
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

12

Managing Versioning Activities to Support Tracking

Progress of Distributed Agile Teams

Sultan Alyahya, Wendy K. Ivins, W. A. Gray

School of Computer Science & Informatics, Cardiff University,

Queen’s Buildings, 5 The Parade, Cardiff, CF24 3AA, U.K

ABSTRACT

Development Progress in agile methods is based on the

amount of “working software” completed by team members.

Changes to the source code might be introduced that affect the

working software. Team members face difficulties in

understanding and sharing changes that affect development

progress especially in distributed projects. They may not

recognise that there is an effect, or may not know who is

affected by a change. In addition, changes are not perceived

by the current tracking systems and hence if these changes

affect development progress, they will not be discovered. This

may lead to weak awareness of development progress and

extra defects and delays. In this paper, we attempt to support

tracking distributed agile projects by identifying and co-

ordinating the impact of versioning activities on development

progress, thereby ensuring that progress information is more

consistent with the current software state. This will provide

distributed agile teams with improved transparency of the

actual progress.

General Terms

Software Engineering, Agile Development.

Keywords

Distributed Agile Development, Versioning System, Co-

ordination, Progress Tracking.

1. INTRODUCTION

Software agile projects are broken down into short iterations

where a set of requirements are implemented in each iteration.

Requirements in agile methods like extreme programming [1]

are defined in terms of user stories (i.e. feature), each of

which represents a unit of functionality of the system. Each

user story is split into one or more tasks that may be

undertaken by different developers.

Measuring progress in agile development is based on the

completion of the software artefacts (source code) required to

implement user stories. One of the principles introduced by

the agile manifesto [2] is that: working software is the primary

measure of progress.

The source code artefacts produced by a task/story have to

achieve certain technical criteria before the task/story state

can be deemed to be completed. A task is complete only if

source code artefacts associated with it are unit-tested.

Additionally, a user story is complete when source code

artefacts associated with it are integrated and acceptance-

tested. Any change to source code artefacts may lead to a

change in tasks/stories progress.

If the project is co-located, team members can be made aware

of the impact of versioning activities on development progress

through their interactions with other team members. The ad-

hoc co-ordination is likely to facilitate partial sharing of the

progress information among team members. When project is

distributed, team members find it harder to maintain an

awareness of development progress. Numerous distributed

agile projects reported difficulties in tracking development

progress (e.g. [3,4]).

While there are many progress tracking systems developed

(e.g. Rally [5], Mingle [6], TargetProcess [7], VersionOne

[8]), these have no provision for identifying and co-ordinating

the effect of versioning activities on progress tracking systems

in agile projects. Tracking systems are isolated from

versioning systems and are fed by the perceptions of team

members about the progress of their tasks.

Ulf et al. [9] mention the need to integrate source code

changes to progress tracking data. They suggest adding task

and story numbers as a comment with every check-in. Brad et

al. [10] support this by pointing out that “one of the most

basic ways to help connect and navigate information is with a

task-based approach [task-level commit] that links every

action and event in the version-control system with a

corresponding action and event in the tracking system”.

However, these methods do not provide automatic

identification of potential changes that affect development

progress and do not support managing change impact.

In our research, we attempt to support tracking distributed

agile projects by identifying and co-ordinating the impact of

versioning activities on development progress, thereby

ensuring that progress information is more consistent with the

current software state.

The remainder of the paper is organised as follows: section 2

will investigate the current methods of tracking progress of

agile projects. Section 3 will highlight the role of source code

versioning in agile methods and how it affects development

progress. Section 4 and 5 will introduce a new approach to

tracking progress system and will describe the design aspects

of it. Then, system validation and general discussion are

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

13

provided in section 6 before we conclude the paper in section

7.

2. CURRENT METHODS TO

TRACKING AGILE DEVELOPMENT

PROGRESS

The current progress tracking systems provide detailed

information about iterations‟ tasks and stories. They show the

breakdown of a user story into tasks. Task size is determined

by the number of hours estimated for the task. As work

progresses, team members move tasks/stories from one state

(i.e. unstarted, in progress, complete) to another.

The main limitation of the current tracking systems is that

these systems are static and rely completely on team members

to realise change in progress. Changes caused by versioning

activities (e.g. modifying source code) are not perceived by

the current tracking systems and hence if these changes affect

development progress, they will not be discovered.

Rally, TargetProcess and VersionOne have started providing

integrations with some versioning systems. These tools allow

developers to post updates to tasks and source code without

taking precious time to log their activity in both systems.

However, these integrations are insufficient to realise the

impact of the versioning activities on development progress.

Furthermore, in co-located teams, face-to-face communication

and daily stand-up meetings enable team members to share

changes that may affect development progress. In distributed

teams, meetings can be held by video-conferencing tools,

though these are often held less frequently than stand-up

meetings, and teams may rely more on asynchronous

communications (e.g. email).

This manual approach has many limitations. The impact of a

change may not be fully recognised in team members‟

perceptions because of the difficulty in understanding the

impact of change brought about by the work of one team

member on the work of others. Team members may not

recognise that there is an effect, or may not know who is

affected by a change. In addition, meetings may communicate

change but it is up to each developer to realise which changes

affect their own work.

3. SOURCE CODE VERSIONING

3.1 Versioning in Agile Methods

Agility is about creating and responding to change [11]. For

this reason, most agile methods recommend using versioning

systems to automate the change process. According to

Cockburn [12], in Crystal methods, versioning and

configuration management tools are “the most important tools

the team can own”. Agile methods consider the ability to

revert to earlier versions of development artefacts highly

valuable [13]. Since rapid development and quick changes

may lead to mistakes in development, it is important that

earlier versions of artefacts are accessible.

Ron Jeffries et al [14] pointed out that there should be as few

restrictions as possible in a versioning system, for example

there should be no password, no group restrictions, and as

little “hassle” as possible. This is supported by the

experiences of Lippert et al [15], who found that optimistic

concurrency control is a superior locking mechanism in agile

methods like XP.

3.2 The Impact on Development Progress

Since agile methods consider working software as the main

measure of progress, creating, modifying or deleting some

source code artefacts will usually change the actual project

progress.

There are many cases where changing the source code

influences project tasks, user stories and releases. For

instance, updating a source code version that belongs to a

completed story means that the story is no longer deemed to

be complete.

There is, therefore, a need to manage change to the source

code so that it becomes clear how it influences development

progress. Managing source code change should include

providing co-ordination activities such as checking progress

constraints, identifying potential source of progress change,

reflecting progress change in the tracking system, finding and

notifying team members affected by potential progress change

[16]. An example of a check-out process is provided in the

next section to clarify the need for managing change impact

on development progress.

3.3 Example: Check-out Process

A typical check-out process will require the following co-

ordination activities:

● Ensure corresponding task and story are still active:

developers can only work on active task/story.

● Change progress state of the corresponding task/story: if

the task or the story is inactive, it must be changed to active.

This needs to be explicitly shown on the tracking system so

that the whole team will have an awareness of the actual

progress of the project.

● Find and notify affected team members: affected team

members (i.e. story owner/tester) may be in different sites. It

is important to look for affected team members and notify

them in order to resolve problems as early as possible.

The co-ordination required for the check-out process has been

described in the following diagram (Figure 1):

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

14

Fig 1: Co-ordination required for the check-out process.

Current progress tracking systems do not support identifying

and co-ordinating impact of versioning activities on

development and hence co-ordination activities are performed

in a manual manner. Due to limitations of the manual-based

approach, as analysed in section 2, a new approach is

required.

4. A NEW APPROACH TO DESIGN A

PROGRESS TRACKING SYSTEM

Because development progress in agile development is

directly based on the maturity of the source code artefacts, it

was realised that versioning activities should be the heart of

developing a progress tracking system.

Current versioning systems provide technical mechanisms to

store and control source code artefacts but it provides no

support for identifying how changes can affect development

progress and provide no support for co-ordinating versioning

activities affecting development progress.

4.1 Integrating Versioning Data and

Progress Tracking Data

Tasks/stories should not be tracked separately from the source

code artefacts that determine their functionalities. There

should be a consistency between tracking data and a team

member‟s actual work (e.g. if a task is complete this must

indicate that software produced by the task is unit-tested). It is

required to track the influence of the versioning activities on

the development progress in order to know which task/story is

affected due to a change.

4.2 Unit-Testing Impact on Artefact

Evolution

There is a need to differentiate between two types of artefacts:

development artefacts (source code) and unit-testing artefacts.

This distinction is mainly because they are different entities

that have explicit relationship between them.

The existence of unit-testing artefact is mandatory for each

development artefact. The status of unit-testing artefact needs

to be „pass‟ before checking-in the development artefact.

4.3 Acceptance-Testing Impact on Artefact

Evolution

Acceptance tests are high level tests of user stories and are

used to ensure that software developed for the stories meet

customer requirements.

Acceptance testing is related to the releasing process. Source

code artefacts can not be released if one or more of acceptance

tests that the artefact belong to has failed. It is required to link

each artefact not only with the relevant tasks and unit tests but

also with the relevant stories and acceptance tests.

4.4 Continuous Integration (CI) Impact on

Artefact Evolution

The idea of CI is to run the build and integration tests

regularly, over a short period of time [17]. Usually it is done

in an asynchronous manner by tools such as Go [18]. Code

should be integrated before completing the corresponding

story.

The integration result has direct impact on development

progress because it is a condition to complete stories. Most of

the current agile tracking systems give attention to the

integration result but do not show its impact on project

progress. They do not show how the integration result

influences source code artefact evolution. An integration

„pass‟ result should contribute to making progress to affected

stories. In addition, the „failed‟ result should not affect those

stories that do not have new versions entered in the build.

4.5 Progress Change Notifications

Team members need to be notified about changes that may

affect progress of tasks/stories that they work on. Current

tracking systems do not notify for changes resulting from

code change and the current versioning systems that provide

notification mechanisms do not consider its relevance with

development progress.

Not every versioning activity has a direct effect on other team

members. Therefore, developers need an effective progress

change notification mechanism that targets only affected team

Find and notify affected

team members

Request to check-

out artefact version

Ensure corresponding

task/story are still active

Check-out code

[No] [Yes]

Technical

Activities
Co-ordination Activities

Change corresponding

task/story progress state

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

15

members as a key requirement of tracking development

progress.

5. DESIGN

As development progress in agile methods is determined by

the maturity of the source code artefacts, the tracking system

should tightly integrate task/story data with the versioning

data. The proposed tracking system (Figure 2) keeps track of

both of them.

Fig 2: A conceptual design of tracking system for agile

development.

5.1 Versioning Model

Version states are used to indicate the maturity of different

versions of source code artefacts. Version state is taken into

account when determining task/story progress. Based on the

fact that source code artefacts pass several stages before they

are released (unit testing, integration, releasing), a four-stage

hierarchical promotion model that shows this evolution is

proposed:

● Transient Version (TV): the artefact version is not shared

with other team members.

● Unit-Tested Version (UTV): the artefact version is unit-

tested and available to be shared with other team members.

The artefacts in the unit-tested stage are prepared for the next

integration so this stage can be seen as „Ready-for-

Integration‟ stage.

● Integrated Version (IV): the artefact version is unit-tested

and has passed the build.

● Releasable Version (RV): The user stories that artefact

version provides functionality for, have passed AT and ready

for releasing.

The use of hierarchical structure in a versioning system is

not new. It has been widely proposed for versioning systems

built to support managing change in software design and

engineering design (e.g. [19, 20, 21]).

One of the advantages of providing version states is that

developers become aware of the state of the version they work

on. They can choose which version they want to use; either

the latest version which probably unit tested only or choose an

integrated version which is more stable and reliable.

5.2 Versioning Operations

Current versioning systems capture the point where change is

instigated but these systems do not show and co-ordinate

change impact on the agile progress. New operations are

required to fulfill the requirements of providing better

description of artefact progress states. An extended versioning

operations are described in Table 1.

Table 1: Extended versioning Operations.

Versioning Operation Description

Create a new artefact A new artefact is created as transient

version (TV) in a developer’s workspace.

Check-out artefact version A new TV can be created from a version of

an existing artefact. The version is created

as part of specific task duty.

Check-in artefact version if TV is stable and unit-tested, it can be

promoted to UTV.

Perform integration If integration is successful, all UTVs

included in the integration are promoted to

IV.

Release artefact version A version can be released to the customer.

Delete an artefact An artefact is deleted.

The UML Statechart Diagram in Figure 3 shows how the new

versioning operations can change an artefact state.

Task/Story

Data

Versioning

Data

Technical Operations

(i.e. Versioning Operations)

Tracking System

(Integration

Testing +

Acceptance

Testing)

Testing

Environment

(Development

+ Unit Testing)

Development

Environment

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

16

s

Transient Version

(TV)

Releasable

Version

(RV)

Integrated

Version

(IV)

Unit-Tested

Version

(UTV)

Check-in

Transient Version

(Unit tests passed)

Perform

Integration

(Build succeed)

Release Version

(Corresponding

story(ies) is/are

complete)

Check-out

Create a New

Artefact

Delete an

Artefact

Fig 3: Source code version states.

Source code artefacts related to a completed story may be
versioned and need to be re-integrated and re-tested. As a
result, in addition to the normal user story states: „Not started‟,
„Active‟ and „Complete‟, we have added two more states:
„Waiting for integration‟ and „Waiting for Acceptance
Testing‟. These states can provide more accurate progress
information. They reflect the effect of the versioning activities
on the story‟s progress.

5.3 Data Model

In an agile project, there is a large number of dependencies

among tasks, stories, releases, unit tests, acceptance tests and

integration tests. The dependencies among the various entities

in the tracking system need to be carefully represented in a

data model. The UML Class Diagram in Figure 4 shows the

relationships among the main entities in the system.

Unit Test

Results
Integration

Test Results
Artefact

Task

User Story Release
Acceptance

Test Results

1

*

1..*

*

1

* 1

1..*

Has

Belnogs to

Belnogs to

Included

in
Has

* 1

Has

v

v

v

v

Fig 4: UML Class Diagram for the main entities in the

tracking system.

5.4 Modeling Versioning Activities

A set of process models is developed to cover the versioning

operations shown in Table 1. These models provide one

possible way to model the versioning operations. Different

agile projects may have different requirements based on their

working practices. Therefore, the proposed models can be

adapted.

Each process model illustrates how each versioning activity

affects development progress. A visual representation of the

co-ordination activities required has been provided. This

includes explicit support for checking progress constraints,

finding and notifying affected team members by progress

change, identifying potential source of progress change and

reflecting progress change in the tracking system.

A UML Activity Diagrams were chosen as techniques to

model the versioning activities. They are able to provide

transparent processes that explicitly show the co-ordination

required to support tracking progress. They are also capable to

provide behavioral model to clearly represents both sequential

and concurrent activities. Figure 5 shows the „check-out‟

process model.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

17

Identify the artefact and

 the version to change

Check if the artefact belongs

 to unstarted task

Check if the developer

 wants to start the task now Check if the developer wants

 to re-work on the task

Check if the artefact belongs

 to completed task

Inform the developer that the

task is already completed

Inform the developer that the

 task is inactive

Create a new version in the

 developer's private space

[Yes]

[No]

[Yes]

[Yes]

[Yes]

[No]

[No]

[No]

Developer System

Create a relationship between

 the task and the artefact version

Change the task state

Notify the relevant members

about the new story state

Check if the corresponding story

Is not in ‘Active’ state

[Yes]

[No]

Notify the relevant members

about the new task state

Change the story

 state to 'Active'

Ask developer to choose the

 corresponding task

Identify the task

 that the artefact version will belong to

v

v

v

v

Fig 5: The ‘Check-out’ process model.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

18

6. VALIDATION AND DISCUSSION

As a proof of concept, a Java application, including

implementation of several scenarios, has been used to validate

the tracking system (Figure 6). The implementation shows to us

that the new approach can be made. The data model and the

SQL queries were able to identify the different dependencies. In

addition, the process models were able to provide the necessary

co-ordination (e.g. notifications).

Fig 6: Implementation of the progress tracking system.

In order to evaluate our approach to developing a progress

tracking system, we made a number of analytic comparisons

between the classical approach to use the versioning activities

and our approach. As an example, the check-out process is used

in this paper to highlight the differences between the two

approaches. Based on the co-ordination requirements for the

check-out process (presented in section 3.3), the two approaches

are compared and contrasted (Table 2).

It is clear from the comparison that classical versioning

approach relies completely on ad-hoc co-ordination to manage

the work. Given the limitations of the ad-hoc co-ordination

(section 2), a lack of awareness about the actual development

progress may occur.

The new approach provides better visibility of the actual work

completed by developers‟ tasks. It immediately identifies

potential change in progress resulting from the check-out

process. By doing so, the new approach will help team members

identify sources of potential defects that may cause project delay

at earlier time.

Our approach links each task/story with the functionalities

(source code) performed to fulfill its requirements. Changes that

directly affect story functionalities are recognised due to the

linkage. However, changes affecting progress could be as a

result of implicit relationship between the functionalities of one

story and another. This is not addressed in our approach. Change

impact analysis techniques (e.g. [22,23]) is a hot topic in the

literature of software engineering and it is outside the scope of

this research.

Table 2: A comparison between the classical approach to use

the versioning activities and the new approach.

Co-ordination

Activity

Classical Versioning

Approach

New Approach

Ensure

corresponding

task and story

are still active

● No formal checking.

Developer usually

does not consider the

task/state progress

state.

● System checks if

the versioning

operation affects

progress. Progress

change is identified

once the versioning

operation is used.

Change

progress state

of

corresponding

task/story

● Progress change is

not reflected in the

tracking system.

● System reflects

progress change in

the tracking system.

Find and notify

affected team

members

● It is done in an ad-

hoc manner.

Developer will need to

figure out who must

be contacted and then

he/she will need to

share information with

them informally

● It is automated by

the system once

versioning operation

is used.

7. CONCLUSION

We proposed in this paper a new approach to developing a

progress tracking system for distributed agile development. The

approach supports identifying and co-ordinating the effects of

the various versioning activities on development progress.

The approach helps minimising the inconsistency between the

progress information and the actual software produced. Because

the approach helps in reducing the cycle time of discovering the

defects, The velocity of the team is more likely to improve. In

addition, progress metrics (e.g. RTF [24]) can be more safely

used by project management as these metrics will be based on

more realistic progress information.

This research supports using agile practices for distributed

projects because it contributes in solving awareness problems

associated with managing changes in these projects.

8. ACKNOWLEDGMENT

The first author is sponsored by King Saud University, Kingdom

of Saudi Arabia.

9. REFERENCES

[1] Beck, K., Extreme Programming Explained: Embrace

Change, Addison-Wesley, 2004.

[2] Agile Alliance, Manifesto for Agile Software Development,

URL: http://www.agilemanifesto.org/principles.html, Cited

15 January 2012.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.16, February 2012

19

[3] Sauer, J., Agile Practices in Offshore Outsourcing - An

Analysis of Published Experiences. Proceedings of the 29th

Information Systems Research, 2006.

[4] Peng Xu - Coordination In Large Agile Projects Review of

Business Information Systems (RBIS), 2011.

[5] Rally, URL: http://www.rallydev.com/, Cited 15 January

2012.

[6] Mingle, http://studios.thoughtworks.com/mingle-agile-

project-management, Cited 15 January 2012..

[7] TargetProcess, URL: http://www.targetprocess.com/, 15

January 2012..

[8] VersionOne, URL: http://www.versionone.com/, 15

January 2012.

[9] Asklund, U., Bendix, L. & Ekman, T., 2004. Software

Configuration Management Practices for eXtreme

Programming Teams. Management, p.1-16. Cockburn, A.,

Highsmith, J. Agile Software Development: The Business

of Innovation. Computer, 2001, Vol. 34, No. 9, pp. 120–

122.

[10] Appleton, B., Cowham, R., and Berczuk, S., Lean

Traceability: A smattering of strategies and solutions, CM

Journal, 2007.

[11] Cockburn, A., Highsmith, J., Agile Software Development:

The Business of Innovation, IEEE Computer, 2001, Vol.

34, No. 9, pp. 120–122.

[12] Cockburn, A. Agile Software Development. Boston:

Addison-Wesley, 2002.

[13] Koskela, J., Software Configuration Management in Agile

Methods, VTT Publication, Finland, 2003.

[14] Jeffries, R., Anderson, A., Hendrickson, C. Extreme

Programming Installed. NJ: Addison-Wesley, 2001.

[15] Lippert, M., Roock, S., Wolf, H. Extreme Programming in

Action: Practical Experiences from Real World Projects.

England: John Wiley & Sons, 2002.

[16] Alyahya, S., Ivins, WK., Gray, WA., Co-ordination

Support for Managing Progress of Distributed Agile

Projects, IEEE International Conference on, pp. 31-34,

2011 IEEE Sixth International Conference on Global

Software Engineering Workshop, 2011.

[17] Fowler, M., Continuous Integration. Integration The Vlsi

Journal, 26(1), p.1-6. 2006, Available at:

http://martinfowler.com/articles/continuousIntegration.html

[18] Go, URL: http://thoughtworks-studios.com/go-agile-

release-management. Cited 15 January 2012.

[19] Katz, R.H., Chang E. and Anwarrudia M. "A Version

server for Computer-Aided Design Data. In Proceedings of

ACM/IEEE 23rd Design Automation Conference, Las

Vegas, U.S.A, pp 27-33, Jun 1986.

[20] Chou, H.T. and W. Kim.: “A Unifying Framework for

Version Control in a CAD Environment” In Proceedings of

the 12th International Conference on Very Large

Databases, Kyoto, Japan, pp 336-344, Aug 1986.

[21] Ivins W K, Gray W A, Miles J C, A process-based

approach to managing changes in a system to support

engineering product design, Proc of the Engng Design

Conf , (2002) 469-478 ISBN 1 86058 372 5.

[22] Zimmermann, T., Changes and Bugs: Mining and

Predicting Software Development Activities, Books on

Demand Gmbh, 2009.

[23] Geipel, M., & Schweitzer, F.: Software change dynamics:

evidence from 35 java projects, ESEC/SIGSOFT FSE,

2009.

[24] Jeffries, R., A Metric Leading to Agility, in

XProgramming, 2004.

