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ABSTRACT 

In 2003, the Object Management Group (OMG) officially 

introduced the Model-Driven Architecture (MDA). The 

specification explains how different OMG standards could be 

used together. MDA focuses on the concepts of Platform 

Independent Models and Platform Specific Models, two 

viewpoints on software systems, and how mappings between 

these two can be made in order to streamline software 

development. Through this approach, the functional 

specification of the system and the implementation 

specification are separated, allowing for better reuse and 

portability. An important technique used in MDE is model 

transformation. A model transformation is a process of 

automatic generation of a target model from a source model, 

according to a transformation definition, which is expressed in 

a model transformation language.  

This paper focuses on model engineering terminology and 

theory of model generation. The paper describes overall MDA 

scenario and emphasizes on model transformation. As model 

transformation is an important area in model driven 

development, we have compared various techniques available 

for model transformation. The paper also focuses on model 

theory and model composition techniques used for model 

weaving. 
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1. INTRODUCTION 
Models are representation of reality in the form of 

abstractions which indicates essential aspects of the system 

while suppressing the others for the time being. The software 

development process models heavily rely on models for better 

understanding of the complex systems. Models are the 

medium to convey system’s properties which are desired by 

its stakeholders as a set of services. Models focus on multiple 

views of a system and can integrate multiple concepts along 

with allied notational semantics that can efficiently 

demonstrate multiple views of the system depending on the 

context of the problem. These models can be organized in to 

various levels of abstractions by applying transformations on 

them. The abstract views of the system can elaborated into 

concrete views by adding relevant details to it as applicable. 

The correspondence between structural and behavioral 

properties of the system elements must be correlated and 

balanced to visualize systems architecture. In model-centric 

approach, models of the system drive implementation of the 

system from the models whereas in model-only approach, 

developers use models to understand contextual information 

of business or solution domain or architecture of a solution.    

The Object Management Group (OMG) introduced the 

Model-Driven Architecture (MDA) as an approach for system 

development based on specification and interoperability 

expressed with the help of formal models. MDA is based on 

layering of model concepts and the transformations which are 

necessary to cause movement form one layer to the other. 

OMG identifies four types of models: Computation 

Independent Model (CIM), Platform Independent Model 

(PIM), Platform Specific Model (PSM) described by a 

Platform Model (PM), and an Implementation Specific Model 

(ISM) related to technology used for system realization [1].  

A platform can be thought as coherent set of functionalities 

relevant to technology indicating availability of usable 

services and resources to the stakeholders. The platform 

independence can be achieved by hiding the details of service 

profiles at software architecture level from the application 

level by introducing interfaces which can make the resource 

available from one platform to the other.  

 Computation Independent Viewpoint: The computation 

independent viewpoint focuses on context of the problem 

with elicitation of requirements of the system and its 

structure with environmental needs. It indicates 

customer, user and stakeholder’s perspectives as well as 

business cases to be addressed by the system. 

 Platform Independent Viewpoint: The platform 

independent viewpoint focuses on analysis and design 

models of the system with relationships amongst system 

elements form architecture perspective towards 

implementation analogies. 

 Platform Specific Viewpoint: The platform specific 

viewpoint indicates implementation level details of the 

system elements specific to a particular platform. This 

can be accomplished by using mapping and building 

transformation rules in case of migrating from PIM to 

PSM. 

 

As indicated in Figure 1, platform-independent models (PIMs) 

represents the analysis and design models of the system with 

the help of general purpose modeling language such as UML. 

The platform-independent model can be mapped to a 

platform-specific model (PSM) by mapping the PIM to 

implementation language using set of well defined 

transformational rules. Metamodel is the basis for performing 

the transformations. MDA transforms the source to target 

models with the help of source to target metamodel mappings. 

MDA comprises CWM, UML, MOF and XMI as standards 

for model-driven development. The Common Warehouse 

Metamodel (CWM) defines a metamodel representing both 

the business and technical metadata which is essential to 
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capture the business analysis domains. Hence MDA can be 

interpreted as layered architecture where information 

exchange between the cross layers happens [2]. 

 

 

 

 

 

 

Figure 1: System Representation in MDE 

Unified Modeling Language (UML) which is a general 

purpose modeling language provides support for modeling 

structural and behavioral properties of the system and an 

integrated effort of three object-oriented methods (Booch, 

OMT, and OOSE).  The Meta Object Facility (MOF) is an 

OMG standard defining a common, abstract language for the 

specification of metamodels. It defines the four-level structure 

used to represent the details of how the notation repository 

can be made available to the modeler on model space. MOF 

semantics defines metadata repository that supports model 

construction. It is used to perform the transformations using 

transformation rules. XML Metadata Interchange (XMI) 

defines XML tags are used to represent objects and their 

interrelationships [3] [4]. MDA address the issue of 

portability and reusability in alliance with interoperability in 

order to achieve cross-platform transfer of system with stable 

environment. Following are the principles that underlie the 

OMG’s view of MDA:  

 Models expressed in a well-defined notation can be used 

to understand and interpret characteristics of complex 

systems. 

 There exists a set of transformations used to serialize the 

model elements and their representation in order to 

express and realize the architectural viewpoints.  

 As the emphasis of MDA is on deployment and 

maintenance the metamodels are used as a means to 

perform transformations and integration of the system 

elements which can be asset while performing 

automation.  

 

Figure 2 indicates that MDE relies on two basic facts: (1) the 

representation of any kind of system by models and (2) the 

syntactic conformance of any model to a metamodel. Within 

this context, models are intended to be automatically 

processed by a set of operators. The system development can 

concern with Forward engineering, where a system is created 

from a model or Reverse engineering, where a model is 

created from a system or Models at runtime, where a model 

coexists with the system it represents [5][6].  

  

  

 

 

 

 

 

 

Figure 2: System Representation in MDE 

2. RELATED WORK 
Model transformation is a core concept in model-driven 

development that yields the model realization and model 

evolution by application of well formed transformation rules. 

In this section we survey existing model transformation 

technology. Tratt [7] defines model transformation as a 

program that transforms one model to other on the basis of 

mutation. OMG defines model transformation as the process 

of converting a model into another model of the same system 

based on transformation rules and metamodel correspondence 

[8]. Kleppe defines model transformation can be realized 

through a consistent transformation description that can be 

used to map source model to target model. Mens [9] defines 

model transformation as the process of generating multiple 

from multiple source models based on well-formed 

transformation rules that be used for automation purpose.  

 
 ATL: ATL, the Atlas Transformation Language is a 

model transformation language specified in terms of a 

metamodel and a textual concrete syntax. ATL provides 

developers with a means to specify a technique to 

produce a number of target models from a set of source 

models. The ATL language is an integration of 

declarative and imperative programming. Through the 

declarative transformation style it expresses mappings 

between the source and target model elements along with 

their correspondence. ATL mainly deals with model to 

model transformation with the help of ATL module. An 

ATL module is composed of a header section that 

defines attributes relevant to transformation module; a 

optional import section to import s existing ATL 

libraries; a set of helpers that are ATL equivalent to Java 

methods; and set of rules that defines source to target 

model mappings. ATL-code is compiled and then 

executed by the ATL transformation engine. ATL 

supports only unidirectional transformations.  

 Query/View/Transformation (QVT): QVT is a language 

for model transformation   established by OMG in 2005. 

QVT uses the Object Constraint Language (OCL), Meta 

Object Facility (MOF). QVT language consists of 

language dimension and interoperability dimension. Each 

dimension specifies a formal set of named levels. QVT is 

structured into two-layer architecture in terms of 

relations metamodel and core metamodel. Relations 

metamodel is used to support object pattern matching 

and object template creation. Core metamodel is defined 

by extensions to EMOF and OCL.   QVT defines three 

transformation languages:  

i. QVT Relational QVT Relational is a high-level 

declarative transformation language.  It supports the 

specification of bidirectional transformations. When 

a bidirectional transformation is executed, the 

execution direction needs to be specified. The 

semantics is defined by a mapping to QVT core.  

ii. QVT Core is a simple, low-level declarative model 

transformation language. It serves as a foundation 

for QVT Relational and supports pattern matching 

over a flat set of variables, where the variables of 

source, target and trace models are treated 

symmetrically. Trace models must be defined 

explicitly.  

iii. QVT Operational is an imperative model 

transformation language, which extends QVT 

Relational with imperative constructs. The 

transformations are unidirectional. It uses implicit 

trace models.  
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 ModelMorf : ModelMorf  is an implementation of the 

Relational QVT standard issued by OMG. It is a 

declarative model-to-model transformation. It supports 

multi-directionality, so the same rule can be used to map 

in both directions. The main feature of ModelMorf is its 

general model transformation approach. As 

implementation of the Relational QVT standard, it is 

purely declarative. For some transformation problems, a 

declarative transformation language offers some 

advantages over other approaches. ModelMorf does not 

support incremental transformation execution, 

Transformation extensibility and Graphical Syntax. 

Because no integrated development environment is 

provided, the development of transformation code is not 

as comfortable as in other approaches. Errors in the code 

are only detected when the transformation is executed. It 

provides built-in functionality to create traces. It is 

possible to create in-place transformations.    

 Kermeta: Kermeta is a general purpose modeling and 

imperative programming language, also able to perform 

transformations. It can be described as a metamodeling 

language which allows describing both the structure and 

the behavior of models. It incorporates several features 

and ideas of other technologies in the model driven 

architecture domain. It uses operations, which are 

basically very similar to operations or methods in object-

oriented programming languages. Kermeta's imperative 

approach and advanced language features make it nearly 

as powerful as conventional programming languages. 

Kermeta has no built-in tracing support, and loading and 

saving of model files is somewhat complicated compared 

to other languages. Rule application control and rule 

scheduling needs to be specified explicitly by the user.  

 ETL: The Epsilon Transformation Language (ETL) is a 

hybrid model-to-model transformation language. It is 

part of the Epsilon model management infrastructure. 

ETL has a hybrid style and features declarative rule 

specification that consists of approaches as guards, 

abstract, lazy and primary rules, and automatic resolution 

of target elements from their source counterparts.ETL 

indicates specification of transformations which can 

transform arbitrary source models into arbitrary target 

models. ETL transformations are organized in modules. 

A module can contain a number of transformation rules. 

Each rule has a unique name and also specifies one 

source and many target parameters.   
 VIATRA: VIsual Automated model TRAnsformations is 

a model transformation framework, which provides 

support for the life-cycle of engineering model 

transformations including the specification, design, 

execution, validation and maintenance of transformations 

for modeling languages and domains. A transformation 

definition consists of a set of rules that are organized to 

match a pattern within a model to which the rule can be 

applied to and application of the rule in an operational 

style.  VIATRA2 primarily aims at designing model 

transformations to support the precise model-based 

systems development with the help of invisible formal 

methods. Since precise model-based systems 

development is the primary application area of 

VIATRA2, it necessitates that (i) the model 

transformations are specified in a mathematically precise 

way, and (ii) these transformations are automated so that 

the target mathematical models can be derived fully 

automatically. Kermeta is best suited as model 

transformation language, if the transformation to 

implement is relatively complex. 

3. MODELING TERMINOLOGY 
 Model: A model is a simplified representation of a 

system that helps in better understanding of the system 

[10] [11]. A model is written in the language of its 

unique metamodel. A model is a constrained directed 

labeled graph. Models are often expressed in dedicated 

domain-specific languages or general purpose modeling 

language such as UML [12].     

 Metamodel: The abstract syntax of a model is described 

by its metamodel. A metamodel can be compared to a 

grammar in language design. Model transformations 

cannot be achieved without metamodels. A metamodel is 

a model such that its reference model is a 

metametamodel. 

 Metametamodel: The abstract syntax of metamodel is 

described by metametamodel. A metametamodel is a 

model that is its own reference model means that it 

conforms to itself.    

 Model Transformation Paradigm/Approach: A model 

transformation paradigm or approach is the design 

principle on which the model transformation language 

is built, e.g. imperative, operational, functional, 

declarative or relational.  

 Model Transformation Language: A model 

transformation language is a vocabulary and a grammar 

with well-defined semantics and rules for performing 

model transformations.    

 Model Transformation Description: A model 

transformation description is written in a model 

transformation language. If the language of a 

transformation description is rule-based, the 

transformation description is a set of transformation 

rules; describing source models are transformation to 

target models.    

 Model Transformation Rule: A model transformation 

rule describes how a source model can be transformed 

into a target model. Transformation Rules are 

subdivided into domains that are the part of the rule 

responsible for accessing one of the models that are 

used in the transformation rule. The domains 

subdivisions define how many domain languages the 

rule operates, how the domains are declared, if they are 

implicitly or explicitly declared. Following are the 

important aspects which should be considered while 

devising the transformation rule: 

i. Rule application scoping: It allows a transformation to 

define the target scope of a transformation. A 

restriction can be made about the parts of a model that 

participate in the transformation. Both a source and a 

target scope can be defined.   

ii. Rule application strategy: A rule needs to be applied to 

a specific aspect within its scope. The strategy can be 

deterministic, non-deterministic or interactive. The 

nondeterministic strategies are again subdivided in 

concurrent, and one-point. An interactive strategy 

approach is when the user is allowed to interact with 

the transformation for determining the location where 

the rule is going to be applied.  

iii. Rule scheduling: A scheduling mechanism can be used 

to determine the order in which individual rules are 

applied. In some approaches users have no explicit 

control on the scheduling algorithm.  The rule 

scheduling is related to the order of rule application. It 

is subdivided into four other features: form, rule 

selection, rule interaction, and phasing. The form 

refers to the way scheduling is being expressed.  
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iv. Rule organization: Rules can be composed and 

structured in different ways. Model transformation 

approaches can vary on the basis of modularity 

mechanisms, reuse mechanisms and organizational 

structure.  

v. Traceability links: Transformations may record links 

between their source and target elements. These links 

can be useful in performing impact analysis, 

synchronization between models, and determining the 

target of a transformation.  

vi. Directionality: Transformation may be unidirectional 

or bidirectional. In unidirectional transformations, 

source model can be transformed into a target model, 

but not the other way. Bidirectional transformation can 

be useful for synchronizing models.  

 Model Transformation Engine/Tool: A model 

transformation engine or tool executes or interprets the 

model transformation description. It applies the model 

transformation description on the source model to 

produce the target model. [13]   

 Source Model: A model is called as a source model in 

model transformation, if it is an input to the 

transformation. It conforms to the source metamodel.  

 Target Model: A is called as target model in model 

transformation, if it is an output of the transformation. It 

conforms to the target metamodel. A model 

transformation can have one or more target models.   

 Higher-order Transformation (HOT): A model 

transformation description having a transformation 

model as source or target model.  
 Directed multigraph: A directed labeled multi-graph G = 

(NG, EG,G ) consists of a finite set of nodes NG and a 

finite set of edges EG, a mapping function G : EG → NG 

× NG.  

 Model: A model M = (G,ω,µ) is a triple where: G = (NG, 

EG,G) is a directed multigraph, ω is itself a model 

associated to a multigraph Gω = (Nω, Eω, ω), µ : NG ∪ EG 

→ Nω is a function associating elements (nodes and 

edges) of G to nodes of Gω. The function µ associates 

every node and edge of G (NG ∪ EG) with one element in 

ω(Nω).  

 Reference model: Given a model M1 = (G1, ω1, µ1), and a 

model M2 = (G2, ω2, µ2),if ω1 = M2, M2 is called the 

reference model of M1.  

Some models are their own reference model (ω = M). This 

allows stopping the recursion introduced in this definition. 

The relation between a model and its reference model is called 

conformance. The three levels of model engineering can be 

identified as metametamodel (M3), metamodel (M2) and 

terminal model (M1). A metametamodel is a model that is its 

own reference model. A metamodel is a model such that its 

reference model is a metametamodel. A terminal model is a 

model such that its reference model is a metamodel [14].  

In any complex software system, mastering complexity means 

using a variety of semantically and syntactically precise 

models to describe different aspects and views of the software 

system. In Model to Model transformation, a model is 

converted to another model of a system and in Model to Text 

transformation, a transformation a model is converted directly 

to an arbitrary fragment of text. In Model to Code 

Transformation, the text produced by transformation is source 

code or a fragment of source code from the model. Model to 

Code transformation is usually used to implement modeling 

languages in terms of programming languages whereas Model 

to Model transformation is used for refactoring.    

Figure 3 shows the Model Transformation Process. Model 

composition has impacts on at least three different levels: 

 Syntactic level: the compositional way between models can 

explicitly be expressed as a new model in an appropriate 

modeling language. 

 Semantic level: the meaning of composed models as a unit 

in terms of semantics of modeling languages involved. 

 Methodic level: the integration of model composition 

techniques in software development processes and tools. 

Formally, a modeling language M is a set of well-formed 

models. So a model mM is syntactically well-formed, both 

by context-free syntax as well as conforming to all context-

conditions.  

Each of these models gets semantics by mapping it from the 

language to a well-known semantic domain. This principle is 

well understood in the field of programming languages, where 

each syntactic construct has a well defined meaning that 

describes its effects in terms of operational or denotation 

semantics [15]. 

 Given a language M of models, the meaning of each 

element is usually given by explaining it in a well-known 

domain D, the semantic domain. This semantic domain 

describes which artifacts and concepts exist and must be 

well understood by both the language designer and the 

language users.     

 Given the modeling language M and the semantic 

domain D each model mM must be mapped to D. As 

explained earlier, it is important to define the meaning 

(semantics) of models explicitly. So an explicit formal 

definition of the mapping is a function from M to D: sm: 

M → D. 

Benefits of a formal mapping function are that we are able to 

reason about the mapping and thus, about the language and 

the instances itself. Set-valued semantics allows stating some 

important properties with respect to the semantic mapping sm:  

 A model mM is consistent exactly if sm(m)≠ , which 

means that there is at least one system that obeys the 

instance’s properties. Otherwise, there are some 

contradicting constraints in the model m itself. 

 A model mM does not contain information if sm(m)=S. 

Then any system can serve as an implementation. 

 A model m2 refines another model m1 exactly if sm(m2) 

 sm(m1). So, if we add more data to the model m2, it 

further constraints the resulting set of systems, which 

therefore will become smaller. 

 

The MOF is semiformal approach to define modeling 

languages. It provides four-level hierarchy, with levels M0, 

M1, M2 and M3. The entities  populating reach level Mi, 

written  Mi are always collections, made up of constituent 

data elements . Each entity   Mi  at level i+ 1 meta 

represents model and is viewed as the metarepresentation of 

collection of types, i.e., as metadata collection that defines 

specific collection of types. Each type T is metarepresented as 

  and characterizes collection of data elements, its value 

domain. We write that data element   is value of type  

as    A . A metarepresentation at level i +1 of 

collection   Mi+1 types characterizes collections of data 

elements   Mi at level i. A specific data collection   Mi  

said to conform to model , which is metarepresented by its 

collection of   Mi+1, iff for each data element   there 

exists type   such that   A [16].    
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Figure 3: Model Transformation Process 

 

Following are the critical factors influencing Model Driven 

Development scenarios:  

 Model-to-model transformations. A PSM is created by 

transforming a PIM and a PDM. Reverse engineering 

roughly corresponds to the opposite operation of trans-

forming a PSM into a PIM.   

 Heterogeneity. MDE homogenizes all software artifacts 

as uniform models; concrete systems can make use of a 

number of different technologies. Hence the problem 

exists in terms of ability to handle transformations 

between MDE and other technologies.  

 Complexity. Complexity is partitioned into Problem-

domain and Solution-domain. The Problem-domain 

complexity comes from the issues related to 

requirements and stakeholder agreements. The Solution-

domain complexity usually describes in terms of 

interrelated system elements or components [17]. 

 

4. MODEL PROPERTIES 
Model transformation languages have been classified by 

Czarnecki and by Mens [20]. Following are the properties of 

model transformation problems:  

 Abstraction Change: Source and target model must 

preserve the level of abstraction during model 

transformations. The level of abstraction is indicates 

essential aspects in a model. Model transformations 

introduce new aspects, reduce the aspects or leave it 

unchanged. This property is independent of the change in 

the metamodel; source and target metamodel can be the 

same or different. A horizontal model transformation is a 

transformation, where the source model and the target 

model belong to the same abstraction level. In case of 

vertical, different levels of abstraction are used in the 

source and target model. It is also called refinement, 

because additional information is added, resulting in 

decreasing the abstraction level of the target model. On 

the other hand, information could be removed from the 

source model to create a more abstract target model. The 

transformation of platform independent model to 

platform specific model is a case of a vertical 

transformation, because models are on different levels of 

abstraction. Transformations which affect models 

expressed in the same language are called endogenous. 

Both source and target models conform to the same 

metamodel. Opposite to endogenous transformations, 

exogenous transformations are expressed between 

models conforming to different metamodels. Exogenous 

transformations can also be called translations, because it 

is focused on the mapping of a model in different 

metamodels. Abstraction transformations produce the 

target model by reducing the amount of detail.   

 Metamodel Change: It indicates the difference between 

source and target metamodels [20]. There are three types 

of changes handled during metamodel change handling. 

An unaffecting change does not require any adaptation of 

existing models, which is mostly true for additive 

changes to the metamodel. In resolvable changes, an 

algorithm can be defined for migration of existing 

instances to the new metamodel version. In irresolvable 

changes, manual interaction is required to make existing 

models conform to the new metamodel, if possible at all. 

Existence Change describes the addition or deletion of an 

element in the metamodel which an instance of a MOF 

class. This can cover classes, attributes, associations. 

Property Change describes a property of a metamodel 

element represents an attribute in the MOF class of 

which the element is an instance that is changed.  Link 

Change represents all changes in features that are 

associations in the MOF model. This includes 

containment, inheritance and typing [18]. 

 

Transformations can be built in such a way that source model 

and target model have a common property, which is not 

changed by the transformation [19].  

 Semantics-preserving: If the source and target 

metamodels are similar, a mapping can be found that is 

semantics preserving. It means that the transformation 

rules are able to retain the meaning of the two models 

same, even though they are represented in a different 

abstract syntax. Refactoring is the process of changing 

the internal structure of a model without simultaneously 

changing the externally observable behavior or 

functionality of the corresponding program, in order to 

improve quality attributes of the model. Refactoring 

transformations are semantics-preserving, since they do 

not change the behavior of the model, but improve 

structure and quality of the model.  
 Behavior-preserving: A transformation is behavior-

preserving if the explicit or implicit constraints of the 

behavior in the source model correspond to the target 

model after the transformation occurs. Model to code 

transformation is not semantics-preserving because of 

levels of details, it is behavior-preserving.  
 Syntax-preserving: A syntax preserving transformation is 

usually an endogenous horizontal transformation that 

does not change the abstract syntax of the model.   
 Number of Models: A model transformation can have 

several source models and several target models [20]. 

The minimum number of models involved is one, where 

source and target model are the same.  

 

Model transformation languages follow different language 

paradigms as indicated below:  

 Imperative languages specify a sequential control flow 

and provide means to describe how the transformation 

language is supposed to be executed. From a model 

transformation point of view, the imperative approach is 

also similar to direct-manipulation.  A well-defined 

control flow exists, which means that all statements in 

the transformation code are executed in order. Imperative 

model transformation techniques focus on how the 

transformation has to be executed. Because of the 

simplicity, imperative model transformation languages 

are easier to learn. The transformation is described as a 

sequence of actions, which is especially useful if the 

order of a set of transformation rules needs to be 

controlled explicitly [21].  
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 Declarative languages do not offer explicit control flow. 

Declarative approaches focus on what the transformation 

has to accomplish. Procedural details of the 

transformation are hidden, which results in a smaller 

amount of code. These transformations describe 

relationship between the source and the target 

metamodels which can be interpreted as bidirectional.    

 Hybrid transformation languages offer both imperative 

language constructs and declarative language constructs. 

Imperative approaches are powerful, but based on 

verbose therefore harder to read and understand. 

Declarative languages may not be suitable for complex 

transformation tasks. 

 Graph transformation languages are based on algebraic 

graph grammars and are a subcategory of declarative 

languages. Model elements and their relationships are 

seen as graph vertices and edges. Graph transformation 

rules have a left hand side, and a right hand side, which 

correspond to the source and target model of the 

transformation. Models are interpreted as graphs, and 

graph transformations manipulate sub-graphs. Graph-

based does not necessarily mean that the transformation 

is specified in a visual way.  

 Template-based languages are used for model-to-text 

transformations. Templates contain fragments of the 

target text and a metaprogram that can access the source 

model. These languages are combined with the visitor 

pattern to traverse the internal structure of a model.  

 

5. COMPOSITION AND WEAVING 
Model composition in its simplest form refers to the 

mechanism of combining two models into a new one. Without 

further information or requirements the definition of model 

composition is quite abstract. Denoting the universe of models 

with M we get the following definition of model composition 

operators: 

 Model composition operator: A model composition 

operator  is a function with two models as input, which 

produces a composed model as output: : M × M  M. 

Given the semantics of models, we can infer properties 

of the semantics of a composition operator  by relating 

the semantics on its source and resulting model.  

 Property preserving (PP) operator: A composition 

operator : M×M M is property preserving on the left 

argument, if for any m1, m2  M it holds: sm (m1  m2) 

 sm (m1). Analogously, it is property preserving on the 

right argument, iff sm (m1  m2)  sm (m2) and property 

preserving (PP) if both properties hold. Property 

preservation is important for a composition operator, as it 

ensures that no information and thus, no design decisions 

that were present in a source model are lost in the 

composition. We can infer that property preservation is 

equivalent to: m1, m2  M: sm (m1  m2)  sm (m1)  

sm (m2). 

 Fully property preserving (FPP) operator: A composition 

operator : M×M→M is fully property preserving, iff 

 m1, m2  M: sm (m1  m2) = sm (m1)  sm (m2). 

 Consistency preserving (CP) operator: A composition 

operator : M×MM is consistency preserving (CP), 

iff  m1, m2  M: sm (m1)  sm (m2) ≠  sm (m1  

m2) ≠   

 General Semantic Composition Operator: The semantic 

composition operator  is a function with two sets of 

systems as input which produces a set of systems as 

output:: D × D  D. We say the diagram commutes 

iff  m1, m2  M: sm (m1  sm2) = sm (m1)  sm (m2). 

A commuting diagram corresponds to a fully property 

preserving composition as defined above and exhibits the 

same advantages as discussed above. We therefore 

impose the requirement that the model element should 

always commute. If not, at least the relaxed version must 

be considered:  m1, m2  M: sm (m1  m2)  sm 

(m1)  sm (m2). Therefore, the syntactic operator  

reflects the semantic composition  and an additional 

refinement. However, in the following we use 

intersection as semantic composition only. 

 The semantic mapping sm defines an equivalence relation 

on models as m1  m2  sm (m1) = sm (m2). The set of 

semantically equivalent models is denoted by[m1] = { m2 

| m1  m2 }.  

 A weaving model must conform to the weaving 

metamodel. A weaving model contains abstract and 

declarative links that are used to generate integrated 

model transformations for the target model. A model 

integration transformation addresses the interoperability 

issue. The weaving process begins with the designer 

provides the input metamodels MMA and MMB and a 

sequence of matching transformations is executed. They 

produce a weaving model with a set of links between 

MMA and MMB. The designer verifies the links (and 

corrects them, if necessary) and a transformation model 

is generated based on the set of links. The transformation 

produced is used to transform a model conforming to 

MMA into a model conforming to MMB.  

 A weaving metamodel is a model MMW = (GM,ωM,µM ), 

that defines link types, such that:  

 GM = (NM, EM,M),  

 NM = NL ∪ NLE ∪ NO, NL denotes the link types, NLE 

denotes the link endpoint types and NO denote other 

auxiliary nodes,  

 M: EM → (NL × NLE ) ∪ (NO × NM), i.e., a link type 

refers to multiple link endpoint types and the 

auxiliary nodes refer to any kind of node.  

 A weaving model is a model MW = (GW,ωW,µW ), a graph 

GW = (NW, EW,W), such that its reference model is a 

weaving metamodel (ωW = MMW).  

 

Depending on the goals to be achieved by model merging, 

following properties are required to be addressed:  

 Completeness: If a concept appears in one of the source 

models, it is represented in the merged model as well. 

This is to ensure that no information is lost in the merge 

process.  

 Non-redundancy: If a concept appears in more than one 

source model; only one copy of it is included in the 

merged model.  

 Minimality:  Merge does not introduce new information, 

which is neither present nor implied by the source 

models.  

 Totality: Merge is computable for an arbitrary set of 

models. This property is of particular importance if one 

wants to tolerate inconsistency between the source 

models.  

 Soundness: Merge supports the expression and preserva-

tion of semantic properties.    
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Atlas Model Weaver (AMW) is used for inter-model 

correspondence on the basis of use of operators. The 

semantics of these relationships can be defined as a 

transformation expressing how related elements have to figure 

in the composed model. It offers abstraction mechanisms by 

the definition of simple correspondences (weaving operators) 

between two metamodels. The operational semantics of the 

weaving operators is determined by a higher-order 

transformation that takes a weaving model as input and 

generates model transformation code. The weaving models 

are compiled into low-level transformation code in terms of 

ATL which is a mixture of declarative and imperative 

language constructs. Thus, it is difficult to debug a weaving 

model in terms of weaving operators, because they do not 

explicitly remain in the model transformation code. Finally, a 

weaving operator always connects source metamodel 

elements to target metamodel elements, so it is not possible to 

realize complex transformation logic by the composition of 

operators [22].   

Kompose is a composition tool built on top of Kermeta, a 

metamodeling environment allowing adding behavior to 

metamodels. Kompose is a generic framework to support 

model composition. The core composition mechanism is 

implemented in Kermeta as a separate metamodel that can be 

specialized for a specific domain metamodel in order to easily 

define composition operators for that domain. The framework 

is made of a generic model element merge algorithms and a 

directive language. The specialization for a specific 

metamodel is done by defining appropriate signatures for the 

classes of this metamodel. Kompose uses signatures to infer 

model relationships. A signature is a set of values extracted 

from model elements properties values, such as its name and 

its type.  iMAP is an approach for creation of links. The links 

are then used for matching source model transformation to 

target model [23].    

Modeling Aspects using a Transformation Approach (MATA) 

proposes a radically different approach than the two previous 

ones. Indeed, the composition becomes asymmetric, as one 

model plays the role of base model while the other is seen as 

an aspect. In MATA, composition of a base and aspect model 

is specified by a graph rule. Given a base model, MB, crosscut 

by an aspect model, MA, a MATA composition rule merges 

MA and MB to produce a composed model MAB. MATA graph 

rules are defined over the concrete syntax of the modeling 

language. This is in contrast to almost all known approaches 

to model transformation which typically define 

transformations at the meta-level, that is, over the abstract 

syntax of the modeling language. MATA considers aspect 

composition as a special case of graph transformation. In 

general, a graph consists of a set of nodes and a set of edges. 

Each metaclass becomes a node in the type graph and each 

meta-association becomes an edge in the type graph.  

Similarity Flooding can be used for model transformation in 

three phases. First transformation phase calculates similarity 

values between model elements and creates a propagation 

graph, second transformation phase propagates the similarity 

values through nodes that are connected, and third 

transformation phase selects the best matching results and 

creates a weaving model. The output weaving model contains 

links generated by the matching transformations. The 

accuracy of the weaving model depends basically on 

similarities calculations and selection of similarity values. 
Clio produces transformations based on a set of relationships. 

Clio has supports the production of complex mappings with 

nested structures. The definition of the relationships cannot be 

extended, which hardens the task of creating complex kinds of 

mappings [24] [25].   

6. COMPARATIVE ANALYSIS 
Model Transformation is a central issue in Model Driven 

Development which deals with conformance of source model 

to target model on the basis of metamodel mappings. The 

comparative analysis is based on the transformation rule 

support, rule scheduling, and rule application control. It can 

be interpreted from the comparison that imperative model 

transformation languages offer powerful features and 

flexibility than other approaches. Relational approaches offer 

multidirectionality and it is up to the user to select the basis of 

model transformation. Table 1 indicates transformation rules 

while Table 2 indicates transformation language feature. 

Table 3 summarizes the rule application control whereas 

Table 4 addresses the rule application control. 

 

Table 1. Transformation rules 

 
Feature ATL QVT ModelMorf Kermata 

Multidirectionality N N Y N 

Syntactic 

Preservation 

Y N Y N 

Application 

Conditions 

Y Y N Y 

Aspects N N N Y 

 

Table 2. Transformation Language Features 

 

Feature ATL QVT ModelMorf Kermata 

Abstract  

Syntax 

Y Y N N 

Text 

Syntax 

Y Y Y Y 

 Graphical  

Syntax 

N N N N 

Language  

Paradigm  

Hybrid Imperative Imperative Imperative 

Element  

Creation 

Implicit Implicit Explicit Explicit 

  
Table 3. Rule Application Control 

 
Feature ATL QVT ModelMorf Kermata 

Deterministic Y N Y N 

Non 

Deterministic 

N N N N 

 Interactive N N N N 

 

Table 4. Rule Scheduling 

 

Feature ATL QVT ModelMorf Kermata 

Implicit 

Form 

Y N Y N 

Explicit 

Form 

Y Y Y Y 

 Explicit 

Condition 

Selection 

N N N N 

Iterative 

Selection 

N N N N 

Conflict 

Resolution 

N N N N 

Rule 

integration 

Recursive Recursive ----------- Recursive 

Phasing Y Y Y N 
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7. CONCLUSION 
In this paper, we have discussed the principal components of 

MDA and the interrelated components. We have discussed the 

model theory and terminologies that can facilitate the model 

designer for better understanding of the model. We showed 

that model generation process consists of model composition, 

transformation and weaving. We have elaborated on the 

semantic aspects of model element composition through use 

of composition operators. We observe that a transformation 

describes design decisions with relation to the mapping 

between metamodel elements.   

We have also discussed the four primary elements of the 

MDE process: languages, models, programs, and model 

transformations. This knowledge is used in the following 

chapters to obtain a better understanding of the performance 

of model transformations. Transformation languages are 

designed to generate an output model, given an input 

metamodel, an input model, and an output metamodel. 

Throughout the years, numerous projects have implemented 

their ideas on how a transformation language ought to look 

like. The popular transformation languages are the ATL and 

QVT, created by INRIA and the OMG respectively. ATL is a 

hybrid language, which compiles its transformations to byte 

code, QVT is a declarative language that allows bidirectional 

transformations to be created. 
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