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ABSTRACT 
Wind power is seen as the most cost effective way to generate 

electricity from renewable sources. The wind turbine prime 

mover, wind, is uncontrollable as compared to the conventional 

power plant prime mover. Therefore, it becomes very 

important to carry out investigations on the dynamic behavior 

of wind power generating systems. In this paper, the dynamic 

model of 1 MVA unit is extrapolated from 100 kW unit 

existing in NASA –Lewis Research Centre. The various types 

of investigations are carried out to study the dynamic 

performance of various states of the model considering 

variations in the wind speed. At the outset of the work, state 

space model of the system is developed. To study the dynamic 

behavior of the system, optimal controllers are designed using 

full state feedback control strategy. Following the controller 

designs, the closed loop system eigenvalues and dynamic 

response plots are obtained.  

The Strip Eigenvalue Assignment  method is applied to design 

sub-optimal controllers using feedback of few states which are 

accessible for their observation and measurement. The 

comparative study of closed loop eigenvalues and dynamic 

response plots obtained for various operating conditions shows 

a comparable system dynamic performance.  

The optimal controllers are designed for various operating 

conditions using pole placement technique. The dynamic 

response plots and closed loop eigenvalues are obtained for 

various system states considering various operating conditions.  

The investigations of these reveal that the implementation of 

optimal controllers offer not only good dynamic performance, 

also ensure system dynamic stability. 

Keywords- The Strip Eigenvalue Assignment  method; 

dynamic response plots; optimal controllers; eigenvalue 

1.  INTRODUCTION 

Electric power systems, consists of components that transform 

other types of energy into electrical energy and transmit this 

energy to consumers. The production and transmission of 

electricity is relatively efficient and inexpensive, although 

unlike other forms of energy, electricity is not easily stored and 

thus must generally be used as it is being produced.  

The system frequency is common throughout the 

interconnected power system with normally scheduled tie- line 

loadings. When both frequency and tie- line loadings are 

maintained on schedule then only the control system functions 

properly. 

As almost all the power systems operate at alternating current, 

the frequency changes momentorarily only when the generator 

increases or decrease load, which is also in minor, otherwise 

frequency is same throughout the system. When system 

frequency increases or decreases, the speed of the connected 

units changes by the same amount electrically. 

2. LITERATURE REVIEW 

The use of non renewable energy resources is resulting in 

harmful emissions and producing harmful side effects. Due to 

increasing environmental concern and also due to limited 

availability of conventional resources for fuel, more and more 

attention now a days is paid to renewable resources of energy 

like solar, wind , ocean, geothermal etc. [4-7]. These sources are 

available in abundance as well as they are non- polluting. 

The integration of wind power into utility is increased with 

large number of new installations of wind turbines. The special 

characteristic of wind, differentiating it from others is the 

variability of wind speed, the source of energy. The dynamic 

stability of the wind turbine generator thus become very 

important [8], as the dynamic stability affects the 

synchronization of different units in the system. Most important 

it affects the dynamic stability of the system to which it is 

connected. It is seen that there are modal frequencies lying in 

the range of concern for large interconnected power system [2-

3]. Power system stabilizers (PSS) can be used for increasing 

the damping torque of wind turbine generator and the PSS 

design is based on one operating point, and away from this is a 

compromise [1].there are two main categories adopted in power 

system control, centralized and decentralized. A centralized 

control is slow and involves long distance transmission., hence 

difficult to apply to fast on- line power system control. 

Decentralized control is more efficient, it takes directly locally 

available signals from local devices. Hence a coordination 

among local controllers is necessary, with the fast growing 

embedded and interconnected generation [2,3,12].a controlled 

system means the generation is meeting the load demand, that 

there exists a steady state frequency system [13].the weighing 

factors have a powerful impact on the system response. These 

factors can be obtained by classical techniques such as step 

response [18]. The power system dynamics is essential to be 

understood for stable system operation. The optimization of the 

existing resources is necessary for the long term stable operation 

of the power system. To avoid unnecessary mechanical stresses 

and to operate within stability limits different units in the 

system should run in synchronism. Therefore the dynamic 

performance of the wind turbine generator is of concern as it 

affects the dynamic stability of the system to which it is 

connected [1]. 
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The wind turbine generator used is a synchronous generator 

[30] with a static excitations system. The transient stability 

signals derived from speed, terminal frequency, or power are 

superposed on the normal voltage signal of voltage regulator, 

which provides additional damping to the oscillations [29, 31]. 

The wind generator operates in parallel with the utility grids. 

Thus, the synchronization of the wind turbine generator with 

power system under variable conditions, ie; variable frequency 

and variable wind speeds, are important for system stability.  

A wind turbine generator exhibits an unsteady input behavior 

mainly because of unsteady wind speeds. This unsteady 

behavior causes severe oscillations. The transient stability 

signals derived from speed and terminal frequency are 

superposed on the normal voltage error signal of automatic 

voltage regulator (AVR), thus providing damping to these 

oscillations. Thus the terminal voltage of both the conventional 

and wind turbine generator can be kept within satisfactory limits 

by AVR [32].  

Also the damping can be provided by using an output feedback 

and strip eigen value assignment technique. The eigenvalues 

location affects the dynamics of the system. Therefore it is 

necessary to locate the eigenvalues at some desired positions. 

The exact location of all eigenvalues at each operating point is 

difficult to attain. But a satisfactory response for both transient 

and steady state can be obtained by placing all eigen values 

within a suitable region in complex s – plane [20 - 22]. 

3. POWER SYSTEM CONTROL 

Extensive system interconnection characterizes the today‟s 

modern power system. It is necessary to optimally utilize the 

existing resources, for which it‟s extensive control is required. 

Power system dynamics has an important bearing on the 

satisfactory system operation. The dynamic behavior of the 

system is quite complex and a good understanding is essential 

for proper system planning and system security. The present day 

power system is an interconnected power system, and has 

several advantages. Power system control is very much required 

to maintain demand, while the system frequency, voltage level 

and security are maintained. The overall system control is based 

on a combination of manual intervention, feedback loops, 

optimization techniques and load demand. The control of 

frequency and power exchange can be done by load frequency 

control. The need for direct control of network voltage is 

usually done by automatic voltage regulating equipments. 

The system control is based on the frequency intervention of the 

physical phenomenon involved. Reactive power distribution 

generally do not affect the system operating cost significantly, 

but an optimum allocation may be important for maintaining 

steady state stability and voltage levels of the system [4]. 

3.1 Control Strategies 

A control system must guarantee first the stability of the closed-

loop system. For linear systems, this can be obtained by pole 

placement technique. Non-linear control systems use specific 

theories to ensure. The main control techniques are given 

below: 

1) Adaptive Control :uses on-line identification of the 

process parameters, or modification of controller gains, thereby 

obtaining strong robustness properties 

2) Hierarchical Control :A Hierarchical control system is 

a type of control system in which a set of devices and 

governing software is arranged in a hierarchical tree. When the 

links in the tree are implemented by a computer network, then 

that hierarchical control system is also a form of Networked 

control system. 

3) Intelligent Control:Intelligent control use various AI 

computing approaches like neural networks, Bayesian 

probability, fuzzy logic, machine learning, evolutionary 

computation and genetic algorithms to control a dynamic 

system. 

4) Optimal Control: Optimal control is a particular control 

technique in which the control signal optimizes a certain “cost 

index”. Two optimal control design methods have been widely 

used in industrial applications, as it has been shown they can 

guarantee closed-loop stability. These are Model Predictive 

Control (MPC) and Linear-Quadratic-Gaussian control (LQG). 

The first can more explicitly take into account constraints on 

the signals in the system, which is an important feature in many 

industrial processes. However, the "optimal control" structure 

in MPC is only a means to achieve such a result, as it does not 

optimize a true performance index of the closed-loop control 

system.  

5) Robust Control: Robust control deals explicitly with 

uncertainty in its approach to controller design. Controllers 

designed using robust control methods tend to be able to cope 

with small differences between the true system and the nominal 

model used for design.  

6) Stochastic Control: Stochastic control deals with 

control design with uncertainty in the model. In typical 

stochastic control problems, it is assumed that there exist 

random noise and disturbances in the model and the controller, 

and the control design must take into account these random 

deviations [5]. 

3.2 Classical Control Strategies 

Control is a general term for the theory and techniques to 

change the dynamic performance of a system by imposing 

certain inputs on the system to satisfy certain requirements to 

their best. To describe a linear control system, the modeling 

method governs the following properties of classical control 

theory: 

 it transforms high order differential equation of time t 
into polynomials of complex variable s.  

 Since the transfer function is obtained from the 
Laplace transformation of the linear time invariant 
ordinary differential equation, they are equivalent to 
each other. Therefore the system that the transfer 
function can model, are only linear constant control 
systems. 

 Since the transfer function is the ratio between the 
Laplace transformation of the output and input, this 
theory is applicable to only single- input and single- 
output systems. 

 The modeling method of the transfer function can only 
be used to investigate and analyze the relation between 
input and output, hence it conceals the internal 
dynamic behavior of the system. 

With the increasing complexity and requirement of stringent 
precision and dynamic performance, more advancement in 
productivity and technology taking place which could be well 
applicable to multi- input and multi- output systems. All these 
facts lead to the development of modern control theory, namely 
multi variable linear control theory [16]. 

http://en.wikipedia.org/wiki/Neural_networks
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Genetic_algorithms
http://en.wikipedia.org/wiki/Dynamic_system
http://en.wikipedia.org/wiki/Dynamic_system
http://en.wikipedia.org/wiki/Dynamic_system
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The classical control theory was expressed in the frequency 
domain and the s-plane using the methods of Nyquist, Bode, 
Nichols and Evans. All that is needed is the magnitude and 
phase of the frequency response, or the poles and zeroes of the 
open loop transfer function. This is very implementable for 
single-input/single-output systems since all these elements, the 
frequency response, and poles and zeroes of a transfer function, 
can accurately be determined. More than this, robust design is 
implemented using notions of gain and phase margin. To 
determine the transfer function of complex systems the block 
diagram algebra is very intensive used. It is not necessary for an 
internal description of the system dynamics; that is, only the 
input/output behavior of the system is needed [17]. 

3.3 Optimal Control Strategy 

The above mentioned classical techniques, which deals with 

SISO systems, do not give satisfactory response when deal with 

MIMO power systems, as they becomes more complex. 

Optimal control recognizes the random behavior of the system 

and attempts to optimize response or stability on an average 

rather than with assured precision. The optimal control theory 

provides a comprehensive, consistent, and flexible design 

approach. The classical response criteria such as step response 

are helpful in determining what values to use in quadratic 

cost function weighting matrices. These weighting factors 

have a powerful and direct effect on achieving desired response 

[18]. 

3.4 Optimal Controller Design Using Full 

State Feedback Control Strategy 

To design an optimal regulator, the modern control theory 

requires the development of dynamic system model in state 

variable form. The regulator design of higher order non- linear 

system model, results in complex computations. Hence the 

linearization of the system equations about an operating point 

was proposed, and then the linear state- regulator theory is 

applied to obtain the desired control law. However this may 

result in higher cost complexity problems. The regulator 

designed with reduced number of state variables may not be 

optimal in realistic situations [19].  

A linear time invariant power system in state space is 

represented by following differential equations; 

 


X (t) = Ax(t) + Bu(t) + Td(t) (3.4) 

 y(t) = C x(t) (3.5) 

the control law is given by 

 u = - k x (3.6) 

for full state vector feedback  

 u = - k y (3.7) 

for output feedback problem to minimize the performance index 

 J =  ( xT Q x +  uT  R u ) dt
∞

0
 (3.8) 

Subjected to system dynamic constraints (3.4) and (3.5). the 
augmented cost function for the performance index J is given by 

J =  [( xT Q x +  uT  R u ) 
∞

0
+  λT (A x +  B u –  x )]dt (3.9) 

Defining Hamiltonian as  

 H = ½( xT Q x + uT  R u)  + λT (A x + B u )  (3.10) 

Using linear state regulator approach, let u* be an admissible 
control that drives the system from an initial point x0, where * 
indicates that u = u*. For u* to be optimal, the variables must 
satisfy the following relations; 

 x* = ∂H/∂λ (x*, λ*, u* ) (3.11) 

 * = - ∂H/∂x ( x*, λ*, u* ) (3.12) 

And the function H ( x*, λ*, u* )  must be minimum. Hence we 
get  

 ∂H/∂u = 0 = Ru + BT (3.13) 

 U* = - R-1 BT (3.14) 

From (3.9) and (3.10) the differential equation obtained in x* 
and * must satisfy  

 * = - Ar   *  - Q x* (3.15) 

 x* = A x* - BR-1 BT λ* (3.16) 

 Assuming    λ = ̃ px (3.17) 

Substituting for the costate in terms of x in equation 3.15, we 
get 

 Px* + px* = AT px* - Q x* (3.18) 

 x* = Ax* - BR-1 BT px* (3.19) 

Substituting x* in equation 3.16, the vector x gives the n x n 
matrix differential equation as 

 p + p A – p BR-1 BT p + AT p + Q = 0 (3.20) 

This differential equation is called the Riccati equation [19].  

Thus the closed loop system is defined as 

 


X = Gx (3.21) 

Where  

 G = A – B k (3.22) 

And   k = R-1BT p (3.23) 

3.5 Suboptimal Controller Design Using 

Output Feedback Control Strategy 

An optimal solution may not be the best solution in all 
circumstances, if all the states x(t) are not accessible for 
feedback, one has to go for a state observer whose complexity is 
comparable to that of the system itself. Hence a procedure is 
required that relies on the use of feedback from only the 
accessible state variables constraining the gain elements of 
matrix k corresponding to the inaccessible state variables to 
have zero value. It is a method of obtaining the solution of a 



International Journal of Computer Applications (0975 – 8887) 

Volume 39– No.3, February 2012 

11 

control problem when some elements of the feedback gain 
matrix k are constrained. 

The system considered here may be represented by 



X = Ax + Bu; x(0) = x0 (3.24) 

The performance index is  

 J = ½  0∫∞ ( xT Q x + uT  R u ) dt (3.25) 

The multiplication by ½ does not affect the minimization 
problem, but helps in mathematical manipulations. 

With the linear feedback law or optimal control law for a 
linear combination of the state variable 

u(t) = k x(t) 

The closed loop system is described by  

 


X (t) = (A + Bk) x(t) (3.26) 

Substituting for control vector u in performance index J in 
equation 3.25, we have 

J = ½ 0∫∞ ( xT Q x + xT kT R k x) dt 

 J = ½ 0∫∞( xT (Q  +  kT R k) x dt (3.27) 

Assuming a Lyapunov function  

V(x(t)) =  ½ 0∫∞ xT (Q  +  kT R k) x dt 

Or 

 



V (x(t)) = - ½  xT (Q  +  kT R k) x  (3.28) 

Since 



V (x) is a quadratic in x and the system equation is 
linear, let us assume that V(x) is also given by the quadratic 
form 

 V(x) =  ½  xT P x (3.29) 

Therefore 

 



V (x) = - ½  (


X T P x + xT P x) (3.30) 

Substituting for x from equation 3.26, we have 

 



V (x) = - ½  [(A + Bk)T xT P + (A + Bk) P] x  (3.31) 

Comparing this result with equation 3.28, we have  

-1/2 xT (Q+kT R k)x = ½ xT [(A+Bk)T P+ P(A+Bk)]x (3.32) 

Since the above equality holds for arbitrary x(t), we have  

 (A + B k)T P + P(A + B k) +  kT R k + Q = 0    (3.33) 

This equation is of the form of the Liapnov equation. From 
this equation the elements of P can be determined as function of 
the feedback matrix k. the value of the performance index  for 
system trajectory starting at x(0) is V(x(0)). Therefore  

 J= ½ xT(0) Px(0) (3.34) 

Thus a suboptimal control law may be obtained by 
minimizing J with respect to all available elements kij of  k, ie; 
by setting 

 ∂[ xT(0)Px(0)] / ∂ kij = 0 (3.35) 

Hence, when the configuration of the controller is 
constrained, a solution which is independent of the initial 
conditions can no longer be obtained [20]. 

3.6 Suboptimal Controller Design Using 

Strip Eigenvalue Assignment Method 

The linear systems are the approximations of the non – linear 
systems. The linear systems are influenced by the locations of 
eigenvalues. Therefore, for a system to get good response, both 
in transient and steady states, it is necessary to locate all 
eigenvalues in desired positions. Due to approximations, it is 
difficult to attain the exact locations of all eigenvalues. Hence it 
is sufficient that all eigenvalues are placed within a suitable 
region in complex s- plane, using strip eigenvalue assignment 
method. 

The linear quadratic control is used to optimize the closed 
loop system, such that the eigenvalues lies within a vertical strip 
in the complex s- plane [21]. The output feedback controller is 
preferred as compared to the state feedback controller; since it is 
not possible to measure all the states of the system. 

A power system can be described by a completely 
observable and controllable linear time invariant system, in state 
space as follows; 

 


X (t) = Ax(t) + Bu(t) + Td(t) (3.36) 

 y(t) = C x(t) (3.37) 

The quadratic cost function for the system in (3.36) be 

 J = 0∫∞ (xTQ x+uT R u) dt  (3.38) 

where the weighting matrices  

Q - n x n nonnegative definite symmetric matrix 

R -  m x m positive definite symmetric matrix 

In optimal control theory application, the term Td(t) is 
eliminated by redefining the states and controls in terms of their 
steady state values occurring after the disturbance is applied 
[20]. The equation (3.34) can be re written as; 

 


X (t) = Ax(t) + Bu(t) , x(0) = 0 (3.39) 

and equation 3.35 will remain same.  P is a positive definite 
symmetric matrix, and solution of the following Riccati 
equation: 

 AT P+ P A - P B R-1 BT P + Q = On (3.40) 
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The full state feedback control law which minimizes the 
performance index in equation 3.38 is stated as 

 u(t) = -G y(t) = -G C x(t) (3.41) 

In conventional optimal analysis, matrices Q and R are 
commonly chosen as diagonal matrices. The system 
performance can be improved by shifting the eigenvalues Λ(A- 
BG) of the closed loop system to a desired region. From this, 
the weighting matrix R is set as an identity matrix with weights 
states for all inputs, and Q matrix must be given. For the system 
to be relatively stable, h ≥ 0. Then the closed loop system 
matrix  

 AC = A- B G P̃ (3.42) 

has all its eigen values lying on the left side of the –h vertical 
line as shown in Fig .3.1, where the matrix P̃ is the solution of 
the following Riccati equation: 

(A + h1 In)T P̃+ P̃ (A + h1 In) - P̃ B R-1 BT P̃ + Q = On 

The unstable eigenvalues of the closed loop system (A + h1 
In) are shifted to their mirror image position with respect to the 
–h vertical line [21- 23].  

Assume two positive real values h1 and h2 to define an 
open vertical strip of [ -h1, -h2] on the negative real axis as 
shown in Fig. 3.2, with Â =  (A + h1 I). The control law is 
changed to be 

 u(t) = -G y(t) = -G C x(t) = - μF̃ x(t) (3.43) 

 G = μF̃C+ (3.44) 

Where C+ is the pseudo- inverse of C. 

 μ = 1/2 + (h2- h1)/2tr(Â+) 

     = 1/2 + (h2- h1)/tr(BF̃) (3.45) 

And,  F̃ = R-1 BT P̃ (3.46) 

 

 

Figure 1.  Vertical line in a complex s- plane 

 

Figure 2.  Complex s- Plane with vertical strip 

Thus, the resulting optimal closed-loop system becomes 

 


X (t)= ( A - BGC)x (t) (3.47) 

The feedback control is used to find out the output feedback 
gain vector G, to place the eigen values of the closed loop 
system at some desired locations, in the vertical strip between 
h1 and h2 as shown in Fig. 3.2, to stabilize the system with 
acceptable transient behavior.  

4. SIMULATION RESULTS 

The state space model of the system under consideration is 

developed in Chapter- 4. In this chapter, (i) optimal controllers 

using full state feedback control strategy (ii) sub-optimal 

controllers using Strip Eigenvalue Assignment method 

considering output feedback control strategy and (iii) optimal 

controllers using pole placement technique are designed and 

implemented in the wake of system perturbation. Various 

system operating conditions are identified based on the variation 

in wind power generation. The reactive power is set to remain 

constant. The closed loop system eigenvalues and dynamic 

response plots are obtained for various system states. The 

investigations of these results have been carried out using 

different characteristic parameters of the results. The real power 

variation results in variation in the frequency; the impact of 

wind power generation on system frequency (ω) has been 

investigated.  

The simulation results are obtained using MATLAB Control 

Toolbox. The simulation results obtained are presented as 

follows :  

5. DISCUSSION OF RESULTS 

The investigations are carried out for ω considering variation in 

Po. From the inspection of plots, it is seen as the value of Po is 

increasing, the settling time is decreasing. The same argument is 

supported by Table 5.8 –5.15. The inspection of rising time and 

settling time in these Tables reveals that the optimal and sub 

optimal controllers offer response plots has comparable rising 

and settling time, whereas the controllers designed using pole 

placement technique has resulted in a considerable 

improvement change, when compared to those obtained with 

others controllers. The peak amplitude for δ is considerably 

large. Incase of ω, the magnitudes of first peak are comparable 

with all the controllers.  
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Although the performance of the output feedback controller is 

acceptable for different operating points, the performance is 

considerably improved by introducing pole placement 

technique, where all the poles are shifted to some desired place 

to make the system more stable. The trend of the peak shows a 

considerable improvement, when the dynamic responses 

obtained using optimal controller and suboptimal controller are 

compared with pole placement technique.  

6. CONCLUSIONS 

As discussed in detail earlier in the thesis, the wind power has 

been one of the most important forms of energy due to various 

environmental, technical and economic reasons. It is envisaged 

that it will have an impact on energy policy of the country in 

near future. Therefore, it becomes very important to put more 

efforts on carrying out studies regarding the generation and 

control of wind energy system including its dynamic behavior. 

In the present work, a wind turbine generator model is 

considered for the investigation. The various types of 

investigations are carried out to study the dynamic performance 

of various states of the model considering variations in the wind 

speed. The variable wind speed results in variable frequency 

generation. Therefore, main thrust is given to study the 

frequency related impacts of wind power variations on system 

dynamics.  

At the outset of the work, state space model of the system is 

developed. To study the dynamic behavior of the system, 

optimal controllers are designed using full state feedback 

control strategy. Following the controller designs, the closed 

loop system eigenvalues and dynamic response plots are 

obtained. The investigations of these reveal that the 

implementation of optimal controllers offer not only good 

dynamic performance, also ensure system dynamic stability. 

Practically it is not possible always to measure all the system 

states, thus the concept of above designed optimal controllers 

does not seems practical. Therefore, sub-optimal controllers are 

designed using feedback of those system states which are 

accessible for their observation and measurement. The Strip 

Eigenvalue Assignment  Method is applied to design sub-

optimal controllers using feedback of few states which are 

accessible for their observation and measurement. The 

comparative study of closed loop eigenvalues and dynamic 

response plots obtained for various operating conditions shows 

a comparable system dynamic performance.  

As the system dynamic model is not stable, therefore, pole 

placement technique is applied to place the poles of the system 

in stable region. The optimal controllers are designed for 

various operating conditions using pole placement technique. 

The dynamic response plots and closed loop eigenvalues are 

obtained for various system states considering various operating 

conditions.  The comparative study of response plots and closed 

loop eigenvalues is obtained with (i) optimal controllers 

designed using full state feedback control strategy (ii) sub-

optimal controllers designed using Strip Eigenvalue Assignment 

method considering output feedback control strategy and (iii) 

optimal controllers designed using pole placement technique. 

The designed controllers ensured the closed loop system 

stability in the study. Furthermore, the impact of wind power on 

frequency of the system is seen visible. The various controllers 

designed in the work are found to exhibit their effect under 

various operating conditions. 

To study the impacts on frequency with the variation in wind 

speed and hence power, the system is investigated at different 

operating conditions corresponding to different real power 

values, keeping the reactive power as constant. The 

investigations show that with all controllers, the settling time is 

reduced as the Po is increased. However, it is interesting to note 

that the settling time has reverse trend at Po = 1 p.u. The peaks 

with both optimal and suboptimal controllers are comparable, 

whereas the optimal controller designed using pole placement 

technique exhibits a considerable improvement as compared to 

those obtained with other controllers. 
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TABLE I.  OPEN LOOP 

POINT K 

P =1.0 [-0.5502  -0.5071  -0.0619  20.7782  0.9992  -0.9974  -0.0011    0.0000] 

P =0.65 =[0.1731  -0.2482  -0.0793  20.7786  0.9991  -0.9937  -0.0019   -0.0000] 

P=0.35 =[0.8948  -0.5141  -0.0867  20.7796  0.9988  -0.9842  -0.0040   -0.0001] 

P= 0.8  =[-0.2194 -0.3092  -0.0736  20.7783  0.9992  -0.9966  -0.0012    0.0000] 

 

TABLE II.  EIG (A) 

P =1.0 P =0.65 P=0.35 P= 0.8 

1.0e+002 * 

 

  -6.5092           
  -0.2062           

  -0.0093 + 0.0816i 

  -0.0093 - 0.0816i 
  -0.0511           

   0.0066           

  -0.0215           
  -0.0111   

  1.0e+002 * 

 

  -6.5093           
  -0.2061           

  -0.0240 + 0.0933i 

  -0.0240 - 0.0933i 
  -0.0082 + 0.0171i 

  -0.0082 - 0.0171i 

  -0.0216           
  -0.0097        

1.0e+002 * 

 

  -6.5093           
  -0.2061           

  -0.0321 + 0.0768i 

  -0.0321 - 0.0768i 
   0.0001 + 0.0394i 

   0.0001 - 0.0394i 

  -0.0216           
  -0.0100   

1.0e+002 * 

 

  -6.5092           
  -0.2061           

  -0.0162 + 0.0886i 

  -0.0162 - 0.0886i 
  -0.0334           

  -0.0214           

   0.0029           
  -0.0114       
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TABLE III.  CLOSED LOOP 

P= 0.8 G =[   -0.1546   10.3902] 

 

P = 0.35 G =[  -0.2571   10.3909] 

 

P = 0.65 

 

G =[  -0.1241   10.3904] 

 

P =1.0  G =[  -0.2536   10.3902] 

 

TABLE IV.  EIG(A-B*G*C) 

P = 0.8 

 

P = 0.35 P = 0.65 

 

P =1.0 

 

1.0e+002 * 
-3.2563+ 2.3245i 

-3.2563- 2.3245i 

   -0.2061   
-0.0161+ 0.0873i 

-0.0161- 0.0873i 

  -0.0291    
  -0.0212    

  -0.0100   

1.0e+002 * 
-3.2563+2.3247i 

-3.2563-2.3247i 

  -0.2061  
-0.0253+0.0835i 

-0.0253-0.0835i 

  -0.0219    
-0.0100+0.0001i 

-0.0100-0.0001i 

1.0e+002 * 
-3.2563+2.3245i 

-3.2563-2.3245i 

  -0.2061 
-0.0233+0.0944i 

-0.0233-0.0944i 

  -0.0219   
  -0.0139   

  -0.0100      

  1.0e+002 * 
-3.2563 + 2.3245i 

-3.2563 - 2.3245i 

  -0.2062       
-0.0084 + 0.0789i 

-0.0084 - 0.0789i 

  -0.0442     
  -0.0214    

  -0.0100    

TABLE V.  POLE PLACEMENT   

P = 0.65   0.0262   -8.6369   -0.0589   10.3512    0.0300 -1.0000   -0.4583   -0.1485 

 

 

 

 


