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ABSTRACT 
The effect of magnetic field on the flow and heat and mass 

transfer processes when the fluid flows past a continuously 

moving porous plate has been analyzed. The governing 

boundary layer equations have been reduced to a set of 

nonlinear ordinary differential equations using similarity 

transformations. The governing equations are solved using an 

implicit finite-difference scheme of Crank-Nicolson type. The 

effects of magnetic and suction (or injection) parameters on 

the velocity, temperature and concentration profiles as well as 

on the heat transfer coefficient have been studied numerically 

and are shown in figures. Numerical computations have been 

carried out for different values of wf sg and cg and for fixed 

values of Sc.  

keywords 
Heat transfer, Mass Transfer, Magnetic field 

1. INTRODUCTION 
Modern technology and natural world around us, we always 

encounter transport processes where in motion is derived 

simply in a gravitational field. The phenomenon of free 

convection arises in a fluid when temperature changes cause 

density variation leading to buoyancy forces acting on the 

fluid elements. Circumstances occur wherein buoyancy forces 

arise due to difference in salinity. One of the exact solutions 

of the Navier-Stokes equation which exists for the flow due to 

an impulsive start of an infinite plate, was first studied by 

Stokes1. This problem is also known in the literature as 

Rayleigh’s problem. 

In the present paper, we have studied the effect of magnetic 

field on the flow and heat and mass transfer processes when 

the fluid flows past a continuously moving porous boundary. 

The porous diffusion associated with such problems and their 

special cases find applications in manufacturing processes in 

industries as well as in the subsoil flows of water and 

hydrocarbons. In fact, this problem is a generalization of the 

corresponding problem of hydro-magnetic flow over a flat 

plate. Some of the earlier studies in this direction are those of 

Soundalgekar2 studied the flow of a viscous incompressible 

fluid past an infinite vertical impulsively started thermal plate 

taking into account the presence of free-convection currents.. 

Soundalgekar3 also studied the effects of mass transfer of the 

flow past an infinite vertical impulsively started plate. 

The problem of free-convection flow of an electrically 

conducting fluid, past a vertical plate, under the influence of a 

magnetic field attracted many researchers because of its 

applications in technological field. Gokhale and 

Soundalgekar4 studied the effect of a transversely applied 

magnetic field on the transient free-convective flow of an 

electrically conducting fluid past a semi-infinite vertical plate 

with constant heat flux. The effects of mass transfer on the 

flow of an incompressible viscous fluid past an impulsively 

started infinite vertical plate in case of variable temperature 

and constant heat flux were recently studied by Soundalgekar, 

et. al.5 Cobble6 discussed the hydro-magnetic flow over a 

semi-infinite plate in the presence of a transverse magnetic 

field and a pressure gradient with or without injection or 

suction and obtained similarity solutions for these. The heat 

transfer characteristics of this problem have been studied by 

Soundalgekar, et.al.7 and Singh8. The effects of mass transfer 

on the MHD flow of an incompressible viscous fluid past an 

impulsively started infinite vertical plate, subjected to a 

variable temperature and constant heat flux, was studied by 

Shanker, et.al.9. Elbashbeshy10 studied heat and mass transfer 

along a vertical plate with variable surface temperature and 

concentration in the presence of magnetic field. 

Muthucumaraswamy and Senthil11 investigated the heat and 

mass transfer effect on moving vertical plate in the presence 

of thermal radiation. Ishaket.al12 studied on MHD stagnation 

point flow towards a stretching vertical sheet in a micro-polar 

fluid. Unsteady MHD Heat and Mass transfer flow of 

chemically reacting fluid past an impulsively started vertical 

plate, was studied by Raja Shekaret.al.13. In this study, we 

have extended the above analyses to the flow past a 

continuously moving semi-infinite porous plate. The 

governing boundary layer equations have been transformed to 

a two-point boundary value problem in similarity variables, 

and these have been solved numerically. The effects of 

magnetic field and the porous boundary on the flow and heat 

transfer have been shown graphically for some fluids. 

2. EQUATIONS 
Consider the two-dimensional flow of a viscous, 

incompressible and electrically conducting fluid past a 

continuously moving semi-infinite porous plate under the 

influence of a transversely applied magnetic field. As the 

conductivity and hence the magnetic Reynolds number is very 

small for most fluids used in industrial applications, we 

assume that the induced magnetic field is negligible in 

comparison with the applied one. It is also assumed that the 

external electric field and the electric field due to polarization 

of charges are negligible. This assumption corresponds to the 

case when no energy is added to or extracted from the fluid by 

the electric field. 
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Let the x-axis be taken along the direction of the moving plate 

and y-axis normal to it. If u and v are the velocity components 

along these directions, respectively, then under the usual 

boundary layer approximation, the hydro-magnetic steady 

flow and heat and mass transfer for the present problem are 

governed by the equations 
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Here  is the fluid density,   the kinematic viscosity,   the 

electrical conductivity, B0 the magnetic field strength,  the 

thermal diffusivity, T the temperature of the fluid, C the 

concentration of the fluid, g the gravitational acceleration,  

(,  *) are the temperature and concentration coefficients of 

volumetric expansion.  

Equations (1) – (4) are solved subject to the following 

boundary conditions  
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We now introduce the following dimensionless 

variables 
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Using the above transformations in equations (2) – (4), the 

boundary layer equations become 

f   + ff  +gs +gc M f  = 0 …(7) 

   +  fPr = 0   …(8) 

   + Scf   = 0   …(9) 

The prime values denote the differentiation with respect 

to.  

The boundary conditions in the new variables form are:  
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In order to facilitate the application of finite difference 

scheme, one has to transform the equations (7) – (9) to a new 

system of coordinates wherein the infinite limit of integration 

in replaced by a finite limit. 

Employing the transformation  

 Z = 1- e-c, Q = c(1-Z); 

wherec is a constant that can be used as a scaling factor to 

provide an optimum distribution at nodal points. The above 

equation reduces to  

Q3
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ff    + gs  + gc MQ f   = 0 …(11) 

Q2   + Q  fPr  = 0   …(12) 

Q2   + Q Scf   = 0   …(13) 

The boundary conditions reduces to  
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The Quasi-linearization (Bellman et al.
14

) of all non-

linear terms in equation (11) it yields 

Q3
f   + Q2(F f   + f𝐹′′ ) MQ f   = QF𝐹′′ gs  - gc  

    …(15) 

where F and F are assumed to be known. A Gaussian 

elimination process is used to solve equation (15) numerically. 

The numerical solution of f after i-repeated Gaussian 

elimination processes are considered as the ith order iterative 

solution, while F and F are the (i1)th order solutions. If a 

convergence can be reached i.e. 0Ff  for all Z then f 

converges to the solution of equation (15). 

3. SOLUTION OF THE PROBLEM 

The interval 0 to 1 in Z-direction is divided into 10 equal sub-

intervals each of length h = 1/10. The governing equations 

(11)  (13) are discritized to corresponding finite difference 

equations by employing the following difference quotients 

and are solved by using the Thomas algorithm15 or by a very 

efficient algorithm due to Evans16. 
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Thus, the finite difference equations corresponding to 

equations (12), (13) and (15) are 

A1(i)i-1 + A2(i)i + A3(i)i+1 = 0  …(16)  

B1(i)i-1 + B2(i) i + B3(i) i+1 = 0  …(17)  

C1(i)i-2 + C2(i) i-1 + C3(i) i + C4(i) i+1 +  C5(i) i+2  = 0 

     …(18)  

Where 

Q(i) = c(1 – ih),  C1(i) = -Q(i)3,  D(i) = 2Q(i)3 + MQ(i)h2,   

C2(i) = D1(i)+2hQ(i)2F(i), C4(i) = -D1(i) + 2hQ(i)2F(i),  

C3(i) = -2Q(i)2F(i) + 2h3 Q(i)2F’’(i), C5(i) = -C1(i) 

C6(i) = 2h3[QFF - gs(i) - gc(i)] ,  
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A1(i) = 2Q(i)2 – hPrQ(i)F(i), A2(i) = -4Q(i)2,  

A3(i) = 2Q(i)2 + hPrQ(i)F(i), B1(i) = 2Q(i)2 – hScQ(i)F(i),  

B2(i) = -4Q(i)2, B3(i) = 2Q(i)2 + hScQ(i)F(i). 

4. RESULTS AND DISCUSSION 
Numerical computations have been carried out for different 

values of wf , sg and cg and for fixed values of Sc. The value 

of Prandtl number Pr is taken equal to 0.71 which corresponds 

physical to air. The value of Schmidt number  

Sc = 0.22 have been chosen to represent hydrogen Tm= 25o C 

and 1 atm. The numerical results for the velocity, temperature 

and concentration profiles are shown in  

Figs. 1-4. In Fig.1, velocity profiles are shown for different 

values of sg  and cg parameters.  It is seen from this figure 

that the velocity profiles increases with the increase of sg

parameter. The variation of temperature and concentration 

fields for different values of sg and cg  are displayed in Fig.2 

and Fig.3 respectively. As would be expected, both fields 

exhibit the same behavior. The influence of cg parameter on 

the temperature and concentration field is not so much evident 

for higher values of sg parameter. 

5. SKIN-FRICTION 
The physical quantities of most interest in such problems is 

the skin-friction coefficient (Cf) and is given by  

Cf= 
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From the process of numerical computation, the above 

coefficients sorted out in the form of Table for Pr = 0.71, 

Sc = 0.22, 
s

g  = 1.0 and 
c

g = 0.05 as given below. 

M Sc Cf 

0.02 

0.06 

0.10 

0.02 

0.02 

0.02 

2.00 

2.00 

2.00 

2.00 

0.40 

0.10 

1.4222 

1.3671 

1.3069 

1.4222 

1.4260 

1.4650 

6. CONCLUSIONS 
In this paper, effects of Magnetic field on the flow and heat 

and mass transfer processes when the fluid flows past a 

continuously moving porous boundary has been studied 

theoretically. From the present study we see that the 

momentum boundary layer thickness decreases with an 

decrease of gs and increases with an increase of gc parameter, 

whereas both the thermal and species concentration boundary 

layer thickness increase with an decrease of gs and decrease 

with an increase of gc parameter. Therefore, we conclude that 

effect of magnetic field on the flow should be neglected. 
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