorff distance”, ROBOTICA, Cambridge

University Press, vol. 26, pp. 129–141, 2008.

[11] Mata et al. “Object learning and detection using

evolutionary deformable models for mobile robot

navigation”, ROBOTICA, Cambridge University Press,

vol. 26, pp. 99–107, 2008.

[12] Dhariwal,A. and Sukhatme, S.G. “Experiments in robotic

boat localization”, Proc. Int’l Conf. on Intelligent

Robotsand Systems, IEEE, pp.1702-1708, 2007.

