
International Journal of Computer Applications (0975 – 8887)

Volume 39– No.11, February 2012

18

An Arithmetic over GF (2^5) To Implement in ECC

A.R. Rishivarman
Pauls Engg. College

Villupuram,TN
India

B. Parthasarathy
Mailam Engg. College

Villupuram,TN
India

M. Thiagarajan
SASTRA University

Tanjore , TN
India

ABSTRACT

The potential for the use of the discrete logarithm problem in

public-key cryptosystems has been recognized by Diffe and

Hellman in 1976. Although the discrete logarithm problem as

first employed by them was defined explicitly as the problem

of finding logarithms with respect to a generator in the

multiplicative group of the integers module a prime, this idea

can be extended to arbitrary groups and in particular, to

elliptic curve groups. The resulting public – key systems

provide relatively small block size, high speed, and high

security. In this paper an efficient arithmetic for operations

over elements of GF(25) represented in normal basis is

presented. The arithmetic is applicable in public-key

cryptography.

General Terms

Security, Information Science

Keywords

Elliptic curve cryptography, Finite field , Simulation, public-

key,

1. INTRODUCTION

In the Cryptographic schemes proposed in 90‟s and before are

mostly based on the Discrete Logarithm Problem (DLP):

Finding „d‟ from the given group of elements Q and P such

that ;

 Q = d P (1)

We are concentrating only on curves over GF(25), where point

coordinates are expressed as 5-bit vectors. The DLP in such a

group is very hard as opposed to the DLP in the multiplicative

group over a finite field. This means that a 173 bit key

provides approximately the same security level as the 1024-bit

RSA [6]. This fact is very important in applications such as

chip cards, where the size of hardware and energy

consumption is crucial. In algorithms such as the Elliptic

Curve Digital Signature Algorithm, requires addition,

multiplication and inversion over a finite field The

implementation of these operations is determined by the

representation of the field elements in finite field . In this

work we focus on the normal basis representation. Addition

over elements of GF(25) is implemented as a bit-wise XOR.

Squaring is realized by rotation (cyclic shift) one bit to the

right. Because it is so simple (one clock cycle), it is regarded

as a special case. Multiplication is based on matrix

multiplication over GF(25). In hardware, a special unit

(multiplier) is necessary. The best-known algorithm for

inversion in normal basis is the algorithm of Itoh, Tewhai and

Tsujii [3] based on multiplication and squaring. As we can

see, the main problem is an efficient normal basis

multiplication. Other operations are either simple or based on

multiplication, an irreducible polynomial taken for

construction of the field GF(25) is 𝑓 𝑥 = 𝑥5 + 𝑥2 + 1.

2. PREVIOUS WORK

In year of 1986 Massey and Omura in their publication

proposed a multiplication and multiplier [5] that adopts the

regularity of equations for all bits of result. From the equation

for one bit of a result , equations for other bits can be derived

by rotating bits of the arguments „a „and „b‟ [2]. In this

multiplier, one bit of the result is computed completely in one

clock cycle. Then registers holding the arguments a and b are

rotated right one bit between cycles. The computation of m

bits of the result takes m clock cycles end hence this

multiplication is also called bit-serial. Agnew, Mullin,

Onyszchuk and Vanstone introduced a modification of the

Massey-Omura multiplication [l]. They divided the equation

for each bit 𝑐𝑖 into m products;

𝑐𝑖 = 𝑃𝑖,0 + 𝑃𝑖,1 + ⋯+ 𝑃𝑖,𝑚−2 + 𝑃𝑖,𝑚−1

In the first clock cycle, the: product 𝑃𝑖,𝑖+0of bit 𝑐𝑖for all

𝑖𝜖 1,𝑚 − 1 is evaluated. In the next cycle, the product (all

subscripts are: reduced mod m) of bit 𝑐𝑖 for all 𝑖𝜖 1,𝑚 − 1 is

evaluated and added to the intermediate result, and so on. All

bits of the result are successively evaluated in parallel; the

computation is pipelined.

 The amount of hardware is the same as for the non-pipelined

Massey-Omura multiplication, but the critical path is short

and constant and so the maximum achievable frequency is

higher. This multiplication is widely used. The computation of

an inverse element by the algorithm [3] is usually controlled

by a micro program [4]. When implementing the inversion

using classical multiplier, additional registers and data

transfers outside the multiplier are necessary. In this work we

present a modification of the classical multiplier, which

allows an efficient implementation of both the multiplication

and inversion algorithms. In comparison with the micro-

programmed inversion, no additional registers or data

transfers outside the multiplier are necessary. We also

introduce several improvements of this multiplication -

inversion unit, which lead to increased performance. But in

the case of addition and squaring the arithmatic presented

have no performance change; the only difference is

modification according to the field selected.

3. GOLOIS FIELD ARITHMETIC GF(2
5
)

GF(25)can be viewed as a vector space of dimension 5 over

the field GF(2). There are several bases known for GF(25) .

The most common bases are polynomial bases and nonmal

bases . with a polynomial basis , the field elements are

represented by binary polynomials modulo an irreducible

binary polynomial of degree 5 . given an irreducible

polynomial

 𝑝 𝑥 = 𝑥5 + 𝑥2 + 1 − − 2

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.11, February 2012

19

An element A 𝜖 𝐺𝐹(25) is represented either as A(𝛼)=
 𝑐𝑖𝛼

𝑖4
𝑖=1 or as (𝑐4𝑐3𝑐2𝑐1𝑐0) , where 𝑐𝑖𝜖𝐺𝐹(2) and 𝛼 ,

the root of 𝑝 𝑥 . Here the basis is { 1, 𝛼1𝛼2𝛼3𝛼4}. It has

been proved that there always exists a normal basis for the

given finite field GF(25) which is of the form

N={𝛽, 𝛽2𝛽4 …𝛽24
} where 𝛽 is aroot of the irreducible

polynomial 𝑝 𝑥 = 𝑥5 + 𝑥2 + 1 over GF(2) and

elements of the set are linearly independent . we say that 𝛽

generates the normal basis N , or 𝛽 is a normal elements of

𝐺𝐹(25). 𝛽 will equal to 𝛼𝑖 for some 𝑖. Then every element

A 𝜖 𝐺𝐹(25)is represented as

𝐴 𝛽 = 𝑎𝑖𝛽
𝑖 ,

4

𝑖=0

− − 3

Where 𝑎𝑖𝜖 GF(2). A field element can thus be represented in

a bit vector of length 5. Hence we have explained in Table 1;

Table 1: Polynomial and Normal Form

S.NO
BIT

STRING

POLYNOMIAL

FORM

NORMAL

FORM

1 00000 0 𝛽32

2 00001 1 𝛽31

3 00010 𝑐1α
1 𝛽1

4 00100 𝑐2α
2 𝛽2

5 01000 𝑐3α
3 𝛽3

6 10000 𝑐4α
4 𝛽4

7 00011 𝑐1α
1 + 1 𝛽18

8 00101 𝑐2α
2 + 1 𝛽5

9 01001 𝑐3α
3 + 1 𝛽29

10 10001 𝑐4α
4 + 1 𝛽10

11 11000 𝑐4α
4 + 𝑐3α

3 𝛽21

12 10100 𝑐4α
4 + 𝑐2α

2 𝛽7

13 10010 𝑐4α
4 + 𝑐1α

1 𝛽30

14 00110 𝑐2α
2 + 𝑐1α

1 𝛽19

15 01100 𝑐3α
3 + 𝑐2α

2 𝛽20

16 01010 𝑐3α
3 + 𝑐1α

1 𝛽6

17 00111 𝑐2α
2 + 𝑐1α

1 + 1 𝛽11

18 01011 𝑐3α
3 + 𝑐1α

1 + 1 𝛽27

19 10011 𝑐4α
4 + 𝑐1α

1 + 1 𝛽17

20 11100
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2

𝛽13

21 11010
𝑐4α

4 + 𝑐3α
3

+ 𝑐1α
1

𝛽9

22 01110
𝑐3α

3 + 𝑐2α
2

+ 𝑐1α
1

𝛽12

23 10110
𝑐4α

4 + 𝑐2α
2

+ 𝑐1α
1

𝛽28

24 11001 𝑐4α
4 + 𝑐3α

3 + 1 𝛽25

25 10101 𝑐4α
4 + 𝑐2α

2 + 1 𝛽22

26 01101 𝑐3α
3 + 𝑐2α

2 + 1 𝛽8

27 01111
𝑐3α

3 + 𝑐2α
2

+ 𝑐1α
1 + 1

𝛽23

28 10111
𝑐4α

4 + 𝑐2α
2

+ 𝑐1α
1 + 1

𝛽26

29 11011
𝑐4α

4 + 𝑐3α
3

+ 𝑐1α
1 + 1

𝛽16

30 11101
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2 + 1

𝛽14

31 11110
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2 + 𝑐1α

1
𝛽24

32 11111
𝑐4α

4 + 𝑐3α
3

+ 𝑐2α
2 + 𝑐1α

1 + 1
𝛽15

The following properties of a Golois field with normal basis

are useful in application:

For any element A𝝐𝑮𝑭(𝟐𝟓)

1 = 𝐴 + 𝐴2 + 𝐴4+. . +𝐴24
.

This implies that normal basis representation of 1 is

(11111).

For any element A 𝝐 𝑮𝑭(𝟐𝟓)

𝐴2 = 𝑎𝑖𝛽
2𝑖+14

𝑖=0 = 𝑎𝑖−1𝛽
2𝑖4

𝑖=0 = (𝑎3𝑎2𝑎1𝑎0𝑎4).

3.1.𝑮𝑭(𝟐𝟓) Addition:

(a4,a3,a2,a1, a0) ± (b4,b3,b2,b1, b0) =(c4,c3,c2,c1,c0), where ci = ai

 bi overGF(2)Note that in GF(25), Since

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.11, February 2012

20

(a4,a3,a2,a1,a0) +(a4,a3,a2,a1,a0) = (0,0,0,0,0) , each element

(a4,a3,a2,a1,a0)is its own additive inverse. Addition and

Subtraction can be implemented efficiently as component

wise exclusive OR in the NB representation.

3.2.𝑮𝑭 𝟐𝟓 Squaring:

By the second property of normal basis ,squaring of an

element a in NB representation is a cyclic shift operation .

𝟑. 𝟑. 𝑮𝑭(𝟐𝟓) Multiplication:

 Let A and B be two arbitrary elements in 𝐺𝐹(25) in a NB

representation and C= A.B be the product of A and B. we

denote 𝐴 = 𝑎𝑖𝛽
2𝑖4

𝑖=0 as a vector A=(a0,a1,a2,a3,a4) ,

𝐵 = 𝑏𝑖𝛽
2𝑖4

𝑖=0 as a vector B = (b0,b1,b2,b3,b4) where C=

(c0,c1,c2,c3,c4) , then the last term c4 of C is a logic function of

the components of A and B, that is, c4=

𝑓(a0,a1,a2,a3,a4; b0,b1,b2,b3,b4).

Since squaring in NB representation is a cyclic shift operation,

we have C2=A2.B2 or equivalently

(c4 ,c0,c1,c2,c3)= (a4 ,a0,a1,a2,a3). (b4 ,b0,b1,b2,b3). Hence, the last

component c3 can be obtained by the same function 𝑓 that is,

c3= 𝑓(a4 ,a0,a1,a2,a3; b4 ,b0,b1,b2,b3). By squaring C repeatedly ,

we get

c4=𝑓(a0,a1,a2,a3,a4; b0,b1,b2,b3,b4)

c3= 𝑓(a4 ,a0,a1,a2,a3; b4 ,b0,b1,b2,b3)

:

C0= 𝑓(a1,a2,a3, a4, a0; b1,b2,b3, b4, b0)

By the above equation define the Massey-Omura multiplier in

normal basis representation. In the multiplier, the same logic

function 𝑓for computing the last component of c4 of the

product ‟c‟

Can be used to get the remaining components c3, c2, c1, c0 of

the product sequentially. In parallel architecture, we can use 5

identical logic function 𝑓for calculating all components of the

products of the product simultaneously .the product of A and

B in the field 𝐺𝐹(25)is

C =A*B=𝑐0𝛽
1 + 𝑐1𝛽

2 + 𝑐2𝛽
4 + 𝑐3𝛽

8 + 𝑐4𝛽
16

 = 𝑎0𝛽
1 + 𝑎𝛽2 + 𝑎2𝛽

4 + 𝑎3𝛽
8 +

𝑎4𝛽16×(𝑏0𝛽1+𝑏1𝛽2+𝑏2𝛽4+𝑏3𝛽8+𝑏4𝛽16)

Thus, we can get 𝑐𝑘 = 𝜇𝑖𝑗
(𝑘)

𝑎𝑖𝑏𝑗
4
𝑗=0

4
𝑖=0 , 0 ≤ 𝑘 ≤

5.

The 5 5 matrices 𝜇 𝑘 (0 ≤ 𝑘 ≤ 5) whose elements 𝜇𝑖𝑗
 𝑘

,

0 ≤ 𝑖, 𝑗 ≤ 5 can be obtained if we know the transformation

between the elements of the PB and the elements of NB ,that

is, the normal basis representation of the elements of the PB.

For a normal basis there always exist a multiplication table

T(corresponding to the irreducible polynomial),which is given

by𝛽

𝛽

𝛽2

:

𝛽24

 = 𝑇

𝛽

𝛽2

:

𝛽24

 .

Corresponding to aT matrix , there always exists a matrix

𝜇(𝑘)for any 𝑐𝑘of the product c , for the given irreducible

polynomial which defines the normal basis in 𝐺𝐹(25). After

the multiplication table T is obtained , the matrix 𝜇(𝑘)can be

calculated according to the above method.

𝟑. 𝟒. 𝑮𝑭(𝟐𝟓) Invertion:

We know from Fermat‟s theorem that for any non-zero

elements 𝛽,𝛽25−1 = 1, that is, 𝛽−1 = 𝛽25−2 .

25 − 2 = 21 + 22 + 23 + 24 . Hence,

𝛽−1 = 𝛽2 ∗ 𝛽4 ∗ 𝛽8 ∗ 𝛽16 .That is an inversion requires

4squaring 3 multiplication. This could be reduced further by

alternative methods[7,8].

4. ELLIPTIC GROUP OPERATION

Elliptic group operations includes point negation, point

subtraction, point doubling, and scalar multiplication.

Let GF(25) be a characteristic 2 finite field. Then a

(non-super singular) elliptic curve E(GF(25)) over GF(25)

defined by E: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑥2 + 1 consists of the set

of solutions or points P=(x,y) for x,y  GF(25) .

E: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑥2 + 1 in GF(25)

together with an extra point O called the point at infinity. The

number of points on E(GF(25)) is denoted by

 # E(GF(25)). The Hasse Theorem states that:

 25 + 1 - 2 25≤ # E(GF(2m)) ≤ 25 + 1+ 2 25 .

It is again possible to define an addition rule to add

points on E as the addition rule is specified as follows:

1. Rule to add the point at infinty to itself:

O + O =O

2. Rule to add the point at infinity to any other point:

(x,y) + O = O +(x,y)= (x,y) for all (x,y)  GF(25)

3. Rule to add two points with the same x–coordinates

when the points are either distinct or have

x-coordinates 0:

(x,y) + (x,x + y)= O for all (x,y) GF(25)

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.11, February 2012

21

4. Rule to add two points with different x-coordinates:

Let (x1,y1)  GF(25) and (x2,y2)  GF(25) be two

points such that x1≠x2. Then (x1,y1)+ (x2,y2)= (x3,y3)

, where:

 x3=λ2+ λ+x1+x2+a in GF(25),

 y3 = λ.(x1+x3) +x3 + y1 in GF(25), and

 λ 
1 2

1 2

y y

x x




in GF(25).

5. Rule to add a point to itself (double a point): Let

(x1,y1)  GF(25) be a point with x1 ≠ 0. Then

(x1,y1) + (x1,y1) =(x3,y3) ,where:

 x3=λ2+ λ+a in GF(25) , y3 = x2
1+ (λ +1)x3 in GF(25) ,

 and λ =x1 +
1

1

y

x
in GF(25).

The set of points on E(GF(25)) forms an abelian group

under this addition rule. Notice that the addition rule can

always be computed efficiently using simple field arithmetic.

Cryptographic schemes based on ECC rely on scalar

multiplication of elliptic curve points. As before given an

integer d and a point P  GF(25) , scalar multiplication is the

process of adding P to itself d times. The result of this scalar

multiplication is denoted „dP‟.

5. A PERFORMANCE IMPROVEMENT

The basic ECC operation (1) is performed by successive point

additions and point doublings. Each of these operations needs

1 inversion, 2 multiplications and 1 squaring [2]. The number

of clock cycles necessary for one point addition or doubling is

then:

𝐶𝑃𝐴𝐷𝐷 = 𝑙𝑜𝑔24 + 𝑤4 + 1 𝐶𝑀𝑈𝐿

+ 5 − 𝑤4 𝐶𝑆𝑄𝑅

+𝐶𝑜𝑛𝑠𝑡 − − − 4

We can reduce the number of clock cycles 𝐶𝑃𝐴𝐷𝐷 in two

ways: by speeding up the multiplications and by reducing the

number of clock cycles necessary for the iterative squaring.

5.1. Serial Multiplication

The Massey-Omura need m clock cycles for computing all m

bits of the result. Some authors also call them bit-serial,

because they compute one bit of a result in one clock cycle.

There is a digit-serial variant of the Massey-Omura

multiplication (some author call it sliced or parallel). In this

multiplication, D bits (also called a digit) are evaluated in one

clock cycle. In the case of digit-serial multiplier, D products

𝐶𝑖,𝑗 are evaluated in one clock cycle. All 5- bits of the result

are then evaluated in 𝐶𝑀𝑈𝐿 = [5/𝐷] cycles. Since more

products are evaluated in one clock cycle, more combinational

logic is necessary. The size of the block COMB.LOGIC is

proportional to 𝐷 + 1 . The size of other blocks remains

constant. As the combinational logic becomes more complex,

the length of the critical path grows proportionally to log𝐷.

Since one multiplication needs 5/D clock cycles, the total time

necessary for one multiplication is 𝑂 5/𝐷 × log𝐷 and the

total time of one inversion (or point addition on elliptic curve)

is:

𝑇𝑃𝐴𝐷𝐷 = 𝑂 𝑙𝑜𝑔5. 5 𝐷 + 5 𝑙𝑜𝑔𝐷 − − 5

5.2. Speeding up the Squaring

Another way to improve the performance of the [3] inversion

(and consequently the point addition) is to reduce the number

of clock cycles necessary for the iterative squaring. Adding

one or more blocks performing, long distance“rotations can

reduce the number of clock cycles required for all iterative

squaring .It seems that the number of clock c:ycles spent in

iterative squaring is approx. 𝑂 𝑘 4
𝑘

 , where k is the

number of rotation blocks. The total time necessary for the

point addition is then

𝑇𝑃𝐴𝐷𝐷 = 𝑂 5 𝐷 𝑙𝑜𝑔5 + 𝑘 4
𝑘

 . 𝑙𝑜𝑔𝐷 − − 6

6. CONCLUTION

Finite field GF(25)arithmetic operations include addition ,

subtraction, multiplication , squaring and inversion. Due to

proposed field GF(25)and irreducible polynomial f(x)=x5+x2

+1 both additions and subtractions can be implemented very

efficiently. Multiplication in NB using the said polynomial is

faster and secure. Squaring a special case of multiplication

can be implemented much faster than multiplication in the

NB. Also inversions in the NB with the „almost inverse

method runs‟, can be implemented efficiently. When

comparing the arithmetic in the PB, the proposed arithmetic in

NB is 20% faster [9]. More over the implementation of key

sharing schemes are efficient and faster in the proposed

arithmetic [10]. Thus the proposed method will give us a

faster and secure cryptographic scheme in the limited

environments.

Elliptic group operations include point negations, point

additions, point subtraction, point doubling and scalar

multiplication. The operations can be implemented very

efficiently in the proposed NB.

7. LIMITATION AND FUTURE WORK

Our work has been done within the finite field GF(2^5) and

the arithmetic can be generalized in GF(2^n) , stage by stage,

in the future works. Also, performance of various

representations [11] of the elements of the general field can be

compared.

International Journal of Computer Applications (0975 – 8887)

Volume 39– No.11, February 2012

22

8. REFERENCES
G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, and

S.A.Vanstone, “An Implementation for a Fast Public-

Key Cryptosystem,” Journal of Cryptology, vol. 3,

pp.63-79, 1999

 IEEE 1363. Standard for Public-key Cryptography., IEEE

2000

 Itoh, Teechai, and Tsujii, “A Fast Algorithm for Computing

Multiplicative Inverses in GF(2t) using normal bases,” J.

Society for Electronic Communications (Japan), vol.44,

pp.31-36, 1986

P.H.W Leong and K.H. Leung, “A Micro coded Elliptic

Curve Processor Using FPGA Technology,” IEEE

Transactions on VLSI Systems, vol. 10, no. 5, pp. 550-

559, Oct. 2002

J. Massey, and J. Omura, “Computational Method and

Apparatus for Finite Field Arithmetic,” U.S. patent

number 4,587,627, 1986

I. Blake, G. Seroussi and N. Smart, “Elliptic Curves in

Cryptography”, Chapter 1. Cambridge University Press,

Cambridge (UK), 1999

N.Koblitz, Introduction to Elliptic Curves and Modular

Forms, 2nd Ed., Spinger-Verlag,1993.

N.Koblitz, Elliptic Curve Cryptosystems,

Math.Compu.Vol.48,No.177, Jan,1987,pp 203-209.

A.R.Rishivarman, B.Parthsarathy, M.Thiagarajan, “An

efficient performance of GF(2^5) arithmetic in the

elliptic curve cryptosytem”, International journal of

computing and application, vol 4 no. 2 pp 111-116, 2009

A.R.Rishivarman, B.Parthsarathy, M.Thiagarajan, “A key

sharing scheme over GF(2^5)”, Springer-CCIS, vol 283

2012

A.R.Rishivarman, B.Parthasarathy, M.Thiagarajan, “A

Montgomery representation of elements in GF(2^5) for

efficient arithmetic to use in elliptic curve cryptography”,

International journal of advanced networking and

application, vol 1 no. 5 pp 323-326, 2010

