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ABSTRACT 
Radiation effects on free convection MHD Couette flow of a 

viscous incompressible heat generating fluid confined between 

vertical plates have been studied. The governing equations are 

solved analytically using the Laplace transform technique. The 

variations of velocity and fluid temperature are presented 

graphically. It is observed that the velocity decreases with an 

increase in either magnetic parameter or radiation parameter or 

generation parameter or Prandtl number. It is also observed that 

the velocity increases with an increase in either Grashof number 

or time. An increase in either radiation parameter or Prandtl 

number leads to fall in the fluid temperature. It is seen that the 

fluid temperature increases with an increase in either heat 

generation parameter or time. Further, it is seen that the 

absolute value of shear stress at the moving plate increases with 

an increase in either magnetic parameter or radiation parameter 

while it decreases with an increase in either heat generation 

parameter or Prandtl number. The rate of heat transfer increases 

with an increase in either Prandtl number or heat generation 

parameter or time. 
 

Keywords:  MHD Couette, free convection, magnetic 

parameter, radiation, heat generation, Prandtl number and 
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1.  INTRODUCTION 
Research works in magnetohydrodynamics (MHD) have been 

advanced significantly during last three decades in natural 

sciences and engineering disciplines after the pioneer work of 

Hartmann (Hartmann 1937) in liquid metal duct flow under the 

influence of a strong external magnetic field. This fundamental 

investigation has provided basic knowledge for the 

development of several MHD devices such as MHD pumps, 

generators, breaks and flow meters. The study of flow for an 

electrically conducting fluid has many applications in 

engineering problems such as plasma studies, nuclear reactors, 

geothermal energy extraction and the boundary layer control in 

the field of aerodynamics. Recent advances and applications of 

MHD based microfluidic devices are extensively reviewed in 

the paper by Qian and Bau [1]. Some of these devices include 

MHD-based micro-pumps used for producing a mechanical 

force which sets the fluid into motion; MHD-based microfluidic 

networks used for transporting fluids and reagents across 

networks of conduits where the flow control typically requires 

the use of pumps and valves; MHD-based liquid 

chromatography used for the separation, purification and 

detection of various biochemicals. Although, some of these 

devices are fabricated with low temperature co-fired ceramic 

tapes, significant heat generation or radiative heat transfer 

occurs due to the induction of eddy currents in most of these 

engineering applications [2, 3, 4]. Other examples are, high 

temperature phenomena or high-power radiation sources 

commonly encountered in solar physics-particularly in 

astrophysical studies [5], in combustion applications such as 

fires, furnaces, IC engines, in nuclear reactions such as in the 

sun or in nuclear explosions [6], in compressors in ships and in 

gas flares from petrochemical industry [7]. For air, the 

contribution of radiation becomes significant when the wall 

temperature is in the range 6000 - 10,000K. This situation is 

encountered for re-entry space vehicles. Korycki [8] described 

radiative heat transfer as an important fundamental phenomena 

existing in practical engineering such as those found in solar 

radiation in buildings, foundry engineering and solidification 

processes, die forging, chemical engineering, composite 

structures applied in industry. Another important feature that 

usually occurs in electronic devices over a period of continuous 

usage is the hotness of the surface. This means that a poor 

design could trap heat generated by the source of the power 

supply and could incapacitate the efficiency and durability of 

the systems. Therefore, the efficiency in the functioning of 

these systems is enhanced when they are subjected to external 

cooling devices like air conditioners, electric fans, and some 

others (e.g. laptop computers) inbuilt storage devices that store 

electrical energy for them to function for sometime even 

without external source of power supply [9]. The IC 

components of these electronic systems are thermally coupled 

to the surrounding via convection and radiation. Radiation has a 

significant role in heat transfer in low-flow applications where 

there exists a larger temperature gradient between the 

components and the surrounding. Couette flow is one of the 

basic flow in fluid dynamics that refers to the laminar flow of a 

viscous fluid in the space between two parallel plates, one of 

which is moving relative to the other. The flow is driven by 

virtue of viscous drag force acting on the fluid and the applied 

pressure gradient parallel to the plates. Couette flow is 

frequently used in physics and engineering to illustrate shear-

driven fluid motion. Radiative free convection MHD Couette 

flows are frequently encountered in many scientific and 

environmental processes, such as astrophysical flows, heating 

and cooling of chambers and solar power technology. Heat 

transfer by simultaneous radiation and convection has 

applications in numerous technological problems including 

combustion, furnace design, the design of high temperature gas 

cooled nuclear reactors, nuclear reactor safety, fluidized bed 

heat exchanger, fire spreads, solar fans, solar collectors natural 

convection in cavities, turbid water bodies, photo chemical 

reactors and many others. Jha[10] has studied the natural 

convection in unsteady MHD Couette flow. Radiative heat 

transfer to magnetohydrodynamic Couette flow with variable 

wall temperature has been investigated by Ogulu and Motsa 

[11]. Radiation effects on MHD Couette flow with heat transfer 

between two parallel plates have been examined by Mebine 
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[12]. Jha and Ajibade [13] have made an analysis on the free 

convective flow of heat generating/ absorbing fluid between 

vertical porous plates with periodic heat input. Jha and Ajibade 

[14] have studied the unsteady free convective Couette flow of 

heat generating/absorbing fluid. MHD oscillatory Couette flow 

of a radiating viscous fluid in a porous medium with periodic 

wall temperature have been examined by Cookey et al.[15]. 

Effects of thermal radiation and free convection currents on the 

unsteady Couette flow between two vertical parallel plates with 

constant heat flux at one boundary has been studied by Narahari 

[16]. Deka and Bhattacharya [17] have investigated the 

unsteady free convective Couette flow of heat 

generating/absorbing fluid in porous medium. The radiation and 

free convection effects on a MHD flow through a porous 

medium between infinite parallel plates with time-dependent 

suction by have been described by Alagoa et al. [18]. Gbadeyan 

et al.[19] have discussed the radiation effect on 

electrohydrodynamic froth flow in vertical channel. The 

magnetic field and thermal radiation effects on steady 

hydromagnetic couette flow through a porous channel have 

been studied by Baoku et al.[20]. 

 

In this present paper we investigate the radiation effects on on 

free convection MHD Couette flow of a viscous incompressible 

heat generating fluid confined between vertical plates. It is 

observed that the velocity 1u  decreases with an increase in 

either magnetic parameter 2M  or radiation parameter R  or 

Prandtl number Pr . It is also observed that the velocity 
1( )u   

increases with an increase in either heat generation parameter or 

Grashof number Gr  or time  . An increase in either radiation 

parameter R  or Prandtl number Pr  leads to fall in the fluid 

temperature  . It is seen that the fluid temperature   increases 

with an increase in either heat generation parameter   or time. 

Further, it is seen that the absolute value of shear stress at the 

moving plate 
0  increases motion with an increase in either 

magnetic parameter or radiation parameter while it decreases 

with an increase in either heat generation parameter or Prandtl 

number. The rate of heat transfer (0)'  increases with an 

increase in either Prandtl number or   or  . 

 

2  FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS 
Consider the unsteady free convection MHD Couette flow of a 

viscous incompressible radiative heat generating fluid between 

two infinite vertical parallel walls separated by a distance h . 

The flow is set up by the buoyancy force arising from the 

temperature gradient occurring as a result of asymmetric 

heating of the parallel plates as well as constant motion of one 

of the plates. Choose a cartesian co-ordinates system with the 

x - axis along one of the plates in the vertically upward 

direction and the y - axis normal to the plates [See Figure 1.]. 

Initially, at time 0t  , the two plates and the fluid are assumed 

to be at the same temperature 0T  and stationary. At time > 0t , 

the plate at = 0y  starts moving in its own plane with a velocity 

U  and is heated with temperature 0T  whereas the plate at 

=y h  is stationary and maintained at a constant temperature 

0T . A uniform magnetic field of strength 0B  is imposed 

perpendicular to the plates. It is also assumed that the radiative 

heat flux in the x -direction is negligible as compared to that in 

the y - direction. As the plates are infinite long, the velocity 

and temperature fields are functions of y  and t  only. 

   

 
 

    Figure 1. : Geometry of the problem  

 

     The Boussinesq approximation is assumed to hold and for 

the evaluation of the gravitational body force, the density is 

assumed to depend on the temperature according to the 

equation of state  

 0= 1 ( ) ,hT T                                               (1) 

 where T  is the fluid temperature,   the fluid density,   the 

coefficient of thermal expansion and 
0  the fluid density at the 

entrance of the channel. 

      Then the fully developed flow of a radiating gas is governed 

by the following set of equations  
2 2

0

2
( ) ,h

u u B
g T T u

t y


 



 
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                   (3) 

 where u  is the velocity in the y -direction, g  the acceleration 

due to gravity,   the kinematic coefficient of viscosity,   the 

fluid density, k  the thermal conductivity, pc  the specific heat 

at constant pressure, 
rq  the radiative heat flux and 

0Q  a 

constant. 

       The initial and the boundary conditions for velocity and 

temperature distribution are as follows:  

= 0, = f 0 a 0,hu T T or y h nd t    

0= , = a = 0 f > 0,u U T T t y or t                         (4) 

= 0, = a = f > 0.hu T T t y h or t  

        It has been shown by Cogley et al.[21] that in the optically 

thin limit for a non-gray gas near equilibrium, the following 

relation holds  

0
= 4( ) ,
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h

h
h

eq
T T K d

y T



 
  

  
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                         (5) 

 where K  is the absorption coefficient,   is the wave length, 

pe  is the Plank's function and subscript '0  indicates that all 

quantities have been evaluated at the temperature 
hT  which is 

the temperature of the plate at time 0t  . Thus our study is 

limited to small difference of plate temperature to the fluid 

temperature. 

        On use of the equation (5), equation (3) becomes  
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 where  
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Greif et al. [22] showed that, for an optically thin limit, the fluid 

does not absorb its own emitted radiation, this means that there 

is no self-absorption, but the fluid does absorb radiation emitted 

by the boundaries. 

      We introduce non-dimensional variables  

12

0

= , = , = , = .h

h

y t u T T
u

h h U T T


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


                      (8) 

 

     On the use of (8), equations (2) and (6) become  
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 where 
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radiation parameter, 
2
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2
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 the Grashof number and =

pc
Pr

k


 the 

Prandtl number. 

 

     The corresponding initial and boundary conditions for 
1u  

and   are  

1 = 0, = 0 for 0 1 and 0,u       

1 =1, =1 a = 0 for > 0,u t                       (11) 

 

1 = 0, = 0 a =1 for > 0.u t     

     Taking Laplace transformation of the equations (9) and (10), 

we get  
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      The corresponding boundary conditions for 
1u  and   are  

               1

1 1
(0, ) = , (0, ) = ,u s s

s s
  

               
1(1, ) = 0, (1, ) = 0.u s s                                  (15) 

 

     The solution of the equations (13) and (12) subject to the 

boundary conditions (15) are easily obtained and are given by  
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    The inverse transforms of (16) and (17) give the solution for 

the temperature and velocity field distributions as  

             

                       

 

 

2 2/

2 2
=1

2 2

2 2
=1

sinh (1 )
2 sin for 1,

sinh

( , ) =

sinh (1 )
2 sin for = 1

sinh

n Pr

n

n R

n

Pr ne
n Pr

n PrPr

R ne
n Pr

n RR

  

  

 
 

 

  

 
 

 

 


  



  

 



  


 





                                      (19) 

        

 

 

  

 

  

2 2 2

2 2 2
=1

2 2 2

2 2 2 2 2 2
=1

2 2/

1
2 2 2 2

sinh (1 )sinh (1 )
1

( 1) sinh ( 1) sinh

2 sin

2

( 1)

( , ) =
sin for

n M

n

n M

n

n Pr

PrGr M Gr

b Pr M b Pr Pr

ne
n

n M

Gr e
n

Pr n M n M b

Preu
n Pr

n Pr n Pr bPr

 

 

  

 



 




 

 


   

 


 


 

  
  

  






   




  






 

 

2 2 2

2 2 2 2
=1

2 2

2 2 2
=1

1,

sinh (1 )
1 2 sin

sinh

sinh (1 )
2 sin for = 1.

sinh

n M

n

n R

n

Gr M ne
n

R M M n M

RGr ne
n Pr

R M n RR

 

  


 

 

 
 

  

 


  















 




  
              


 
   

     
   





                      (20) 

 where   and b  are given by (18).  
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For steady state, the temperature distribution and velocity field 

are obtained as  
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    As the Prandtl number is a measure of the relative 

importance of the viscosity and thermal conductivity of the 

fluid, the case =1Pr  corresponds to those fluids whose 

momentum and thermal boundary layer thicknesses are of the 

same order of magnitude. Thus the solution for the velocity 

field has to be re-derived from equations (9) and (10) when 

=1Pr . 

 

3. RESULTS AND DISCUSSION 

We have presented the non-dimensional velocity and 

temperature for several values of magnetic parameter 2M , 

radiation parameter R , heat generation parameter  , Prandtl 

number Pr , Grashof number Gr  and time   in Figures 2-11. 

Figures 2-7 represent the velocity 
1u  against   for several 

values of 2M , R ,  , Pr , Gr  and  . It is seen from Figure 2 

that the velocity 
1u  decreases with an increase in magnetic 

parameter 2M . This observation can be explained by the fact 

that as M  increases, the Lorentz force which opposes the flow, 

increases and leads to enhanced deceleration of the flow. Figure 

3 reveals that the velocity 
1u  decreases with an increase in 

radiation parameter R . This shows that there is a fall in 

velocity in the presence of high radiation. It is seen from Figure 

4 that the velocity 
1u  decreases with an increase in heat 

generation parameter  . As   increases, heat absorbing 

capacity of the fluid increases which decreases fluid 

temperature and hence the fluid velocity. An increase in Prandtl 

number Pr  leads to decrease the velocity 
1u  near the moving 

plate and reverse result near stationary plate shown in Figure 5. 

Physically, this is true because the increase in the Prandtl 

number is due to increase in the viscosity of the fluid which 

makes the fluid thick and hence causes a decrease in the 

velocity of the fluid. It is observed from Figure 6 that an 

increase in Gr  leads to fall in the values of velocity 
1u . An 

increase in Grashof number leads to an increase in velocity, this 

is because, increase in Grashof number means more heating and 

less density. It is seen from Figure 7 that the velocity 1u  

increases with an increase in time  . It is seen from Figure 8 

that the temperature   decreases as the radiation parameter R  

increases. This is expected, since the effect of radiation is to 

decrease the rate of energy transport to the fluid, thereby 

decreasing the temperature of the fluid. It is seen from Figure 9 

that the temperature   decreases as the heat generation 

parameter   increases. This result agrees with expectations, as 

  increases, heat absorbing capacity of the fluid increases and 

hence the fluid temperature decreases. It is observed from 

Figure 10 that the temperature   decreases with an increase in 

Prandtl number Pr . This implies that an increase in Prandtl 

number leads to fall the thermal boundary layer flow. This is 

because fluids with large Pr  have low thermal diffusivity 

which causes low heat penetration resulting in reduced thermal 

boundary layer. Figure 11 shows that the temperature   

increases with an increase in time  . It is observed from 

Figures 8-11 that temperature decreases gradually from highest 

value on the moving plate to a zero value on the stationary 

plate. 

 

Figure 2. Velocity profiles for 2
M  when = 2R , = 2 , 

= 0.025Pr , = 5Gr  and = 0.0005 . 

 

 

Figure 3. Velocity profiles for R  when 2
= 5M , = 2 , 

= 5Gr , = 0.025Pr  and = 0.0005 . 
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Figure 4. Velocity profiles for   when 2
= 5M , = 2R , 

= 5Gr , = 0.025Pr  and = 0.0005 . 

 

 

 

Figure 5. Velocity profiles for Pr  when 2
= 5M , = 2R , 

= 5Gr , = 2  and = 0.0005 . 

 

Figure 6. Velocity profiles for Gr  when 
2

= 5M , = 2R , 

= 2 , = 0.025Pr  and = 0.0005 . 

  Figure 7. Velocity profiles for time   when 2
= 5M , 

= 2R , = 5Gr , = 2  and = 0.025Pr . 

 

 
Figure 8. Temperature profiles for R  when = 0.025Pr , 

= 2  and = 0.0005 . 

 
Figure 9. Temperature profiles for   when R = 2 , 

= 0.025Pr  and = 0.5 . 
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Figure 10. Temperature profiles for Pr  when = 2R , = 4  

and = 0.2 . 

 

 
Figure 11. Temperature profiles for   when = 0.025Pr , 

= 2R  and = 2 . 

 

      From the temperature field, we now study the rate of heat 

transfer the plate = 0 , which is given in non-dimensional 

form as  
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(23) 

 

    Numerical results of the rate of heat transfer (0)'  at the 

moving plate ( = 0)  against heat generation parameter   are 

presented in the Table 1 for various values of the radiation 

parameter R , Prandtl number Pr  and time  . Table 1 shows 

that for fixed values of  , the rate of heat transfer (0)'  

increases with an increase R  while it decreases with increase 

in either Prandtl number Pr  or time  . This may be explained 

by the fact that frictional forces become dominant with 

increasing values of Pr  and hence yield greater heat transfer 

rates. Further, it is seen that for fixed value of R , Pr  and  , 

the rate of heat transfer (0)'  increases with an increase in 

generation parameter  . The negative value of (0)'  

physically explains that there is heat flow from the plate. 

 

Table 1. Rate of heat transfer 
1

10 (0)
'  at the moving plate = 0 . 

  

 R  
 

Pr  
 

  

    1    2    3    0.71    2    7    0.0020    0.0025  0.0030  

 0.5 

1.0 

1.5 

2.0 

0.34897  

0.35938  

0.36921  

0.37851  

0.36921  

0.37851  

0.38735  

0.39578  

0.38735  

0.39578  

0.40384  

0.41156  

 0.36921 

 0.37851 

 0.38735 

 0.39578 

0.25677  

0.26797  

0.27867  

0.28891  

0.19817  

0.21016  

0.22162  

0.23261  

0.40746 

0.41667 

0.42542 

0.43375 

0.40060 

0.40982 

0.41858 

0.42693 

0.39395 

0.40318 

0.41195 

0.42031 

  

  

     From the physical point of view, it is necessary to know the shear stress at the plate = 0 . The non-dimensional shear stress at the 

plate = 0  is obtained as:  
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



          (24) 

 

      Numerical results of the non-dimensional shear stress 
0  at 

the lower ( = 0)  are presented in Figures.12-16 against 

magnetic parameter 2M  for various values of radiation 

parameter R , heat generation parameter  , Prandtl number 

Pr , Grashof number Gr  and time  . Figure 12 shows that the 

shear stress 
0  decreases with an increase in magnetic 

parameter 2M  for fixed values of R ,  , Pr , Gr  and  . It is 

seen from Figures.13-17 that for for fixed values of 2M , the 

shear stress 
0  decreases with an increase in either radiation 

parameter R  or heat generation parameter   or Prandtl 

number Pr  while it increases with an increase in either 

Grashof number Gr  or time  . These results are in agrement 

with the fact that the velocity decreases with an increase in R  

or   or Pr  while it increases with an increases in Gr  or  . A 

large Prandtl number implies more prominent viscous effects 

causing an enhanced frictional force.  

  

 
Figure 12. Shear stress 

0
  for R , = 2 , = 0.025Pr  and 

= 0.0005 . 

 

 
Figure 13. Shear stress 

0
  for   when = 2R , = 0.025Pr  

and = 0.0005 . 

 
Figure 14. Shear stress 

0
  for Pr  when = 2R , = 0.025Pr  

and = 0.0005 . 
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Figure 15. Shear stress 

0
  for Gr  when = 2R , = 2  and 

= 0.0005 . 
 

Figure 16. Shear stress 
0

  for time   when = 2R , = 2  

and = 0.025Pr . 

 

The vertical flow rate Q  through the channel is given by  
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                  (25) 

  

Numerical results of the vertical flow rate Q  through 

the channel against magnetic parameter 2M  are presented in 

the Table 2 for various values of the radiation parameter R , 

heat generation parameter   and time  . Table 2 shows that 

for fixed values of 2M , the vertical flow rate Q  decreases with 

an increase R  or heat generation parameter   or time  . 

Further, it is seen that for fixed value of R ,   and  , the 

vertical flow rate Q  decreases with an increase in 2M . We see 

that the vertical flow rate decreases with increasing radiation 

parameter and these variations are significant at lower values of 

time. 

    

Table 2. Vertical flow rate Q  with = 5Gr  and = 0.71Pr . 

  

 R      

2M    1    2    3    0.5    1    1.5    0.005    0.0010  0.0015  

 5  

10 

15 

20 

0.42515  

0.33069  

0.27405  

0.23622  

0.41762  

0.32505  

0.26954  

0.23247  

0.31790  

0.32017  

0.26564  

0.22922  

 0.42938 

 0.33386 

 0.27657 

 0.23833 

0.42515  

0.33069  

0.27405  

0.23622  

0.42124  

0.32777  

0.27171  

0.23428  

0.41762 

0.32505 

0.26954 

0.23247 

0.41949 

0.32692 

0.27140 

0.23432 

0.42128 

0.32870 

0.27317 

0.23608 
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The critical Grashof number for which there is no flow reversal near the plates = 0  and = 1  are respectively given by   
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2 2 2
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0 2
2

=1

coth 2

= ,
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n e
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
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






  
  





                                       (26) 
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 where  
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 

  

2 2 2 2 2/
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n M n Pr
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e Pre
a
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                              (28) 

The values of the critical Grashof number 
0Gr  at the moving 

plate = 0  and 
1Gr  at the stationary plate = 1  due to the 

flow are entered in the Tables 3 and 4 for various values of the 

radiation parameter R , heat generation parameter   and time 

  against magnetic parameter 2M . It is seen from the Table 3 

that both the critical Grashof numbers 
0Gr  and 

1Gr  due to the 

flow increases with increase in either R  or   while it 

decreases with increase in time  . On the other hand, with 

increase in the magnetic parameter 2M , 
0Gr  increases for 

fixed values of R ,   and  .  

 

Table 3. Critical Grashof number 2

0
10 Gr

  at the plate = 0  with = 0.71Pr . 

  

 R      

2M    1    2    3    0.5    1    1.5    0.005    0.0010  0.0015  

 5  

10 

15 

20 

0.18758  

0.26678  

0.34161  

0.41350  

0.19555  

0.27704  

0.35372  

0.42718  

0.21017  

0.28677  

0.36517  

0.44009  

 0.18343 

 0.26143 

 0.33528 

 0.40633 

0.18758  

0.26678  

0.34161  

0.41350  

0.19162  

0.27198  

0.34775  

0.42044  

0.19555 

0.27704 

0.35372 

0.42718 

0.18541 

0.26512 

0.34030 

0.41241 

0.17639 

0.25451 

0.32831 

0.39921 

  

Table 4. Critical Grashof number 2

1
10 Gr

  at the plate = 1  with = 0.71Pr . 

  

 R      

2M    1    2    3    0.5    1    1.5    0.005    0.0010  0.0015  

 5  

10 

15 

20 

0.18631  

0.31998  

0.46915  

0.63531  

0.20678  

0.35899  

0.53244  

0.73001  

0.22505  

0.40062  

0.60144  

0.83573  

 0.17643 

 0.30141 

 0.43948 

 0.59166 

0.18631  

0.31998  

0.46915  

0.63531  

0.19643  

0.33917  

0.50012  

0.68137  

0.20678 

0.35899 

0.53244 

0.73001 

0.17224 

0.30600 

0.45673 

0.62654 

0.14170 

0.25910 

0.38964 

0.53474 

  

  

4. SINGLE VERTICAL PLATE 

In the limit h , that is, when one of the plates ( =1)  is 

placed at an infinite distance, then the problem is reduced to the 

flow past an vertical plate with variable temperature in the 

presence of heat generation. The equations (21) and (22) become  

  ( ) = ,
R

e
   

                                                      (29) 

   1 2
( ) = ,

RM MGr
u e e e

R M

 


   
 

         (30) 

 

5. CONCLUSION 

The radiation effects on transient natural convection flow 

confined between two infinite vertical walls have been studied. 

The dimensionless governing partial differential equations are 

solved by the usual Laplace transform technique. The effect of 

different parameters such as radiation parameter, Grashof number, 

Prandtl number, heat generation parameter and time are studied. It 

is also observed that the velocity 1u  increases with an increase in 

either heat generation parameter or Grashof number Gr  or time 

  for both impulsive motion as well as for accelerated motion. 

An increase in either radiation parameter R  or Prandtl number 

Pr  leads to fall in the fluid temperature  . It is seen that the 

fluid temperature   increases with an increase in either heat 

generation parameter   or time. Further, it is seen that the shear 

stress 0  at the moving plate increases with an increase in either 

magnetic parameter or radiation parameter while it decreases with 

an increase in either heat generation parameter or Prandtl number. 

The rate of heat transfer (0)'  increases with an increase in 

either Prandtl number or   or . The vertical flow rate decreases 

with an increase in radiation parameter. Therefore, we may 

conclude that the interaction between the radiation, MHD effects, 

buoyancy forces and the heat generation induced by a vertical 

motion of the plate can affect the configuration of the flow field 

significantly. 
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