
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.17, February 2012

7

Keyword Search on XML Repository with

Relevance Ranking

Swati Tonge

 Lecturer, PCCOE
Pune

 Rashmi Phalnikar
Asst. Professor, MITCOE

Pune

ABSTRACT

Extensible Markup Language (XML) is a simple text format

which was designed to describe data using custom tags. The

use of custom tags makes XML extremely flexible and

enables it to not only describe structured data like information

from a table of relational database but also semi-structured

data. An XML document is self-describing which has made it

a standard means of data exchange between applications and

for use in configuration files of enterprise applications. The

increasing preference to store and transmit data in the XML

format has led to a need for searching these data stores for

information. Query languages like Xpath and XQuery are

used to retrieve information from xml document. But these

query languages are complex for non expert user to learn.

Keyword search allows such user to retrieve information

without knowledge of complex query language. In this paper

we proposed an algorithm for relevance ranking of nodes

which retrieved as result by considering keyword ambiguity

and intension of user.

General Terms

Information Retrieval.

Keywords

XML, Natural Processing, Keyword Search, Relevance

Ranking.

1. INTRODUCTION
eXtensible Markup Language has become universal standard

for representation and exchange over the Web due to its

simple and flexible representation of data. This, in turn, has

increased the demand for ad hoc techniques for XML query

processing. As like in any data management application,

XML-based systems can achieve effective and efficient query

execution by providing a sufficiently expressive query

language, such as XQuery [1] and XPath [2] for XML; but

these query languages are very complex to understand/learn to

the non expert user. Keyword search is a user friendly way to

query XML databases since it allows users to pose queries

without the knowledge of complex query languages and the

database schema. Such query generates hundreds of nodes as

a result which may have different percentage of relevance to

query. It is required to rank these results so that the results can

be displayed as per their relevance to the keyword query, just

like the popular web engine that accepts the keyword query

and the desirable text documents are displayed according to

their relevance to the keyword query.

2. EXISTING SYSTEMS
Various methods like SLCA, LCA are used to find the

smallest sub-structures in XML data that each contains all

query keywords in either the tree data model or the directed

graph (i.e. digraph) data model. LCA (Lowest common

ancestor) basically returns node v which is a LCA of query

keyword set K= {w1, w2,…, wk} if the sub-tree rooted at v

contains at least one occurrence of all keywords in K, after

excluding the sub-elements that already contain all keywords

in K. Basically it outputs a node in the XML document that

contains all the input keywords. But this can lead to false

positive and false negative problems. A false positive problem

occurs if the result set contains irrelevant nodes and the false

negative problem occurs if some correct results are missing

from the answer set. SLCA (Smallest Lowest common

ancestor) returns node v if v is a LCA of K and no proper

descendant of v is LCA of K [3, 4, and 5]. The SLCA can

avoid these problems of LCA but suffers also from other false

negative/positive problems. None of these methods has

addressed user’s intension and relevance ranking problem.

Consider a keyword query “name jim gray” issued on the

employee data in Figure 1. Most likely it intends to find the

employees who having name “jim gray”. If adopting SLCA, 3

results will be retrieved, the employee nodes with IDs from 1

to 3 (as these nodes contain “name”, “jim” and “gray” in

either the tag names or node values) in Figure 1. However,

only 2 is desired which should be put as the top ranked one,

then 1 and 3 can be displayed. Lastly 4 can be displayed since

it is irrelevant to query. XSeek [6] infers the search intention

based on the concept of objects and an analysis of the

matching between keyword and data node. However, it does

not address the ranking problem. XRANK [7], XKSEarch[8]

consider only structural compactness of matching results,

keyword proximity and similarity at node level

3. XML DATA MODEL
Xml document can be represented by tree model or graph

model [9]. We have adopted tree model for our framework

where xml document as an ordered tree where internal nodes

represents tag element and leaf nodes represent content of the

tag element. Nodetype of a node is the path of the node from

root node to itself. Two nodes are of the same node type if

they share the same prefix path. In figure 1 “e1”,” e2”,” id”,”

name” etc represents tag element and “1”, “jim gray” are the

content of tag element id, name etc. Nodetype of node “id” is

“employee\e1\id”.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.17, February 2012

8

Fig 1: Portion of employee database

4. IDENTIFICATION OF SEARCH

INTENSION
To identify the search’s intension of user we have used

terminology used in [10]. Search intension of keyword query

is interpreted based on the statistics of data in xml document

and the coocurrence of the keywords in a query. We have

used equation 1 to find confidence of nodetype T with respect

to a given query. All nodetypes with higher confidence value

than predefined threshold value are selected as the search

target since search target of the query may not be specified

explicitly by user like in structured query language. The

desired nodetype to search for is the first issue that needs to

address in order to retrieve the relevant nodes. For given

keyword query Q, a node type T is considered as the desired

node to search for, only if the following conditions are

satisfied [10]:

a. T is intuitively related to every query keyword in Q i.e. for

each keyword k, there should be some (if not many) T-typed

nodes containing k in their sub trees.

b. XML nodes of type T should be informative enough to

contain enough relevant information.

c. XML nodes of type T should not be overwhelming to

contain too much irrelevant information.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑇, 𝑄 = loge⁡(1 + 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑘, 𝑇 𝑘ɛQ ∗

𝑅depth (𝑇)…………………………………………………. (1)

 where R is the reduction factor.

5. RELEVANCE RANKING IN FLAT

DOCUMENT
In flat files term frequency * inter document frequency ratio is

commonly used for relevance ranking given in equation 2

indicated by Sim(Q,d). Larger value of Sim(Q,d) indicate

more relevance of d to query Q.

𝑆𝑖𝑚 𝑄, 𝑑 = (𝑊𝑄,𝑘 ∗ 𝑊𝑑,𝑘)/𝑊𝑄 ∗ 𝑊𝑑𝑘ɛQ˄d …………… (2)

Where Q is the query ,d indicate document, WQ,k is the

weight of keyword k in query Q ,Wd,k is the weight of

keyword k in document d ,WQ is the weight of query and Wd

is the weight of document. Following formulas are used to

calculate WQ,k , Wd,k , WQ and Wd .

𝑊𝑄,𝑘 = 𝑙𝑜𝑔𝑒(
𝑁

𝑓𝑘+1
) …………………………...………… (3)

𝑊𝑑,𝑘 = 1 + 𝑙𝑜𝑔𝑒(𝑓𝑑,𝑘)…………………..………….…….. (4)

𝑊𝑄 = 𝑠𝑞𝑟𝑡(𝑊𝑄,𝑘
2

kεQ)…………………..……………….. (5)

𝑊𝑑 = 𝑠𝑞𝑟𝑡(𝑊𝑑,𝑘
2

kεd)………………..………………….. (6)

Where N is the total number of documents and fk is the

document frequency which is nothing but the number of

documents containing keyword k. The term frequency fd,k in

formula 4 is the number of occurrences of k in the document.

WQ and Wd are normalization factor used to balance between

short and long documents. Formula 2 makes sure that the

keyword appearing in many documents should not be

regarded as being more important than the keyword appearing

in few. Also a document with more occurrences of keywords

in a query should not be regarded as being less important than

a document that has less query keywords [10].

6. RELEVANCE RANKING IN XML

DOCUMENT
Displaying whole xml document as the query result may not

be useful for the user. Instead relevant part (sub trees) of the

xml document can be displayed as the result. Since xml have

hierarchical structure, formulas used for relevance calculation

of text document cannot be apply for the xml document. We

have used equation 7 to 9 to calculate similarity between a

XML node N of the desired node type T to search for and a

keyword query Q. These equations provides effective

relevance ranking by omitting unnecessary calculation.

𝑆𝑖𝑚 𝑄, 𝑁 = 𝑆𝑖𝑚(𝑄, 𝑛)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒𝑠 𝑛 𝑜𝑓 𝑁 𝑕𝑎𝑣𝑖𝑛𝑔 𝑘 (7)

𝑆𝑖𝑚 𝑄, 𝑛 = (𝑊𝑄,𝑘
𝑇𝑛

kɛQ˄n ∗ 𝑊(𝑘, 𝑛)/𝑊(𝑄, 𝑇𝑛) ∗ 𝑊𝑛) ∗

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑇, 𝑄) …………………………...…………. (8)

𝑊𝑄,𝑘
𝑇𝑛 = 𝐶𝑂𝑅 𝑄, 𝑎, 𝑘 ∗ 𝑙𝑜𝑔𝑒 (1 + 𝑁𝑇𝑛 /(1 + 𝑓𝑘

𝑇𝑛)………. (9)

𝑊 𝑘, 𝑛 = 1 + 𝑙𝑜𝑔𝑒(𝑓𝑘,𝑛)………………...…………….. (10)

employeeDB

Rec

 1 Jim Art Street, China

Id Name…. Address

Rec

Id Name…. Address

2 Jim Gray London

Rec ………………………….Rec

3 Gray China

Id Name…..Address Id Name…..Address

2000 Smith China

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.17, February 2012

9

𝑊𝑛 = 𝑠𝑞𝑟𝑡(𝑊2
kεQ (𝑘, 𝑛))………………...………… (11)

𝑊(𝑄, 𝑇𝑛) = 𝑠𝑞𝑟𝑡(𝑊𝑄,𝑘
𝑇𝑛

2

kεQ)………………...……… (12)

In equation 8 WTn
Q,k is the Weight of keyword k in query Q

with respect to nodetype Tn . Tn is the nodetype of parent of n.

W(k,n) is the weight of keyword k in leaf node n. W(Q,Tn) is

Weight of query Q in Tn nodetype. Wn is weight of node n. In

order to capture proximity of keyword kt matching the node

setvalue in both query and XML data node respectively, for

each query-matching leaf node n in XML data, equation 9 is

used. In equation 9 COR(Q,a,k) finds the co occurrence of

keyword k in leaf node n using dist. dist is maximum of query

distance and structural distance. Query distance is the position

distance between k and kt. Structural distance is depth

distance between node n and its nearest ancestor having kt. fk,n

is the frequency of keyword k in leaf node n. fk
Tn is the

frequency of keyword k in nodetype Tn .

7. DATA P ROCESSING AND INDEX

CONSTRUCTION
While parsing the each xml document, we have collected

following information of every node n.

a. Assign dewey id[12,13]

b. Assign nodetype using global hashtable

c. If it is leaf node then calculate normalization factor

Wn and frequency of keyword in a node fk,n

We have created two indexes, Frequency table and an inverted

list of keywords which retrieves a list of leaf nodes having

input query keywords, in document order. Frequency table is

a matrix of all keywords in the document and nodetypes. It

stores frequency of keyword appearing in each nodetype.

8. ALGORITHM
In step 1-3 , confidence of each nodetype are calculated and

whose having confidence value greater than threshold value

are selected as desired nodetype to be search for. Then the

lists of all leaf nodes corresponding to the keywords in query

are extracted. In step 5 relevance of each node of nodetype

selected in 2 is calculated.

Key_Search(Q[m],Frequency_matrix, Key__IList[m])

1. For each document d in repository do

Calculate Confidence (T,Q) of each node type for each

keyword q d

2. Choose all the nodetype greater than threshold value.

3. Select all nodes N for chosen nodetype in step 3.

4. Get Inverted Key__IList(IL) of all the leaf nodes in

document order for each keyword in query

5. For each node Ni in set N do

 While (!end(Key__IIL[1]) ….(!end(Key__IIL[m]))) do

 Node n = getMinimum(Key__IIL[1],Key__IIL[2],...,

 Key__IIL[m])

 if(isAncestor(Ni , n))

 Calculate Similarity Sim(Q,Ni)+=Getsim(Q,n)

 else

 Set Sim(Q,Ni)=0

6. Sort N in descending order of S

7 Return N

Getsim(q,n)

For each k q n

{

COR(q,n,k)=getQueryKWCo-occur(q,n,k)

WTn
Q,k+=COR(Q,a,k) * loge (1+NTn /(1+ fk

Tn)

}

W (n,k) = 1+log (fn,k);

Sum += WTa
q,k* Wn,k

Return Sum/ WTn
q *Wn

9. EXPERIMENTAL SETUP
This framework is implemented in Java and run on a 1.87GHz

Pentium 4 machine with 1GB RAM running Windows XP.

The indexing and search performance of the search tool has

been tested with mainly the DBLP (small), Orders, Wsu, ebay

and SigmodRecord datasets [16].

 Fig 2. Response time in sec on DBLP dataset

Q1: author,chen,lei

Q2: jim, gray,article

Q3: xml,twig

Q4: title,acm,year, 2000

These datasets represent both document and text centric XML

data [16]. Comprehensive experiments are performed to

compare the effectiveness, efficiency and scalability of our

framework. The datasets along with the total indexing time

are reported in Table 1. It has been observed that our

framework is able to infer a desired search for node in most

queries, especially when the search for node is not given

explicitly in the query. Execution time for some of the

queries on dblp dataset is listed in fig 2.

10. CONCLUSION
Proposed method allow user to retrieve information without

knowledge of complex query processing language from xml

document. We have proposed novel method to calculate the

relevance of retrieved nodes by considering the hierarchical

structure of xml document.

Table 1. Data and Indexing Time

Sr.No Dataset[16] Indexing Time(sec)

1 Orders 3.5

2 Wsu 1.17

3 Dblp (small) 5.01

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q1 Q2 Q3 Q4

Response Time
of Keyword
Queries on
Dblp dataset

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.17, February 2012

10

4 Book 0.2

5 eBay 0.047

6 SigmodRecord 0.4

It is also includes the identification of user search intention,

keyword ambiguities and the keyword proximity.

11. REFERENCES
[1] S. Boag, D. Chamberlin, and M. F. Fernandez. XQuery

1.0: An XML query language. W3C Working Draft 22

August 2003.

[2] A. Berglund, S. Boag, and D. Chamberlin. XML path

language (XPath) 2.0. W3C Working Draft 23 July 2004.

[3] Y.Xu and Y.Papakonstantinou.”Efficient Keyword

Search for Smallest LCAs in XML Databases”,

SIGMOD,2005.

[4] Haitao Wu Zhenmin Tang , “An Efficient Algorithm

for Meaningful SLCA in XML Keyword Search “,IEEE,

2009.

[5] Chong Sun, Chee-Yong Chan “Multiway SLCA-based

Keyword Search in XML Data”, WWW 2007.

[6] Ziyang Liu, Jeffrey Walker, Yi Chen “XSeek: A

Semantic XML Search Engine Using Keywords”

xseek.asu.edu/xseekdemo.pdf

[7] Lin Guo, Feng Shao ,Chavdar Botev, Jayavel

Shanmugasundaram ”XRANK: Ranked Keyword “

Search over XML Documents, SIGMOD 2003.

[8] S.Cohen,J.Mamou,Y.Kanza,andY.Sagiv.”XSEarch: A

Semantic Search Engine for XML”, VLDB, 2003.

[9] Gang GOU , Rada Chirkova “Efficient querying large

XML data Repositoties : A Survey” IEEE 2007.

[10] Zhifeng Bao, Jiaheng Lu, Tok Wang Ling and Bo Chen,

“Towards an Effective XML Keyword Search” , IEEE

2010.

[11] Albrecht Schmidt Martin Kersten Menzo Windhouwer

“Querying XML Documents Made Easy:Nearest

Concept Queries” , IEEE 2001

[12] V. Vesper. Let’s do dewey. http://www.mtsu.edu/

vvesper/dewey.html.

[13] Li Ying ,Ma Jun, Sun Yuyin “Applying Dewey

Encoding to Construct XML Index for Path and

Keyword Query “ IEEE, 2009.

[14] Arash Termehchy “Keyword and Natural Language

Query Processing for Semi-Structured ata Sources” ,
IDAR 2009.

[15] Yi Chen, Wei Wang, Ziyang Liu, Xuemin Lin “Keyword

Search on Structured and Semi- Structured Data” ,

SIGMOD’09.

[16] XMLData Repository: http://www.cs.washington.edu/

research/xmldatasets.

