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ABSTRACT 

The potential for the use of the discrete logarithm problem in 

public-key cryptosystems has been recognized by Diffe and 

Hellman in 1976. Although the discrete logarithm problem as 

first employed by them was defined explicitly as the problem 

of finding logarithms with respect to a generator in the 

multiplicative group of the integers module a prime, this idea 

can be extended to arbitrary groups and in particular, to 

elliptic curve groups. The resulting public – key systems 

provide relatively small block size, high speed, and high 

security. In this paper an efficient arithmetic for operations 

over elements of GF(25) represented in normal basis is 

presented. The arithmetic is applicable in public-key 

cryptography.  
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1. INTRODUCTION 

In the Cryptographic schemes proposed in 90‟s and before are 

mostly based on the Discrete Logarithm Problem (DLP): 

Finding „d‟ from the given group of elements Q and P such 

that ; 

  Q = d P      (1) 

We are concentrating only on curves over GF(25), where point 

coordinates are expressed as 5-bit vectors. The DLP in such a 

group is very hard as opposed to the DLP in the multiplicative 

group over a finite field. This means that a 173 bit key 

provides approximately the same security level as the 1024-bit 

RSA [6]. This fact is very important in applications such as 

chip cards, where the size of hardware and energy 

consumption is crucial. In algorithms such as the Elliptic 

Curve Digital Signature Algorithm, requires addition, 

multiplication and inversion over a finite field The 

implementation of these operations is determined by the 

representation of the field elements in finite field . In this 

work we focus on the normal basis representation. Addition 

over elements of GF(25) is implemented as a bit-wise XOR. 

Squaring is realized by rotation (cyclic shift) one bit to the 

right. Because it is so simple (one clock cycle), it is regarded 

as a special case. Multiplication is based on matrix 

multiplication over GF(25). In hardware, a special unit 

(multiplier) is necessary. The best-known algorithm for 

inversion in normal basis is the algorithm of Itoh, Tewhai and 

Tsujii [3] based on multiplication and squaring. As we can 

see, the main problem is an efficient normal basis 

multiplication. Other operations are either simple or based on 

multiplication, an irreducible polynomial taken for 

construction of the field GF(25) is 𝑓 𝑥 = 𝑥5 + 𝑥2 + 1. 

2. PREVIOUS WORK 

In year of 1986 Massey and Omura in their publication 

proposed a multiplication and multiplier [5] that adopts the 

regularity of equations for all bits of result. From the equation 

for one bit of a result , equations for other bits can be derived 

by rotating bits of the arguments „a „and „b‟ [2]. In this 

multiplier, one bit of the result is computed completely in one 

clock cycle. Then registers holding the arguments a and b are 

rotated right one bit between cycles. The computation of m 

bits of the result takes m clock cycles end hence this 

multiplication is also called bit-serial. Agnew, Mullin, 

Onyszchuk and Vanstone introduced a modification of the 

Massey-Omura multiplication [l]. They divided the equation 

for each bit 𝑐𝑖  into m products; 

𝑐𝑖 = 𝑃𝑖,0 + 𝑃𝑖,1 + ⋯+ 𝑃𝑖,𝑚−2 + 𝑃𝑖,𝑚−1 

In the first clock cycle, the: product 𝑃𝑖,𝑖+0of bit 𝑐𝑖for all 

𝑖𝜖 1,𝑚 − 1  is evaluated. In the next cycle, the product (all 

subscripts are: reduced mod m) of bit 𝑐𝑖  for all 𝑖𝜖 1,𝑚 − 1  is 

evaluated and added to the intermediate result, and so on. All 

bits of the result are successively evaluated in parallel; the 

computation is pipelined. 

 The amount of hardware is the same as for the non-pipelined 

Massey-Omura multiplication, but the critical path is short 

and constant and so the maximum achievable frequency is 

higher. This multiplication is widely used. The computation of 

an inverse element  by the algorithm [3] is usually controlled 

by a micro program [4]. When implementing the inversion 

using classical  multiplier, additional registers and data 

transfers outside the multiplier are necessary. In this work we 

present a modification of the classical multiplier, which 

allows an efficient implementation of both the multiplication 

and inversion algorithms. In comparison with the micro-

programmed inversion, no additional registers or data 

transfers outside the multiplier are necessary. We also 

introduce several improvements of this multiplication -

inversion unit, which lead to increased performance. But in 

the case of addition and squaring the arithmatic presented 

have no performance change; the only difference is 

modification according to the field selected. 

3. GOLOIS FIELD ARITHMETIC GF(2
5
) 

GF(25)can be viewed as a vector space of dimension 5 over 

the field GF(2). There are several bases known for GF(25) . 

The most common bases are polynomial bases and nonmal 

bases . with  a polynomial basis , the field elements are 

represented by binary polynomials modulo an irreducible 

binary polynomial of degree 5 . given an irreducible 

polynomial  

 𝑝 𝑥 = 𝑥5 + 𝑥2 + 1 − − 2  
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An element A 𝜖 𝐺𝐹(25) is represented  either as A(𝛼)=
 𝑐𝑖𝛼

𝑖4
𝑖=1  or as (𝑐4𝑐3𝑐2𝑐1𝑐0) , where 𝑐𝑖𝜖𝐺𝐹(2) and 𝛼 , 

the root of 𝑝 𝑥  . Here the basis is { 1, 𝛼1𝛼2𝛼3𝛼4}. It has 

been proved that there always exists a normal basis for  the 

given finite field GF(25) which is of the form 

N={𝛽, 𝛽2𝛽4 …𝛽24
} where 𝛽 is aroot of the irreducible 

polynomial 𝑝 𝑥 = 𝑥5 + 𝑥2 + 1 over GF(2) and 

elements of the set are linearly independent . we say that 𝛽 

generates the normal basis N , or 𝛽 is a normal elements of 

𝐺𝐹(25). 𝛽 will equal to 𝛼𝑖 for some 𝑖. Then every element 

A 𝜖 𝐺𝐹(25)is represented as  

𝐴 𝛽 =  𝑎𝑖𝛽
𝑖 ,

4

𝑖=0

− − 3  

Where 𝑎𝑖𝜖 GF(2). A field element can thus be represented in 

a bit vector of length 5. Hence we have explained in Table 1; 

Table 1: Polynomial and Normal Form 

S.NO 
BIT 

STRING 

POLYNOMIAL 

FORM 

NORMAL 

FORM 

1 00000 0 𝛽32  

2 00001 1 𝛽31  

3 00010 𝑐1α
1 𝛽1 

4 00100 𝑐2α
2 𝛽2 

5 01000 𝑐3α
3 𝛽3 

6 10000 𝑐4α
4 𝛽4 

7 00011 𝑐1α
1 + 1 𝛽18  

8 00101 𝑐2α
2 + 1 𝛽5 

9 01001 𝑐3α
3 + 1 𝛽29 

10 10001 𝑐4α
4 + 1 𝛽10  

11 11000 𝑐4α
4 + 𝑐3α

3 𝛽21  

12 10100 𝑐4α
4 + 𝑐2α

2 𝛽7 

13 10010 𝑐4α
4 + 𝑐1α

1 𝛽30  

14 00110 𝑐2α
2 + 𝑐1α

1 𝛽19 

15 01100 𝑐3α
3 + 𝑐2α

2 𝛽20  

16 01010 𝑐3α
3 + 𝑐1α

1 𝛽6 

17 00111 𝑐2α
2 + 𝑐1α

1 + 1 𝛽11  

18 01011 𝑐3α
3 + 𝑐1α

1 + 1 𝛽27  

19 10011 𝑐4α
4 + 𝑐1α

1 + 1 𝛽17  

20 11100 
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2  

𝛽13  

21 11010 
𝑐4α

4 + 𝑐3α
3

+ 𝑐1α
1  

𝛽9 

22 01110 
𝑐3α

3 + 𝑐2α
2

+ 𝑐1α
1  

𝛽12  

23 10110 
𝑐4α

4 + 𝑐2α
2

+ 𝑐1α
1  

𝛽28  

24 11001 𝑐4α
4 + 𝑐3α

3 + 1 𝛽25  

25 10101 𝑐4α
4 + 𝑐2α

2 + 1 𝛽22  

26 01101 𝑐3α
3 + 𝑐2α

2 + 1 𝛽8 

27 01111 
𝑐3α

3 + 𝑐2α
2

+ 𝑐1α
1 + 1 

𝛽23  

28 10111 
𝑐4α

4 + 𝑐2α
2

+ 𝑐1α
1 + 1 

𝛽26  

29 11011 
𝑐4α

4 + 𝑐3α
3

+ 𝑐1α
1 + 1 

𝛽16  

30 11101 
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2 + 1 

𝛽14  

31 11110 
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2 + 𝑐1α

1  
𝛽24  

32 11111 
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2 + 𝑐1α

1 + 1 
𝛽15  

 

The following properties of a Golois field with normal basis 

are useful in application: 

For any element A𝝐𝑮𝑭(𝟐𝟓) 

1 = 𝐴 + 𝐴2 + 𝐴4+. . +𝐴24
. 

This implies that normal basis representation of 1 is 

(11111). 

For any element A 𝝐 𝑮𝑭(𝟐𝟓) 

𝐴2 =  𝑎𝑖𝛽
2𝑖+14

𝑖=0 =  𝑎𝑖−1𝛽
2𝑖4

𝑖=0 = (𝑎3𝑎2𝑎1𝑎0𝑎4). 

3.1.𝑮𝑭(𝟐𝟓) Addition: 

(a4,a3,a2,a1, a0 ) ± (b4,b3,b2,b1, b0) =( c4,c3,c2,c1,c0), where ci = ai 

 bi overGF(2)Note that in GF(25), Since 
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(a4,a3,a2,a1,a0) +(a4,a3,a2,a1,a0) = (0,0,0,0,0) , each element 

(a4,a3,a2,a1,a0)is its own additive inverse. Addition and 

Subtraction can be implemented efficiently as component 

wise exclusive OR in the NB representation.  

3.2.𝑮𝑭 𝟐𝟓  Squaring: 

By the second property of normal basis ,squaring of an 

element a in NB representation is a cyclic shift operation .  

𝟑. 𝟑. 𝑮𝑭(𝟐𝟓) Multiplication: 

 Let A and B be two arbitrary elements in 𝐺𝐹(25) in a NB 

representation  and C= A.B be the product of A and B. we 

denote 𝐴 =  𝑎𝑖𝛽
2𝑖4

𝑖=0  as a vector A=( a0,a1,a2,a3,a4) , 

𝐵 =  𝑏𝑖𝛽
2𝑖4

𝑖=0  as a vector B = (b0,b1,b2,b3,b4) where C= 

( c0,c1,c2,c3,c4) , then the last term c4 of C is a logic function of 

the components of A and B, that is, c4=  

𝑓(a0,a1,a2,a3,a4; b0,b1,b2,b3,b4). 

Since squaring in NB representation is a cyclic shift operation, 

we  have C2=A2.B2 or equivalently 

(c4 ,c0,c1,c2,c3)= (a4 ,a0,a1,a2,a3). (b4 ,b0,b1,b2,b3). Hence, the last 

component c3 can be obtained by the same function 𝑓 that is, 

c3= 𝑓(a4 ,a0,a1,a2,a3; b4 ,b0,b1,b2,b3). By squaring C repeatedly , 

we get  

c4=𝑓(a0,a1,a2,a3,a4; b0,b1,b2,b3,b4) 

c3= 𝑓(a4 ,a0,a1,a2,a3; b4 ,b0,b1,b2,b3) 

: 

C0= 𝑓(a1,a2,a3, a4, a0; b1,b2,b3, b4, b0) 

By the above equation define the Massey-Omura multiplier in 

normal basis representation. In the multiplier, the same logic 

function 𝑓for computing the last component of c4 of the 

product ‟c‟ 

Can be used to get the remaining components c3, c2, c1, c0 of 

the product sequentially. In parallel architecture, we can use 5 

identical logic function 𝑓for calculating all components of the 

products of the product simultaneously .the product of A and 

B in the field  𝐺𝐹(25)is 

C =A*B=𝑐0𝛽
1 + 𝑐1𝛽

2 + 𝑐2𝛽
4 + 𝑐3𝛽

8 + 𝑐4𝛽
16  

             =  𝑎0𝛽
1 + 𝑎𝛽2 + 𝑎2𝛽

4 + 𝑎3𝛽
8 +

𝑎4𝛽16×(𝑏0𝛽1+𝑏1𝛽2+𝑏2𝛽4+𝑏3𝛽8+𝑏4𝛽16) 

Thus, we can get 𝑐𝑘 =   𝜇𝑖𝑗
(𝑘)

𝑎𝑖𝑏𝑗
4
𝑗=0

4
𝑖=0  , 0 ≤ 𝑘 ≤

5. 

The 5 5 matrices 𝜇 𝑘 (0 ≤ 𝑘 ≤ 5) whose elements 𝜇𝑖𝑗
 𝑘 

,  

0 ≤ 𝑖, 𝑗 ≤ 5 can be obtained if we know the transformation 

between the elements of the PB and the elements of NB ,that 

is, the normal basis representation of the elements of the PB. 

For a normal basis there always exist a multiplication table 

T(corresponding to the irreducible polynomial),which is given 

by𝛽  

𝛽

𝛽2

:

𝛽24

 = 𝑇  

𝛽

𝛽2

:

𝛽24

 . 

Corresponding to aT matrix , there always exists a matrix  

𝜇(𝑘)for any 𝑐𝑘of the product c , for the given irreducible 

polynomial which defines the normal basis in 𝐺𝐹(25). After 

the multiplication table T is obtained , the matrix 𝜇(𝑘)can be 

calculated according to the above method. 

𝟑. 𝟒. 𝑮𝑭(𝟐𝟓) Invertion: 

We know from Fermat‟s theorem that for any non-zero 

elements 𝛽,𝛽25−1 = 1, that is, 𝛽−1 = 𝛽25−2 . 

25 − 2 = 21 + 22 + 23 + 24 . Hence, 

𝛽−1 = 𝛽2 ∗ 𝛽4 ∗ 𝛽8 ∗ 𝛽16 .That is an inversion requires 

4squaring 3 multiplication. This could be reduced further by 

alternative methods[7,8].  

4. ELLIPTIC GROUP OPERATION 

Elliptic group operations includes point negation, point 

subtraction, point doubling, and scalar multiplication. 

Let  GF(25) be a characteristic  2 finite field. Then a 

(non-super singular) elliptic curve E(GF(25)) over GF(25) 

defined by E: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑥2 + 1 consists of the set 

of solutions or points P=(x,y) for  x,y   GF(25) . 

E: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑥2 + 1 in GF(25) 

together with an extra point O called the point at infinity. The 

number of points on E(GF(25))  is denoted by 

 # E(GF(25)). The Hasse Theorem states that: 

 25 + 1 - 2 25≤ #  E(GF(2m)) ≤ 25 + 1+ 2 25 . 

It is again possible to define an addition rule to add 

points on E as the addition rule is specified as follows: 

1. Rule to add the point at infinty to itself: 

O + O =O 

2. Rule to add the point at infinity to any other point: 

(x,y) + O = O +(x,y)= (x,y) for all (x,y)   GF(25) 

3. Rule to add two points with the same x–coordinates 

when the points are either distinct or have  

x-coordinates 0: 

(x,y) + (x,x + y)= O for all (x,y)  GF(25) 
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4. Rule to add two points with different x-coordinates: 

Let (x1,y1)   GF(25)    and (x2,y2)   GF(25) be two 

points such that x1≠x2. Then (x1,y1)+ (x2,y2)= (x3,y3) 

, where: 

 

      x3=λ2+ λ+x1+x2+a  in GF(25), 

  y3 = λ.( x1+x3) +x3 + y1 in GF(25), and 

  λ   
1 2

1 2

y y

x x




in    GF(25). 

5. Rule to add a point to itself (double a point): Let 

(x1,y1)   GF(25)  be a point with x1 ≠ 0. Then 

(x1,y1) + (x1,y1) =(x3,y3)  ,where: 

 

     x3=λ2+ λ+a  in GF(25) , y3 = x2
1+ (λ +1)x3  in GF(25) , 

   and λ =x1 +
1

1

y

x
in GF(25). 

The set of points on E(GF(25)) forms an abelian group 

under this addition rule. Notice that the addition rule can 

always be computed efficiently using simple field arithmetic. 

Cryptographic schemes based on ECC rely on scalar 

multiplication of elliptic curve points. As before given an 

integer d and a point P   GF(25) , scalar multiplication is the 

process of adding P to itself d times. The result of this scalar 

multiplication is denoted „dP‟.  

5. A PERFORMANCE IMPROVEMENT  

The basic ECC operation (1) is performed by successive point 

additions and point doublings. Each of these operations needs 

1 inversion, 2 multiplications and 1 squaring [2]. The number 

of clock cycles necessary for one point addition or doubling is 

then:  

𝐶𝑃𝐴𝐷𝐷 =   𝑙𝑜𝑔24 + 𝑤4 + 1 𝐶𝑀𝑈𝐿

+  5 − 𝑤4 𝐶𝑆𝑄𝑅  

+𝐶𝑜𝑛𝑠𝑡 − − −  4  

We can reduce the number of clock cycles 𝐶𝑃𝐴𝐷𝐷  in two 

ways: by speeding up the multiplications and by reducing the 

number of clock cycles necessary for the iterative squaring. 

5.1. Serial Multiplication 

The Massey-Omura need m clock cycles for computing all m 

bits of the result. Some authors also call them bit-serial, 

because they compute one bit of a result in one clock cycle. 

There is a digit-serial variant of the Massey-Omura 

multiplication (some author call it sliced or parallel). In this 

multiplication, D bits (also called a digit) are evaluated in one 

clock cycle. In the case of digit-serial multiplier, D products 

𝐶𝑖,𝑗 are evaluated in one clock cycle. All 5- bits of the result 

are then evaluated in 𝐶𝑀𝑈𝐿 = [5/𝐷] cycles. Since more 

products are evaluated in one clock cycle, more combinational 

logic is necessary. The size of the block COMB.LOGIC is 

proportional to 𝐷 + 1 . The size of other blocks remains 

constant. As the combinational logic becomes more complex, 

the length of the critical path grows proportionally to log𝐷. 

Since one multiplication needs 5/D clock cycles, the total time 

necessary for one multiplication is 𝑂 5/𝐷 × log𝐷 and the 

total time of one inversion (or point addition on elliptic curve) 

is: 

𝑇𝑃𝐴𝐷𝐷 = 𝑂  𝑙𝑜𝑔5.  5 𝐷  + 5 𝑙𝑜𝑔𝐷 − − 5  

5.2. Speeding up the Squaring 

Another way to improve the performance of the [3] inversion 

(and consequently the point addition) is to reduce the number 

of clock cycles necessary for the iterative squaring. Adding 

one or more blocks performing, long distance“rotations can 

reduce the number of clock cycles required for all iterative 

squaring .It seems that the number of clock c:ycles spent in 

iterative squaring is approx. 𝑂 𝑘 4
𝑘

 , where k is the 

number of rotation blocks. The total time necessary for the 

point  addition is then 

𝑇𝑃𝐴𝐷𝐷 = 𝑂    5 𝐷  𝑙𝑜𝑔5 + 𝑘 4
𝑘

 . 𝑙𝑜𝑔𝐷 − − 6  

6. CONCLUTION 

Finite field GF(25)arithmetic operations include addition , 

subtraction, multiplication , squaring and inversion. Due to 

proposed field GF(25)and irreducible polynomial f(x)=x5+x2 

+1 both additions and subtractions can be implemented very 

efficiently. Multiplication in NB using the said polynomial is  

faster and secure. Squaring a special case of multiplication 

can be implemented much faster than multiplication in the 

NB. Also inversions in the NB with the „almost inverse 

method runs‟, can be implemented efficiently. When 

comparing the arithmetic in the PB, the proposed arithmetic in 

NB is 20% faster [9]. More over the implementation of key 

sharing schemes are efficient and faster in the proposed 

arithmetic [10]. Thus the proposed method will give us a 

faster and secure cryptographic scheme in the limited 

environments. 

Elliptic group operations include point negations, point 

additions, point subtraction, point doubling and scalar 

multiplication. The operations can be implemented very 

efficiently in the proposed NB. 

7. LIMITATION AND FUTURE WORK 

Our work has been done within the finite field GF(2^5) and 

the arithmetic can be generalized in GF(2^n)  , stage by stage, 

in the future works. Also, performance of various 

representations [11] of the elements of the general field can be 

compared. 
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