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ABSTRACT 
The effect of radiation on unsteady Couette flow between two 

vertical parallel plates with ramped wall temperature have been 

studied. The fluid considered here is a gray, absorbing/emitting 

radiation but a non-scattering medium. An analytical solution of 

the governing equations has been obtained by employing 

Laplace transform technique. The influence of the various 

parameters, entering into the problem, on the velocity field, 

temperature field, skin friction and rate of heat transfer is 

discussed with the help of graphs and tables. It is found that an 

increase in radiation parameter leads to decrease the fluid 

velocity and temperature. It is also found that both the velocity 

as well as the temperature of the fluid decrease with an increase 

in Prandtl number. Further it is observed that the velocity 

increases with an increase in Grashof number and an increase in 

time leads to increase the fluid velocity and temperature. 

 

Keywords: Couette flow, Radiation parameter, Prandtl 

number, Grashof number and Ramped wall temperature.  

 

1. INTRODUCTION 
An analysis of flow formation in Couette motion, as predicted 

by classical fluid mechanics, was presented by Schlichting [1]. 

This problem is of fundamental importance as it provides the 

exact solution of the Navier-Stokes equation and reveals how 

the velocity profiles varies with time, approaching a linear 

distribution asymptotically, and how the boundary layer spreads 

throughout the flow field. Couette flow is one of the basic flow 

in fluid dynamics that refers to the laminar flow of a viscous 

fluid in the space between two parallel plates, one of which is 

moving relative to the other. The flow is driven by virtue of 

viscous drag force acting on the fluid and the applied pressure 

gradient parallel to the plates. Couette flow is frequently used in 

physics and engineering to illustrate shear-driven fluid motion. 

The radiative heat transfer as an important fundamental 

phenomena existing in practical engineering such as those 

found in solar radiation in buildings, foundry engineering and 

solidification processes, die forging, chemical engineering, 

composite structures applied in industry Korycki[2]. Another 

important feature that usually occurs in electronic devices over 

a period of continuous usage is the hotness of the surface. This 

means that a poor design could trap heat generated by the 

source of the power supply and could incapacitate the 

efficiency and durability of the systems. Therefore, the 

efficiency in the functioning of these systems is enhanced when 

they are subjected to external cooling devices like air 

conditioners, electric fans, and some others (e.g. laptop, 

computers) inbuilt storage devices that store electrical energy 

for them to function for sometime even without external source 

of power supply Gbaorun et al.[3]. The IC components of these 

electronic systems are thermally coupled to the surrounding via 

convection and radiation. Radiation has a significant role in 

heat transfer in low-flow applications where there exists a 

larger temperature gradient between the components and the 

surrounding. Radiative free convection Couette flows are 

frequently encountered in many scientific and environmental 

processes, such as heating and cooling of chambers and solar 

power technology. Heat transfer by simultaneous radiation and 

convection has applications in numerous technological 

problems including combustion, furnace design, the design of 

high temperature gas cooled nuclear reactors, nuclear reactor 

safety, fluidized bed heat exchanger, fire spreads, solar fans, 

solar collectors natural convection in cavities, turbid water 

bodies, photo chemical reactors and many others. Further, the 

heat transfer effects under the conditions of free convection are 

now dominant in many engineering applications such as rocket 

nozzels, high sinks in turbine blades, high speed aircrafts and 

their atmospheric re-entry, chemical devices and process 

equipment, formation and dispersion of fog, distribution of 

temperature and moisture over agricultural field and groves of 

fruit trees, damage of crops due to freezing and pollution of the 

environment and so on. Singh [4] has studied the natural 

convection in unsteady Couette motion. Ogulu and Motsa [5] 

have investigated the radiative heat transfer to 

magnetohydrodynamic Couette flow with variable wall 

temperature. The radiation effects on MHD Couette flow with 

heat transfer between two parallel plates have been describbed 

by Mebine [6]. Effects of thermal radiation and free convection 

currents on the unsteady Couette flow between two vertical 

parallel plates with constant heat flux at one boundary have 

been examined by Narahari [7]. Deka and Bhattacharya [8] 

have analyzed the unsteady free convective Couette flow of 

heat generating/absorbing fluid in porous medium. The 

radiation effect on electrohydrodynamic froth flow in vertical 

channel have been examined by Gbadeyan et al. [9]. 

The present work concerns with the effect of radiation on 

unsteady Coutte flow of a viscous incompressible fluid 

confined between two vertical parallel plates with ramped wall 

temperature. Initially, at time 0t  , both the fluid and plate are 

at rest and constant temperature hT . An exact solution of the 

governing equations have been obtained by using Laplace 

transformation technique. It is found that the velocity decreases 

with an increase in either radiation parameter R  or Prandtl 

number Pr . An increase in Grashof number Gr  leads to rise 

the velocity 1u  of flow. It is seen that the velocity 1u  increases 

with an increase in time  . It is also seen that the temperature 

  decreases with an increase in either radiation parameter R  
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or Prandtl number Pr  but it increases with an increase in time 

 . The shear stress x  decreases for both the cases of ramped 

and isothermal wall temperature with an increase in either 

radiation parameter R  or Prandtl number Pr  for fixed values 

of Grashof number Gr . Further, the rate of heat transfer 

(0)  decreases with an increase in either radiation parameter 

R  or Prandtl number Pr  for both ramped as well as 

isothermal wall temperature at the wall 0  . 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS 
Consider the unsteady Couette flow of a viscous incompressible 

radiative heat generating fluid between two infinite vertical 

parallel walls separated by a distance h . The flow is set up by 

the buoyancy force arising from the temperature gradient 

occurring as a result of asymmetric heating of the parallel plates 

as well as constant motion of one of the plates. Choose a 

cartesian co-ordinates system with the x - axis along one of the 

plates in the vertically upward direction and the y - axis normal 

to the plates [See Figure 1]. Initially, at time 0t  , the two 

plates and the fluid are assumed to be at the same temperature 

hT  and stationary. At time > 0t , the plate at 0y   starts 

moving in its own plane with a velocity ( )U t  and the 

temperature of the plate is raised or lowered to 0
0

( )h h

t
T T T

t
   

when 00 < t t  and the constant temperature hT  is maintained 

at 0>t t  whereas the plate at y h  is stationary and 

maintained at a constant temperature hT , where   is a 

constant. Our aim is to analyze the radiation effects on the 

unsteady Couette flow resulting from the ramped temperature 

profile of the moving plate. We assume that the flow is laminar 

and is such that the effects of the convective and pressure 

gradient terms in the momentum and energy equations can be 

neglected. It is assumed that the effect of viscous dissipation is 

negligible. It is also assumed that the radiative heat flux in the 

x - direction is negligible as compared to that in the y - 

direction. As the plates are infinite long, the velocity and 

temperature fields are functions of y  and t  only. 

  

    
 

    Figure 1. Geometry of the problem 
 

The free convection flow of a radiating fluid, under usual 

Boussinesq approximation, to be governed by the following 

system of equations  

2

2
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t y
 

 
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                               (2) 

where u  is the velocity in the x -direction, T  the temperature 

of the fluid, g  the acceleration due to gravity,   the kinematic 

coefficient of viscosity,   the fluid density, k  the thermal 

conductivity, pc  the specific heat at constant pressure and rq  

the radiative heat flux. The heating due to viscous dissipation is 

neglected for small velocities in the energy equation (2). 

  The initial and the boundary conditions are  

          = 0, = for 0 and 0,hu T T y h t    

          = ( ) at = 0,u U t y  

          0 0
0

0

( ) for 0 <
= at = 0

for >

h h

h

t
T T T t t

tT y

T t t


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



       (3) 

          0, at for > 0hu T T y h t    

    The radiative heat flux can be found from Rosseland 

approximation and its formula is derived from the diffusion 

concept of radiative heat transfer in the following way  

         
44

,
3

r

T
q

yk





 


                                                 (4) 

where   is the Stefan-Boltzman constant and k  the spectral 

mean absorption coefficient of the medium. It should be noted 

that by using the Rosseland approximation we limit our analysis 

to optically thick fluids. If the temperature differences within 

the flow are sufficiently small, then the equation (4) can be 

linearized by expanding 4T  into the Taylor series about hT  

and neglecting higher order terms to give:  

 4 3 44 3 .h hT T T T                            (5) 

    It is emphasized here that equation (5) is widely used in 

computational fluid dynamics involving radiation absorption 

problems [10] in expressing the term 4T  as a linear function. 

In view of (4) and (5), equation (2) reduces  

32 2

2 2

16
.

3

h
p

TT T T
c k

t y k y






  
 
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                         (6) 

Introducing non-dimensionless variables  

                
2

0 1
0 0

, , , = ,
y t h u

t u
h t U

 

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             0
0

, ( ) ( ),h

h
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U t U f

T T
 


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
                             (7) 

 equations (1) and (6) become  

2
1 1

2
,

u u
Gr

 

 
 

 
                                          (8) 

2

2
,

 


 

 


 
                                                 (9) 

where 
3

3 4

RPr

R
 


 and 

34 h

k k
R

T



  is the radiation parameter, 

pc
Pr

k


  the Prandtl number and 

2
0

0

( )hg T T h
Gr

U






  the 

Grashof number. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.4, February 2012 

36 

    The corresponding initial and the boundary conditions are  

1 0, 0 for 0 1 and 0,u         
                                    

        1

for 0 < 1
( ), at 0

1 for > 1
u f

 
   




  


        (10) 

       1 0, 0 at 1 for > 0,u       

where 
2
0U

 




  is the accelerating parameter. 

    On the use of Laplace transformation, equations (8) and (9) 

become  

 
2
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2
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 where  

  1 1
0 0
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 

      (13) 

    The corresponding boundary conditions for 1u  and   are  

1 1(0, ) = ( ), (1, ) = 0,u s f s u s   

2

1
(0, ) (1 ), (1, ) 0.ss e s

s
                     (14) 

    The solution of the equations (11) and (12) subject to the 

boundary conditions (14) are easily obtained and are given by  
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 (16) 

   The inverse transforms of (15) and (16) give the solution for the temperature distribution and velocity field as  

       

 

2 2

=0

2 2

2 2 2 2

=0

( , ) ( , )

( 1){ ( , 1) ( , 1)} for 1,
( , )

( , ) ( , ) ( 1){ ( , 1) ( , 1)} for 1,

n

n

F a F b

H F a F b

F a F b H F a F b

   

     
  

     






 



        




      






 (17) 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.4, February 2012 

37 

      

  

  

 

1 1

=0 =0

1 1

1 1

1 1

1

3 3

=0 =0

3 3

( , ) ( , ) ( , ) ( , )
1

{ ( , ) ( , )}

( 1){ ( , 1) ( , 1)

[ ( , 1) ( , 1)]} for 1,

( , )

( , ) ( , ) ( , ) ( , )
2

1 { ( , 1) ( ,

n n

n n

Gr
F a F b F a F b

F a F b

H F a F b

F a F b

u
Gr

F a F b F a F b

H F a F b

    


   

  

    

 

     

  

 

 

  


 

    

    




  

   

 

 





3 3

=0

3 3

1)}

( 1) ( , ) ( , )

( 1){ ( , 1) ( , 1)} for 1,

n

Gr n F b F d

H F b F d

 

   




















 

  


     



 (18) 

 

 where  

    2 , 2 2 , 2 2a n b n d n            

    ( , ) erfc ,
2

z
F z 



 
  

 
    

    2 2 4
1

1 1
( , ) erfc

2 12 2

z
F z z z  



  
     

   
 

2

2 41 1
5 ,

6 2

z

z z e 





 

  
 

                      (19) 

     

2

2
4

2( , ) = erfc ,
2 2

z
z z

F z z e 
 



   
        

 

     
2

2
2 4

3

1
( , ) = 4 erfc

3 6 2

z
z z

F z z e z
  

 

    
         

 

and z  is a dummy variable and 1 2,F F  and 3F  are dummy 

functions defined in equation (19), erfc ( )x  being 

complementary error function and and ( 1)H    is the unit step 

function. It is noticed that in the absence of radiation parameter 

( )R   , the solutions (17) and (18) are identical with the 

equations (8) and (9). 

 

2.1  SOLUTION FOR ISOTHERMAL PLATES 
 

For isothermal plates, the boundary conditions for the 

temperature and velocity fields are  
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The inverse transforms of (23) and (24) give the solution for the temperature distribution and velocity field as  
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where , ,a b d  and ( , )F z   are given by (19) and  

2

4
4( , ) 2 erfc

2

z
z

F z e z



 

  
   

 
.             (27) 

 

 

3. RESULTS AND DISCUSSION 
We have presented the non-dimensional velocity 1u  and 

temperature   for several values of Radiation parameter R , 

Prandtl number Pr , Grashof number Gr  and time   in 

Figures 2-8. It is found from Figures 2 and 3 that the velocity 

1u  decreases with an increase in either radiation parameter R  

or Prandtl number Pr . This is possible physically because 

fluids with high Prandtl number have greater viscosity, which 

makes the fluid thick and hence move slowly. It is also found 

that the velocity 1u  is maximum near the plate and decreases 

away from the plate and finally takes asymptotic value for all 

values of R  and Pr . It is observed from Figures 4 and 5 that 

an increase in either Grashof number Gr  or time   leads to 

rise in the velocity 1u . Physically this is due to fact that as the 

Grashof number Gr  or time   increases, the contribution from 

the buoyancy force near the plate becomes significant and 

hence a rise in the velocity near the plate as observed. It is 

observed from Figures 6 and 7 that the temperature   

decreases with an increase in either radiation parameter R  or 

Prandtl number Pr . In the presence of radiation, the thermal 

boundary layer always found to thicken which implies that the 

radiation provides an additional means to diffuse energy. This 

means that the thermal boundary layer decreases and more 

uniform temperature distribution across the boundary layer. An 

increase in the Prandtl number means an increase of fluid 

viscosity, which causes a decrease in the flow velocity and the 

temperature decreases. This is consistent with the fact that the 

thermal boundary layer thickness decreases with the increasing 

Prandtl number. The temperature   increases with an increase 

in time   shown in Figure 8. 

  

 
Figure 2. Velocity profiles for R  when = 10Pr , = 10Gr  

and  = 1.1  

 
Figure 3. Velocity profiles for Pr  when = 1.5R , = 10Gr  

and = 1.1 . 
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Figure 4. Velocity profiles for Gr  when = 7Pr , = 0.8R  

and = 1.1  

 
Figure 5. Velocity profiles for time   when = 10Pr , 

= 10Gr  and = 1.5R  

 
Figure 6. Temperature profiles for R  when = 7Pr  and 

= 1.2  

 
Figure 7. Temperature profiles for Pr  when = 2R  and 

= 1.2  

 

 
 

Figure 8. Temperature profiles for time   when = 10Pr  

and = 2R  
 

      For ramped wall temperature, the shear stress at the plate 

0   is given by  
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For isothermal plates, the shear stress at the plate 0   is 

obtained as:  
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4( , ) erfc ,
2
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and anda b   and 1( , )H z   are given by (29) and (30). 

 

Numerical values of the non-dimensional shear stress at the 

moving plate 0   are presented in Figures 9-11 against 

Grashof number Gr  for various values of radiation parameter 

R , Prandtl number Pr  and time  . Figure 9 shows that the 

shear stress x  at the moving plate 0   increases for both 

ramped as well as isothermal wall temperature with an increase 

in either Grashof number Gr  or time  . It is seen from Figures 

10 and 11 that for fixed values of Grashof number Gr , the 

shear stress x  decreases for both the cases of ramped and 

isothermal wall temperature with an increase in either radiation 

parameter R  or time  . 

 
Figure 9. Shear stress x  for time   when = 10Pr  and  

= 1.5R  

 

 
Figure 10. Shear stress x  for R  when = 10Pr  and 

= 1.1 . 

 
Figure 11. Shear stress x  for Pr  when = 0.5  and 

= 1.5R  

 

     For ramped wall temperature, the rate of heat transfer at the 

moving plate 0   is obtained as:  
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and anda b   are given by (29). 

       For isothermal plates, the rate of heat transfer at the 

moving plate 0   is given by  
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      Numerical results of the rate of heat transfer (0)'  at the 

moving plate ( 0)   against the radiation parameter R  are 

presented in Table 1 and 2 for various values of Prandtl number 

Pr  and time  . Table 1 shows that the rate of heat transfer 

(0)'  increases with an increase in either radiation parameter 

R  or Prandtl number Pr  for both ramped as well as 

isothermal wall temperature at the moving plate 0  . It is 

observed from Table 2 that the rate of heat transfer (0)'  first 

increases and reaches maximum and then decreases with an 

increase in time   while it increases with an increase in 

radiation parameter R  for ramped wall temperature. On the 

other hand, the rate of heat transfer (0)'  increases with an 

increase in radiation parameter R  whereas it decreases with an 

increase in time   for isothermal wall temperature. The 

negative value of (0)'  physically explains that there is heat 

flow from the plate.  

where anda b   and 1( , )H z   are given by (29) and (30). 

 

 

 

Table 1. Rate of heat transfer (0)  at the moving plate ( 0)   when = 1.1  

  

   

Ramped 

 

Isothermal 

\R Pr   4 5 

 

6 7 4 5 6 7 

 0.5  

1.0  

1.5  

2.0  

0.00693 

0.14922 

0.30492 

0.43403 

0.04923 

0.31589 

0.55519 

0.73367 

0.12404 

0.51755 

0.82274 

1.03004 

0.21940 

0.73367 

1.07976 

1.29769 

0.56185 

0.70432 

0.78281 

0.83336 

0.62817 

0.78745 

0.87521 

0.93173 

0.68813 

0.86261 

0.95874 

1.02066 

0.74326 

0.93173 

1.03556 

1.10244 

   

  

  

Table 2. Rate of heat transfer (0)  at the moving plate ( 0)   when = 10Pr . 

  

   

Ramped 

 

Isothermal 

 \R     0.5  0.7 0.9 1.1 0.5 0.7 0.9 1.1 

 0.5  

1.0  

1.5  

2.0  

 1.25703  

 1.64645  

1.83487  

 1.95412  

1.31834 

1.90251 

2.15527 

2.30503 

1.27009 

2.03880 

2.38322 

2.57805 

0.59548 

1.33298 

1.69267 

1.89142 

1.31766 

1.65178 

1.83585 

1.95441 

1.11363 

1.39601 

1.55158 

1.65178 

0.98213 

1.23116 

1.36836 

1.45673 

0.88837 

1.11363 

1.23766 

1.31766 
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4. CONCLUSION 
Effect of radiation on unsteady Coutte flow between two 

vertical parallel plates with a ramped wall temperature has been 

investigated. It is found that the velocity decreases with 

increase in either radiation parameter R  or Prandtl number 

Pr . An increase in Grashof number Gr  leads to rise in the 

velocity 1u  of flow field. It is seen that the velocity 1u  

increases with an increase in time  . It is also seen that the 

temperature   decreases with increase in either radiation 

parameter R  or Prandtl number Pr . The temperature increases 

with an increase in time. Further, it is observer that for fixed 

value of Grashof number Gr , the shear stress x  decreases for 

both the cases of ramped and isothermal wall temperature with 

an increase in either radiation parameter R  or time  . The rate 

of heat transfer (0)'  increases with an increase in either 

radiation parameter R  or Prandtl number Pr  for both ramped 

as well as isothermal wall temperature at the moving plate 

0  . 
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