
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

1

Load Balancing in Distributed Systems using

Diffusion Technique

P. Neelakantan

Department of CSE, SVUCE, Tirupati, India

ABSTRACT

The purpose of load balancing algorithm is to distribute the

excess load from heavily loaded nodes to underloaded nodes.

A new dynamic load balancing algorithm is proposed based

on diffusion approach (DDD) for homogeneous systems

where the processing capacities of all nodes in the system are

equal. The proposed algorithm works iteratively to balance

the load among the nodes in a system. The dynamic

distributed diffusion algorithm has been developed for coarse

and large granularity applications, where the load shall be

treated as an Integer quantity. The functioning of the proposed

algorithm is demonstrated by using a random graph &

simulation has shown the proposed algorithm performs better

in terms of time taken to balance the load, minimizing the

load variance among the nodes and maximizing the

throughput.

Keywords

Load balancing, diffusion

1. INTRODUCTION

A well known and popular load balancing approach first

introduced by Cybenko and Boillat [1][2] is diffusion load

balancing. The algorithm works iteratively to balance the load

among the nodes in a system. The idea behind this algorithm

is in each round, the overloaded node exchanges its excess

load with all neighbors individually. The advantage of

diffusion algorithm lies in the collection of information from

the nodes in a system. The information policies will have

higher impact on earlier completion of load balancing

algorithm.

The diffusion algorithm [3, 4, 5] collect information from a

group of nodes which is referred to as a domain. The

algorithm tries to balance the loads in each domain, such that

excess load will be transferred to the under loaded node in

their domain thus reducing communication overhead. When

loads are to be transferred to the large radii node in a system it

puts more communication overhead which forfeits the

advantages of load balancing algorithm. The objective of the

diffusion load balancing algorithm in both static load

situations and in dynamic load situations is to keep the nodes

to contain an equal number of loads. To do this, the loads are

distributed evenly among the nodes as quickly as possible.

Much work has been done under the assumption that every

edge is only allowed to forward one load unit per round [6, 7,

8, 9] or a constant number of loads can be passed by each

node [10, 11].

In a simple diffusion algorithm, if the neighboring nodes of

any have the load value smaller than underlying

 then those neighbors are referred as underloaded

loaded nodes. Once underloaded neighbours are determined,

the underlying node will measure the load difference between

itself and each one of its neighbours. Then, a fixed portion of

the excess load is sent to each one of the under loaded

neighbours. This strategy, as well as other strategies from

the literature based on this, [5][12][13] is originally

conceived under the assumption that load can be divided

arbitrarily ,i.e., the load is treated as a non-negative real

quantity. The load is treated as integer quantity in medium

and large grain parallelism (back-track searches, branch-and-

bound optimizations, theorem proving, interpretation of

PROLOG programs, adaptive refinement techniques for

solving PDEs, and ray tracing)which are more realistic

assumption and common in practical parallel computing

environments as carried out in [14] [15[11]]. A relevant

strategy in this area is the SID (Sender Initiated Diffusion)

algorithm [12]. Luling and Monien [13] devised a distributed

load balancing algorithm for a grid with load index defined as

a summation of service times of jobs currently running in a

node but does not consider the effects of communication

latency. Liu et al. [19] used an agent based system, which

migrates the excess workload from the heavily loaded nodes

to the lightly loaded nodes, and they assumed the nodes in the

system are homogeneous. Acker et al., [20] proposed a new

decentralized dynamic diffusion algorithm that is capable of

dynamically adapting to changing operating parameters. The

devised load balancing algorithm runs on every node is

decentralized and dynamic. It handles the nodes in the

systems that are heterogeneous in terms of node processing

capacity, architecture and network speed.

2. NOTATIONS & ASSUMPTIONS

Consider a distributed system with nodes represented as an

undirected graph G , where a set of

nodes and set of edges connecting the nodes. The set of

nodes that have direct links with is represented

by called neighbor nodes

[6][8][11].

Notations:

N: Number of nodes in a distributed system

V: set of nodes in a distributed system N=|V|

 : Load of node i at time t i

 Domain of node i at time t =

 : Load of node that belongs to domain of node at

time t

 : Average load of the domain of node i given by

 : Average System load

 at time t

 Variance of system,

 Load deficit at node j at time t j

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

2

 : Excess load of node i at time t

 Maximum load of node in the domain of node i

 : Minimum load of node in the domain of node i

 : Apportion of the load sent to the deficit neighbor j in

the domain of node i

 : Fine load distribution by node i

It is assumed that a distributed system consists of identical

high performance nodes (homogeneous system) connected by

a set of high bandwidth communication links in order to

provide a powerful computing platform to execute

computationally intensive parallel and distributed applications

[11].

It has been assumed a distributed system consists of

independent parallel jobs [5] [6] [7] where they can be

executed at any time, in any order and at any node. It is

assumed that the jobs have varied service times and are

modeled as a uniform distribution. The arrival of the jobs is a

Poisson distribution.

3. MATHEMATICAL MODEL

Let is the load value of node in a system of N nodes at

given time instant t and the load values among the nodes in

the system are represented by using load vector
 . The load values of a node can be real or non

negative integer values depending on the granularity of the

application. Let the load value of every node in a system is

represented as an integer quantity. When the load is

represented as an integer quantity the maximum load

difference in the system between any two nodes is to be 0 or

1.

Let the load balancing algorithm is initiated at time t and it

takes some time t1 where t1>t to balance the load among the

nodes. Let the average system load at time t is given by

 (3.1)

Since load balancing algorithms are load conservative, i.e.,

they do not neither create nor destroy load but only move it

around the system such that load values of individual nodes

changes due to load balancing actions .In static load

situations, the value of does not change over time. Thus, it

is given by

The imbalance of the system load at time t is measured with a

synthetic indicator, the variance of the load of the nodes, i.e.,

their quadratic deviation from .

 (3.2)

If variance among the system is minimized, each node in the

system contain equal loads to process so as to minimize the

response time of the system.

Theorem:

The execution of a diffusive load balancing policy nullifies

any load imbalance in a system[6][11], i.e.,

 (3.3)

Lemma: If the variance among the nodes in a domain D is

decreased by exchanging the loads only among the nodes in

that domain by applying load balancing algorithm then the

global variance of the system can also be decreased.

Proof:

Let us multiply the expression (3.2) by N and for the sake of

simplicity exclude the right hand side value N which is

multiplied with .The variance at time t can then be

expressed as:

 =

 =

 (3.4)

After initiating a load balancing activity at time t within a

domain of nodes, the variance at time can be

expressed as:

 =

 =

(3.5)

The variation of the variance can be expressed as

 =

 (3.6)

Let us consider the load balancing activity takes place in a

domain and not in the in other domains
 . The load

balancing algorithm exchanges load in the nodes that are

present in a domain (by indicating , the set of nodes not

belonging to the domain and by the

number of nodes involved in load balancing)

 =

 ,

 =

The equation (3.6) can also be rewritten as follows

 =

(3.7)

By adding and subtracting the terms

 ,

 in

equation (3.7)

 =

 + (

(3.8)

The above equation can be expressed as

(3.9)

In other words, the variation of the global variance can be

expressed as the variation of the variance in the sub systems

identified by and
 . The load of the nodes of

 has not

changed, i.e.,

 =0 (3.10)

Consequently, if the local action in D decreases the local

variance

a global benefit stems for the local load balancing action

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

3

4. PROPOSED METHOD

In a distributed system, the nodes exchange their load

information at periodic intervals of time called information

exchange interval . The information exchange consists of

load information of a node and the instant at which this

information exchange takes place is called an information

exchange epoch. In order to reduce the communication

overhead, the information exchange is restricted only to the

neighboring nodes.

Each node i receives a load information message from its

neighbors which is kept in the node i memory. Due to

communication delays induced by the network, each node i

will have an estimate of the neighbor nodes load, because

within the communication delay d some load may be added

to the node j or removed from the node j. The load

information from node j to node i is represented

 where is a certain time instant satisfying

 . The node i, as =0 (delay is zero for the node i)

will have exact information about its load.

A set of time instants is associated with each node for doing

load balancing. At a given time instant, the node i executes

the load balancing algorithm by comparing its load with the

estimated load of its neighbors that are stored in the node i

local memory during status exchange epoch. In order to

analyze the DDD behavior, the variable t is discriminated by

assuming the values t=0, 1, 2….

When the loads among the nodes are distributed randomly, a

single iteration of the proposed load balancing algorithm

consists of two procedures: procedure LB and procedure

AccurateLB. In procedure LB, when the load of the node is

greater than the average load of the domain of the node i, then

that node is said to be an overloaded node, so it sends its

excess load to the under load neighbors.

In the procedure AccurateLB of DDD, the node that initiated

the load-balancing algorithm checks its underlying domain for

balanced state. The domain attains balanced state if the load

difference between two nodes in it is not greater than 1. If it is

not balanced, a node that initiated the load balancing

algorithm balances its domain in a refined way by sending

messages to the overloaded nodes in its domain to distribute

the loads to the under loaded neighbors

The node i compute the load average of its domain by taking

the load information of the neighbors kept in the memory

which is rounded to the nearest lowest integer value, which is

given by

 (4.1)

After computing the load average, it evaluates the relative

load weight to detect whether it is an overloaded node or

under loaded node. For this purpose it uses the below formula

 (4. 2)

From equation (2) If the value >0 indicates

node i is overloaded and it has to send its excess load to one

of its deficient neighbors. The value <0

indicates that the node is underloaded and there no need to

transfer the load and hence no need to invoke the load

balancing algorithm. Depending on the value

of) the load balancing algorithm is initiated by

the node i

4.1.1 Load transfer calculation

Once the node i determines that it is having an excess load, it

has to distribute its excess load to the deficient neighbors. The

node i form two sets and depending on the

excess and deficit load values. Nodes having the deficit loads

form the Active set which is denoted by and nodes

having the excess loads form the set After forming the

two sets, for each deficit neighbor in set , load deficit

for an individual node is stored which is given by

Activei (t) = where

 Sendi(t) = where k

 =

The total deficit of the domain of node is calculated by using

the formula:

 = (4. 3)

After determining the total deficit load, the node i proceed to

determine how much portion of its excess load is to be sent

for each deficit neighbor by having the below formula

 (4. 4)

4.1.2 Accurate Load Movements

The procedure AccurateLB is used by node i to check its

domain for accurate balance. To do this, some additional

parameters are required to probe for unbalanced domains.

These parameters will do accurate load movements to balance

the domain and hence to decrease the variance of the domain.

The additional parameters introduced in the algorithm are:

A node that contains a maximum load value in the

domain of :

A node that contains a minimum load value in the

domain of : {

To detect the imbalance in domain of , the above two

parameters will be used .

4.1.3 Load adjustments between nodes

After detecting, the imbalance in the domain of , some

units of load must be moved between the nodes to reduce the

variance in the domain of . To do this the following

steps must be accomplished.

Step 1: In general excess loads are kept in and deficit

loads are kept in the set . When the load difference

between the maximum loaded node in and minimum

loaded node in is greater than 1 & all nodes in

contains equal loads load refinement must be done such that

all nodes in the domain must consist of nearly an equal

amount of load.

It shall be easily known that if the load difference in the

domain i.e., the load of the maximum loaded node in

when compared with the load of the minimum loaded node in

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

4

 contains load units greater than 1, some load

units must be transferred. While transferring two

constrains must be satisfied.

Constraint 1: The node in the set after sending its

excess load units to one of the deficient neighbors in the set

 ,load value of the sender node must be equal or

greater than one unit to the next higher load node in is

compared to avoid job shuttle between the nodes. From this, it

will be concluded that the largest node in remains as

largest after sending

 units of load to least loaded deficit

node in

Constraint 2: After receiving load units from the

maximum loaded node in , the load value of the least

loaded node in must be equal to the load value of the

next least loaded node in . The above two constraints

plays a key role in avoiding job thrashing effect.

To analyze the time complexity of DDD algorithm, The single

iteration of DDD in a node involves distinct operations

depending on the phase or phase of the algorithm to be

executed to distribute the load among the neighbors. The

below pseudo code of the algorithm shows the organization of

different blocks and table 1 shows the maximum number of

operations required at each level(The number of neighboring

nodes to node is denoted as d). By complete analysis, it shall

be concluded that the time complexity of DDD is prevailed by

the complexity of AccurateLB O(d).Hence it can be seen that

the overall time complexity of the DDD is low when

compared to the load balancing algorithms discussed in the

literature survey.

Algorithm DDD

 At each node i=1, 2…N

 Compute

 ;

 Find = where

Find = where

Compute (t) = ;

 If ((t)>0) call procedure LB;

 Choose an index k & a ;

 =

;

 =

;

 While (

 >1)

 Compute

 ;

 If (0) exit;

 Else

 Call procedure AccurateLB;

 Choose an index k & a ;

 =

;

 =

;

 End while

End DDD

Procedure LB

 For each jActivei

 Compute (t);

End For

Compute ;

For each jActivei

 Compute

 ;

 Transfer units to node j from node i;

End For

End LB

Procedure AccurateLB

 If (i

Node i sends message to k to transfer load unit to a

and the load at k is reduced by one unit.

Else

Node i transfer load unit to a and the load at i is

reduced by one unit.

End AccurateLB

DDD OPERATIONS

 Actions Operation quantity

Initial

actions

Check load

Estimates of

Neighbors

Memory

access

d, the number

of neighbors

Evaluate

average load

Addition

Division

d

1

deviation Subtraction 1

Active set,

Send set
Comparison d

Procedure

LB

Evaluate

deficit devij
Subtraction d

Evaluate TD Addition d

Evaluate xij

Multiplicatio

n

Division

d

Procedure

Accurate

LB

Max element in

the Send set

and minimum

element in the

active set

Comparisons O(d)

Evaluate Subtractions d

Send one

message
Transmission 1

Table 1: Possible operations performed by DDD

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

5

4.2 CONVERGENCE OF THE PROPOSED

ALGORITHM

To demonstrate DDD convergence, partially asynchronous

assumption introduced by authors in [11][6][12]. The

asynchronous algorithms are divided into two classes: totally

asynchronous and partially asynchronous. Total asynchronous

algorithms can tolerate large communication and computation

delays but partially asynchronous algorithms require an upper

bound on communication and computation delays to work

correctly. This upper bound is denoted by U, which is applied

to realistic load model assumed by DDD. The formal

description of this assumption is given below. The time

complexity of the proposed algorithm is O(d).

Assumption 1: Let us denote an upper bound U such that

a) For each node and for every ,

b) For each node , for every and for

every

c) Node sends the load to node j at time t, will

be received by the node before time t+U

d) Node sends the instruction message to node j

at time t, is received by the node before time

t+U

Part (a) of this assumption asserts that the load balancing step

is performed by each node during time interval of length U.

(b) states that load information of neighboring nodes kept by

any node in a given time t are obtained at any time between t-

U and t; (c) & (d) asserts that the instruction messages and

load messages sent by node i to node j will not be delayed

more than U time units.

To Prove DDD converge under assumption 1, two definitions

and two lemmas are to be introduced.

Definition 1:

is the minimum load value in a system during the time

interval t-3U to t.

Definition2: =

 , where is the

minimum load value that occupies k-st place if the loads are

sorted in non decreasing sequence during the time interval t-

3U to t.

Lemma 1: The sequence of loads (, the

time is increasing and upper bounded. There exist a time t1

such that

I. =

II. ,

 =

From Lemma1 it has been observed that at time , the load

value of all nodes become stable and no node would send or

receive the load from its neighbors by executing the DDD

algorithm.

Proof: Let a node i V and a time It is to be proven

that Li(t+1)

 If then is not having the excess load, so it does

not trigger the load balancing algorithm, instead it receives the

load from the overloaded neighbors as a part of load balancing

process which is initiated by some overloaded neighbor which

is present in its domain. Thus

If , the node i has invoked the load balancing

algorithm, where two different cases shall be found depending

on which procedure in DDD is invoked in making the

accurate load movements between the nodes.

Case 1: When there are no load movements has

been generated by AccurateLB(, then there exits

two different situations.

Situation 1: Node is an under loaded node

((t) ≤ 0). Then it will not send any load to its

neighbors such that so

 .

Situation 2: Node i is an overloaded node

((t) . Then it will execute the procedure LB to

migrate some load units to the deficient neighbors which is

given by

 = +

 .

Here is the average load of the domain between

the time interval t- 3U to t, so it is clear that is greater

than . Hence

Case 2: By applying the procedure AccurateLB,

some load units move among the nodes (. It may

be possible that an overloaded node does not transfer any load

by using the procedure LB, but still there is chance to

transfer some load units to the deficient neighbors in a more

refined way to reduce the load variance in the system by

calling the procedure AccurateLB. This happens in two

different situations.

When the difference between the loads of first

nodes in Activei and Sendi is greater than 1, i.e., =

(

 and the node i is

having the maximum load in its domain then -

 is sent to the least loaded neighbors.

 Thus =

When the difference between the loads of first node

in Activei and Sendi is greater than 1, i.e., = (

 , node i is not having the

maximum load in its domain but belongs to sendi , but there

exists some node k with maximum load in domain of node i

such that it sends an instruction message to k to send

 -

 is sent to the least loaded neighbors such

that at some time , the difference between
 where So, it shall be concluded that

 .

Hence for all the cases it has been shown that

 and . So minimum

load at t+1 is greater than minimum load at t which is given

by

Since
 is an increasing order

sequence and upper bounded then there exists a non negative

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

6

integer such that
 So part

(I) of lemma is proved for any time .

To prove part (II) of Lemma1, Let
 is the set of nodes with load value

less than or equal to the average load of the system at time t

and it will be seen that

 i.e., the sequence of sets of nodes with minimum load is a

decreasing sequence beyond .

Let and . It will be seen

that , i.e., if node is not a node with minimum

load value at time t then it will be never be a node having a

minimum load value at time t+1.

 If , then it has been proven that
 so

 If , some different cases can be found:

Case 1: If then, as it has been observed
 . So .

Case 2: If and node i is an underloaded node

(then it has been seen that
 thus

Case 3: If and node is an overloaded node

(then it has been seen that

 and

So it can be concluded that

Since
 is a finite set, there exists an integer such

that

Note that if has the minimum load value at

time then . Because it is

an under loaded node it does

not send any load such that and

does not receive any load from neighbors.

Since both (I) & (II) of Lemma 1 is proved, hence Lemma 1 is

proved

5. SIMULATION

 The objective for load balancing is obtain a uniform

response time throughout the system. For evaluating the

performance of the load balancing algorithms M/D/1

Queuing model is used. The expected response time of a node

is modeled as a M/D/1 queue depends on the mean and

standard deviation of service times and on the average inter-

arrival time. The D in this model stands for constant service

time. The inter arrival time of requests on a node has a mean

value of which follows a Poisson distribution

5.1 INFLUENCE OF NODE SIZE ON EXECUTION

TIME OF AN ALGORITHM

To test the influence of node size on the execution

time of an algorithm, the loads are varied from light load

situations to high load situations by adjusting the parameter λ.

The sizes of the nodes are varied from 100 nodes to 500 nodes

to test the scalability of the algorithms. It has been observed

under light load conditions (λ=0.1 jobs/sec), the GDE

algorithm has been performing well when compared to the

other algorithms inclusive of the proposed algorithm. But

under heavy load conditions(λ=0.9 jobs/sec), the proposed

algorithm has done well compared to the existing algorithms.

The graphs presented in below figures show the time taken to

balance the loads among the nodes. It has been observed that

the algorithm execution time increases considerably with the

increase in the number of nodes. SID is scalable, but its

variance is increasing considerably with the increase in the

number of nodes.

Figure 1: The effect of system size on load balancing time

for different algorithms for average arrival rate=0.4

jobs/sec.

Figure 2: The effect of system size on load balancing time

for different algorithms for average arrival rate=0.9

jobs/sec.

5.2 EFFECT OF NODE SIZE ON VARIANCE

 To observe the maximum load difference between

nodes in a distribute system as well as the variance among the

nodes, the load balancing algorithm is run for the various job

inter arrival patterns .At the end of load balancing algorithm,

the variance among the nodes is computed. For moderate and

heavy loads, the nodes have taken more time to reach the

threshold level (Lmax- Lmin <=1). If the variance shows an

irregular pattern it is an indication of job thrashing, where the

same loads are shuttling between the nodes. But in proposed

algorithm it shall be observed that irregular pattern is not

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

7

present and the variance among the nodes is decreasing

constantly as the load balancing algorithm progresses over

time.

Figure 3 shows the time taken for different algorithms to

reduce variance among the nodes in the system when the

average arrival rate λ=10 jobs/sec.

5.3 EFFECT OF ARRIVAL RATE ON THROUGHPUT

In this simulation, the nodes are generated randomly

with reachability of every node in the system. The edges

connecting the nodes are generated in such a way that the

graph is a spanning tree. In low load conditions, the GDE has

performed well in executing the more number of jobs per unit

time. Even though AN & the proposed algorithm DDD has

attained low variance they have taken more time to reduce the

variance among the nodes in the system thus resulting in low

throughput when compared to GDE. But in moderate and

heavy load conditions, the proposed algorithm has done well

when compared to the other algorithms. The GDE algorithm

has occupied next to the DDD algorithm.

6. REFERENCES

[1] J.E. Boillat, Load Balancing and Poisson Equation in a

Graph, Concurrency: Practice and Experience, Vol. 2(4),

December 1990, pp. 289-313.

[2] G.Cybenko, Load balancing for distributed memory

multiprocessors. Journal of Parallel and Distributed

Computing, 7:279-301, 1989.

[3] Rupali Bhardwaj, V.S.Dixit, Anil Kr.Upadhyay. A

Propound Method for Agent Based Dynamic Load

Balancing Algorithm For Heterogeneous P2P Systems in

International Conference on Intelligent Agent and Multi-

Agent Systems, 2009.

[4] F.M. auf der Heide, B. Oesterdiekhoff, and R. Wanka.

Strongly adaptive token distribution. Algorithmica 15

(1996), pp. 413–427.

[5] Berenbrink, P. and Friedetzky, T. and Martin, R. (2005)

’Dynamic diffusion load balancing.’, in Automata,

languages and programming : 32nd International

Colloquium, ICALP 2005, 11-15 July 2005, Lisbon,

Portugal ; proceedings. Berlin: Springer, pp. 1386-1398.

[6] Cortés, A., Ripoll, A., Cedó, F., Senar, M. A., and

Luque, E. 2002. An asynchronous and iterative load

balancing algorithm for discrete load model. J. Parallel

Distrib. Comput. 62, 12 (Dec. 2002), 1729-1746.

[7] Y.F. Hu, R.J. Blake, An Improved diffusion algorithm

for dynamic load balancing, Parallel Computing

25(1999), pp. 417-444.

[8] E. Luque, A.Ripoll, A.Cortes and T. Margalef, A

Distributed Diffusion method for dynamic load balancing

on parallel computers,1995.

[9] Tina A. Murphy and John G. Vaughan, On the Relative

Performance of Diffusion and Dimension Exchange

Load Balancing in Hypercubes, Procc .of the Fifth

Euromicro Workshop on Parallel and Distributed

Processing, PDP’97, January 1997, pp. 29-34.

[10] P. Berenbrink, T. Friedetzky, and Z. Hu. A new

analytical method for parallel, diffusion-type load

balancing. J. Parallel Distrib. Comput., 69(1):54–61,

2009

[11] F. Cedo, A. Cortes, A. Ripoll, M. A. Senar, and E.

Luque. The convergence of realistic distributed

loadbalancing algorithms. Theor. Comp. Sys.,

41(4):609– 618, 2007.

[12] D.P. Bertsekas and J. Tsitsiklis, Parallel and Distributed

Computation: Numerical Methods,Prentice-Hall,

Englewood Cliffs, NJ, 1989.

[13] Liu, J., Jin, X. and Wang, Y. 2005. Agent-Based Load

Balancing on Homogeneous Minigrids: Macroscopic

Modeling and Characterization, IEEE Transactions on

Parallel and Distributed Systems, 586-594.

[14] Raghu Subramain, Issac D. Scherson, An Analysis of

Diffusive Load-Balancing. In Proceedings of 6th ACM

Symposiummon Parallel Algorithms and Architectures,

1994.

[15] T. Friedrich and T. Sauerwald, "Near-perfect load

balancing by randomized rounding", in Proc. STOC,

2009, pp.121-130.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
im

e(
 i

n
 M

il
li

 S
ec

o
n

d
s)

Number of Nodes

Number of Nodes Vs Time
DDD

SID

AN

GDE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Th
ro

u
gh

p
u

t(
jo

b
s/

se
c)

Arrival rate(jobs/sec)

Arrival rate vs Throughput for the node
size=500

DDD

SID

AN

GDE

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.4, February 2012

8

[16] Marc H. Willebeek-LeMair, Anthony P. Reeves,

Strategies for Dynamic Load Balancing on Highly

Parallel Computers, IEEE Transaction on Parallel and

Distributed Systems, vol 4, No 9, September 1993,

pp.979-993.

[17] Qiao, Y. and Bochmann, G. v. 2009. A Diffusive Load

Balancing Scheme for Clustered Peer-toPeer Systems. In

Proceedings of 15th ICPADS. IEEE Computer Society,

842-847

[18] S. Muthukrishnan, B. Ghosh, and M. Schultz. First and

second-order diffusive methods for rapid,

coarse,distributed load balancing. Theory of Computing

Systems, 31(4):331–354, 1998

[19] Luling, R., Monien, B. 1993. A Dynamic Distributed

Load Balancing Algorithm with Provable Good

Performance. Proc. of the 5th ACM Symposium on

Parallel Algorithms and Architectures, 164-173

[20] Acker, D., Kulkarni, S. 2007. A Dynamic Load

Dispersion Algorithm for Load Balancing in a

Heterogeneous Grid System. IEEE Sarnoff Symposium,

1- 5.

