
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

11

Modeling Theories and Model Transformation

Scenario for Complex System Development

M.R. Dube

Vishwakarma Institute of Technology,

Pune, India.

S.K. Dixit
Walchand Institute of Technology,

Solapur, India.

ABSTRACT

In 2003, the Object Management Group (OMG) officially

introduced the Model-Driven Architecture (MDA). The

specification explains how different OMG standards could be

used together. MDA focuses on the concepts of Platform

Independent Models and Platform Specific Models, two

viewpoints on software systems, and how mappings between

these two can be made in order to streamline software

development. Through this approach, the functional

specification of the system and the implementation

specification are separated, allowing for better reuse and

portability. An important technique used in MDE is model

transformation. A model transformation is a process of

automatic generation of a target model from a source model,

according to a transformation definition, which is expressed in

a model transformation language.

This paper focuses on model engineering terminology and

theory of model generation. The paper describes overall MDA

scenario and emphasizes on model transformation. As model

transformation is an important area in model driven

development, we have compared various techniques available

for model transformation. The paper also focuses on model

theory and model composition techniques used for model

weaving.

General Terms

UML, Metamodel, Model Driven Engineering

Keywords

MDA, PIM, PSM, Model Transformation

1. INTRODUCTION
Models are representation of reality in the form of

abstractions which indicates essential aspects of the system

while suppressing the others for the time being. The software

development process models heavily rely on models for better

understanding of the complex systems. Models are the

medium to convey system’s properties which are desired by

its stakeholders as a set of services. Models focus on multiple

views of a system and can integrate multiple concepts along

with allied notational semantics that can efficiently

demonstrate multiple views of the system depending on the

context of the problem. These models can be organized in to

various levels of abstractions by applying transformations on

them. The abstract views of the system can elaborated into

concrete views by adding relevant details to it as applicable.

The correspondence between structural and behavioral

properties of the system elements must be correlated and

balanced to visualize systems architecture. In model-centric

approach, models of the system drive implementation of the

system from the models whereas in model-only approach,

developers use models to understand contextual information

of business or solution domain or architecture of a solution.

The Object Management Group (OMG) introduced the

Model-Driven Architecture (MDA) as an approach for system

development based on specification and interoperability

expressed with the help of formal models. MDA is based on

layering of model concepts and the transformations which are

necessary to cause movement form one layer to the other.

OMG identifies four types of models: Computation

Independent Model (CIM), Platform Independent Model

(PIM), Platform Specific Model (PSM) described by a

Platform Model (PM), and an Implementation Specific Model

(ISM) related to technology used for system realization [1].

A platform can be thought as coherent set of functionalities

relevant to technology indicating availability of usable

services and resources to the stakeholders. The platform

independence can be achieved by hiding the details of service

profiles at software architecture level from the application

level by introducing interfaces which can make the resource

available from one platform to the other.

 Computation Independent Viewpoint: The computation

independent viewpoint focuses on context of the problem

with elicitation of requirements of the system and its

structure with environmental needs. It indicates

customer, user and stakeholder’s perspectives as well as

business cases to be addressed by the system.

 Platform Independent Viewpoint: The platform

independent viewpoint focuses on analysis and design

models of the system with relationships amongst system

elements form architecture perspective towards

implementation analogies.

 Platform Specific Viewpoint: The platform specific

viewpoint indicates implementation level details of the

system elements specific to a particular platform. This

can be accomplished by using mapping and building

transformation rules in case of migrating from PIM to

PSM.

As indicated in Figure 1, platform-independent models (PIMs)

represents the analysis and design models of the system with

the help of general purpose modeling language such as UML.

The platform-independent model can be mapped to a

platform-specific model (PSM) by mapping the PIM to

implementation language using set of well defined

transformational rules. Metamodel is the basis for performing

the transformations. MDA transforms the source to target

models with the help of source to target metamodel mappings.

MDA comprises CWM, UML, MOF and XMI as standards

for model-driven development. The Common Warehouse

Metamodel (CWM) defines a metamodel representing both

the business and technical metadata which is essential to

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

12

capture the business analysis domains. Hence MDA can be

interpreted as layered architecture where information

exchange between the cross layers happens [2].

Figure 1: System Representation in MDE

Unified Modeling Language (UML) which is a general

purpose modeling language provides support for modeling

structural and behavioral properties of the system and an

integrated effort of three object-oriented methods (Booch,

OMT, and OOSE). The Meta Object Facility (MOF) is an

OMG standard defining a common, abstract language for the

specification of metamodels. It defines the four-level structure

used to represent the details of how the notation repository

can be made available to the modeler on model space. MOF

semantics defines metadata repository that supports model

construction. It is used to perform the transformations using

transformation rules. XML Metadata Interchange (XMI)

defines XML tags are used to represent objects and their

interrelationships [3] [4]. MDA address the issue of

portability and reusability in alliance with interoperability in

order to achieve cross-platform transfer of system with stable

environment. Following are the principles that underlie the

OMG’s view of MDA:

 Models expressed in a well-defined notation can be used

to understand and interpret characteristics of complex

systems.

 There exists a set of transformations used to serialize the

model elements and their representation in order to

express and realize the architectural viewpoints.

 As the emphasis of MDA is on deployment and

maintenance the metamodels are used as a means to

perform transformations and integration of the system

elements which can be asset while performing

automation.

Figure 2 indicates that MDE relies on two basic facts: (1) the

representation of any kind of system by models and (2) the

syntactic conformance of any model to a metamodel. Within

this context, models are intended to be automatically

processed by a set of operators. The system development can

concern with Forward engineering, where a system is created

from a model or Reverse engineering, where a model is

created from a system or Models at runtime, where a model

coexists with the system it represents [5][6].

Figure 2: System Representation in MDE

2. RELATED WORK
Model transformation is a core concept in model-driven

development that yields the model realization and model

evolution by application of well formed transformation rules.

In this section we survey existing model transformation

technology. Tratt [7] defines model transformation as a

program that transforms one model to other on the basis of

mutation. OMG defines model transformation as the process

of converting a model into another model of the same system

based on transformation rules and metamodel correspondence

[8]. Kleppe defines model transformation can be realized

through a consistent transformation description that can be

used to map source model to target model. Mens [9] defines

model transformation as the process of generating multiple

from multiple source models based on well-formed

transformation rules that be used for automation purpose.

 ATL: ATL, the Atlas Transformation Language is a

model transformation language specified in terms of a

metamodel and a textual concrete syntax. ATL provides

developers with a means to specify a technique to

produce a number of target models from a set of source

models. The ATL language is an integration of

declarative and imperative programming. Through the

declarative transformation style it expresses mappings

between the source and target model elements along with

their correspondence. ATL mainly deals with model to

model transformation with the help of ATL module. An

ATL module is composed of a header section that

defines attributes relevant to transformation module; a

optional import section to import s existing ATL

libraries; a set of helpers that are ATL equivalent to Java

methods; and set of rules that defines source to target

model mappings. ATL-code is compiled and then

executed by the ATL transformation engine. ATL

supports only unidirectional transformations.

 Query/View/Transformation (QVT): QVT is a language

for model transformation established by OMG in 2005.

QVT uses the Object Constraint Language (OCL), Meta

Object Facility (MOF). QVT language consists of

language dimension and interoperability dimension. Each

dimension specifies a formal set of named levels. QVT is

structured into two-layer architecture in terms of

relations metamodel and core metamodel. Relations

metamodel is used to support object pattern matching

and object template creation. Core metamodel is defined

by extensions to EMOF and OCL. QVT defines three

transformation languages:

i. QVT Relational QVT Relational is a high-level

declarative transformation language. It supports the

specification of bidirectional transformations. When

a bidirectional transformation is executed, the

execution direction needs to be specified. The

semantics is defined by a mapping to QVT core.

ii. QVT Core is a simple, low-level declarative model

transformation language. It serves as a foundation

for QVT Relational and supports pattern matching

over a flat set of variables, where the variables of

source, target and trace models are treated

symmetrically. Trace models must be defined

explicitly.

iii. QVT Operational is an imperative model

transformation language, which extends QVT

Relational with imperative constructs. The

transformations are unidirectional. It uses implicit

trace models.

 Metamodel MM

Model M

System S

Conforms to

Representation of

 MDA Model Meta-model

PIM PSM PDM

CIM CODE

Platform Business

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

13

 ModelMorf : ModelMorf is an implementation of the

Relational QVT standard issued by OMG. It is a

declarative model-to-model transformation. It supports

multi-directionality, so the same rule can be used to map

in both directions. The main feature of ModelMorf is its

general model transformation approach. As

implementation of the Relational QVT standard, it is

purely declarative. For some transformation problems, a

declarative transformation language offers some

advantages over other approaches. ModelMorf does not

support incremental transformation execution,

Transformation extensibility and Graphical Syntax.

Because no integrated development environment is

provided, the development of transformation code is not

as comfortable as in other approaches. Errors in the code

are only detected when the transformation is executed. It

provides built-in functionality to create traces. It is

possible to create in-place transformations.

 Kermeta: Kermeta is a general purpose modeling and

imperative programming language, also able to perform

transformations. It can be described as a metamodeling

language which allows describing both the structure and

the behavior of models. It incorporates several features

and ideas of other technologies in the model driven

architecture domain. It uses operations, which are

basically very similar to operations or methods in object-

oriented programming languages. Kermeta's imperative

approach and advanced language features make it nearly

as powerful as conventional programming languages.

Kermeta has no built-in tracing support, and loading and

saving of model files is somewhat complicated compared

to other languages. Rule application control and rule

scheduling needs to be specified explicitly by the user.

 ETL: The Epsilon Transformation Language (ETL) is a

hybrid model-to-model transformation language. It is

part of the Epsilon model management infrastructure.

ETL has a hybrid style and features declarative rule

specification that consists of approaches as guards,

abstract, lazy and primary rules, and automatic resolution

of target elements from their source counterparts.ETL

indicates specification of transformations which can

transform arbitrary source models into arbitrary target

models. ETL transformations are organized in modules.

A module can contain a number of transformation rules.

Each rule has a unique name and also specifies one

source and many target parameters.
 VIATRA: VIsual Automated model TRAnsformations is

a model transformation framework, which provides

support for the life-cycle of engineering model

transformations including the specification, design,

execution, validation and maintenance of transformations

for modeling languages and domains. A transformation

definition consists of a set of rules that are organized to

match a pattern within a model to which the rule can be

applied to and application of the rule in an operational

style. VIATRA2 primarily aims at designing model

transformations to support the precise model-based

systems development with the help of invisible formal

methods. Since precise model-based systems

development is the primary application area of

VIATRA2, it necessitates that (i) the model

transformations are specified in a mathematically precise

way, and (ii) these transformations are automated so that

the target mathematical models can be derived fully

automatically. Kermeta is best suited as model

transformation language, if the transformation to

implement is relatively complex.

3. MODELING TERMINOLOGY
 Model: A model is a simplified representation of a

system that helps in better understanding of the system

[10] [11]. A model is written in the language of its

unique metamodel. A model is a constrained directed

labeled graph. Models are often expressed in dedicated

domain-specific languages or general purpose modeling

language such as UML [12].

 Metamodel: The abstract syntax of a model is described

by its metamodel. A metamodel can be compared to a

grammar in language design. Model transformations

cannot be achieved without metamodels. A metamodel is

a model such that its reference model is a

metametamodel.

 Metametamodel: The abstract syntax of metamodel is

described by metametamodel. A metametamodel is a

model that is its own reference model means that it

conforms to itself.

 Model Transformation Paradigm/Approach: A model

transformation paradigm or approach is the design

principle on which the model transformation language

is built, e.g. imperative, operational, functional,

declarative or relational.

 Model Transformation Language: A model

transformation language is a vocabulary and a grammar

with well-defined semantics and rules for performing

model transformations.

 Model Transformation Description: A model

transformation description is written in a model

transformation language. If the language of a

transformation description is rule-based, the

transformation description is a set of transformation

rules; describing source models are transformation to

target models.

 Model Transformation Rule: A model transformation

rule describes how a source model can be transformed

into a target model. Transformation Rules are

subdivided into domains that are the part of the rule

responsible for accessing one of the models that are

used in the transformation rule. The domains

subdivisions define how many domain languages the

rule operates, how the domains are declared, if they are

implicitly or explicitly declared. Following are the

important aspects which should be considered while

devising the transformation rule:

i. Rule application scoping: It allows a transformation to

define the target scope of a transformation. A

restriction can be made about the parts of a model that

participate in the transformation. Both a source and a

target scope can be defined.

ii. Rule application strategy: A rule needs to be applied to

a specific aspect within its scope. The strategy can be

deterministic, non-deterministic or interactive. The

nondeterministic strategies are again subdivided in

concurrent, and one-point. An interactive strategy

approach is when the user is allowed to interact with

the transformation for determining the location where

the rule is going to be applied.

iii. Rule scheduling: A scheduling mechanism can be used

to determine the order in which individual rules are

applied. In some approaches users have no explicit

control on the scheduling algorithm. The rule

scheduling is related to the order of rule application. It

is subdivided into four other features: form, rule

selection, rule interaction, and phasing. The form

refers to the way scheduling is being expressed.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

14

iv. Rule organization: Rules can be composed and

structured in different ways. Model transformation

approaches can vary on the basis of modularity

mechanisms, reuse mechanisms and organizational

structure.

v. Traceability links: Transformations may record links

between their source and target elements. These links

can be useful in performing impact analysis,

synchronization between models, and determining the

target of a transformation.

vi. Directionality: Transformation may be unidirectional

or bidirectional. In unidirectional transformations,

source model can be transformed into a target model,

but not the other way. Bidirectional transformation can

be useful for synchronizing models.

 Model Transformation Engine/Tool: A model

transformation engine or tool executes or interprets the

model transformation description. It applies the model

transformation description on the source model to

produce the target model. [13]

 Source Model: A model is called as a source model in

model transformation, if it is an input to the

transformation. It conforms to the source metamodel.

 Target Model: A is called as target model in model

transformation, if it is an output of the transformation. It

conforms to the target metamodel. A model

transformation can have one or more target models.

 Higher-order Transformation (HOT): A model

transformation description having a transformation

model as source or target model.
 Directed multigraph: A directed labeled multi-graph G =

(NG, EG,G) consists of a finite set of nodes NG and a

finite set of edges EG, a mapping function G : EG → NG

× NG.

 Model: A model M = (G,ω,µ) is a triple where: G = (NG,

EG,G) is a directed multigraph, ω is itself a model

associated to a multigraph Gω = (Nω, Eω, ω), µ : NG ∪ EG

→ Nω is a function associating elements (nodes and

edges) of G to nodes of Gω. The function µ associates

every node and edge of G (NG ∪ EG) with one element in

ω(Nω).

 Reference model: Given a model M1 = (G1, ω1, µ1), and a

model M2 = (G2, ω2, µ2),if ω1 = M2, M2 is called the

reference model of M1.

Some models are their own reference model (ω = M). This

allows stopping the recursion introduced in this definition.

The relation between a model and its reference model is called

conformance. The three levels of model engineering can be

identified as metametamodel (M3), metamodel (M2) and

terminal model (M1). A metametamodel is a model that is its

own reference model. A metamodel is a model such that its

reference model is a metametamodel. A terminal model is a

model such that its reference model is a metamodel [14].

In any complex software system, mastering complexity means

using a variety of semantically and syntactically precise

models to describe different aspects and views of the software

system. In Model to Model transformation, a model is

converted to another model of a system and in Model to Text

transformation, a transformation a model is converted directly

to an arbitrary fragment of text. In Model to Code

Transformation, the text produced by transformation is source

code or a fragment of source code from the model. Model to

Code transformation is usually used to implement modeling

languages in terms of programming languages whereas Model

to Model transformation is used for refactoring.

Figure 3 shows the Model Transformation Process. Model

composition has impacts on at least three different levels:

 Syntactic level: the compositional way between models can

explicitly be expressed as a new model in an appropriate

modeling language.

 Semantic level: the meaning of composed models as a unit

in terms of semantics of modeling languages involved.

 Methodic level: the integration of model composition

techniques in software development processes and tools.

Formally, a modeling language M is a set of well-formed

models. So a model mM is syntactically well-formed, both

by context-free syntax as well as conforming to all context-

conditions.

Each of these models gets semantics by mapping it from the

language to a well-known semantic domain. This principle is

well understood in the field of programming languages, where

each syntactic construct has a well defined meaning that

describes its effects in terms of operational or denotation

semantics [15].

 Given a language M of models, the meaning of each

element is usually given by explaining it in a well-known

domain D, the semantic domain. This semantic domain

describes which artifacts and concepts exist and must be

well understood by both the language designer and the

language users.

 Given the modeling language M and the semantic

domain D each model mM must be mapped to D. As

explained earlier, it is important to define the meaning

(semantics) of models explicitly. So an explicit formal

definition of the mapping is a function from M to D: sm:

M → D.

Benefits of a formal mapping function are that we are able to

reason about the mapping and thus, about the language and

the instances itself. Set-valued semantics allows stating some

important properties with respect to the semantic mapping sm:

 A model mM is consistent exactly if sm(m)≠ , which

means that there is at least one system that obeys the

instance’s properties. Otherwise, there are some

contradicting constraints in the model m itself.

 A model mM does not contain information if sm(m)=S.

Then any system can serve as an implementation.

 A model m2 refines another model m1 exactly if sm(m2)

 sm(m1). So, if we add more data to the model m2, it

further constraints the resulting set of systems, which

therefore will become smaller.

The MOF is semiformal approach to define modeling

languages. It provides four-level hierarchy, with levels M0,

M1, M2 and M3. The entities populating reach level Mi,

written Mi are always collections, made up of constituent

data elements . Each entity Mi at level i+ 1 meta

represents model and is viewed as the metarepresentation of

collection of types, i.e., as metadata collection that defines

specific collection of types. Each type T is metarepresented as

 and characterizes collection of data elements, its value

domain. We write that data element is value of type

as A . A metarepresentation at level i +1 of

collection Mi+1 types characterizes collections of data

elements Mi at level i. A specific data collection Mi

said to conform to model , which is metarepresented by its

collection of Mi+1, iff for each data element there

exists type such that A [16].

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

15

Figure 3: Model Transformation Process

Following are the critical factors influencing Model Driven

Development scenarios:

 Model-to-model transformations. A PSM is created by

transforming a PIM and a PDM. Reverse engineering

roughly corresponds to the opposite operation of trans-

forming a PSM into a PIM.

 Heterogeneity. MDE homogenizes all software artifacts

as uniform models; concrete systems can make use of a

number of different technologies. Hence the problem

exists in terms of ability to handle transformations

between MDE and other technologies.

 Complexity. Complexity is partitioned into Problem-

domain and Solution-domain. The Problem-domain

complexity comes from the issues related to

requirements and stakeholder agreements. The Solution-

domain complexity usually describes in terms of

interrelated system elements or components [17].

4. MODEL PROPERTIES
Model transformation languages have been classified by

Czarnecki and by Mens [20]. Following are the properties of

model transformation problems:

 Abstraction Change: Source and target model must

preserve the level of abstraction during model

transformations. The level of abstraction is indicates

essential aspects in a model. Model transformations

introduce new aspects, reduce the aspects or leave it

unchanged. This property is independent of the change in

the metamodel; source and target metamodel can be the

same or different. A horizontal model transformation is a

transformation, where the source model and the target

model belong to the same abstraction level. In case of

vertical, different levels of abstraction are used in the

source and target model. It is also called refinement,

because additional information is added, resulting in

decreasing the abstraction level of the target model. On

the other hand, information could be removed from the

source model to create a more abstract target model. The

transformation of platform independent model to

platform specific model is a case of a vertical

transformation, because models are on different levels of

abstraction. Transformations which affect models

expressed in the same language are called endogenous.

Both source and target models conform to the same

metamodel. Opposite to endogenous transformations,

exogenous transformations are expressed between

models conforming to different metamodels. Exogenous

transformations can also be called translations, because it

is focused on the mapping of a model in different

metamodels. Abstraction transformations produce the

target model by reducing the amount of detail.

 Metamodel Change: It indicates the difference between

source and target metamodels [20]. There are three types

of changes handled during metamodel change handling.

An unaffecting change does not require any adaptation of

existing models, which is mostly true for additive

changes to the metamodel. In resolvable changes, an

algorithm can be defined for migration of existing

instances to the new metamodel version. In irresolvable

changes, manual interaction is required to make existing

models conform to the new metamodel, if possible at all.

Existence Change describes the addition or deletion of an

element in the metamodel which an instance of a MOF

class. This can cover classes, attributes, associations.

Property Change describes a property of a metamodel

element represents an attribute in the MOF class of

which the element is an instance that is changed. Link

Change represents all changes in features that are

associations in the MOF model. This includes

containment, inheritance and typing [18].

Transformations can be built in such a way that source model

and target model have a common property, which is not

changed by the transformation [19].

 Semantics-preserving: If the source and target

metamodels are similar, a mapping can be found that is

semantics preserving. It means that the transformation

rules are able to retain the meaning of the two models

same, even though they are represented in a different

abstract syntax. Refactoring is the process of changing

the internal structure of a model without simultaneously

changing the externally observable behavior or

functionality of the corresponding program, in order to

improve quality attributes of the model. Refactoring

transformations are semantics-preserving, since they do

not change the behavior of the model, but improve

structure and quality of the model.
 Behavior-preserving: A transformation is behavior-

preserving if the explicit or implicit constraints of the

behavior in the source model correspond to the target

model after the transformation occurs. Model to code

transformation is not semantics-preserving because of

levels of details, it is behavior-preserving.
 Syntax-preserving: A syntax preserving transformation is

usually an endogenous horizontal transformation that

does not change the abstract syntax of the model.
 Number of Models: A model transformation can have

several source models and several target models [20].

The minimum number of models involved is one, where

source and target model are the same.

Model transformation languages follow different language

paradigms as indicated below:

 Imperative languages specify a sequential control flow

and provide means to describe how the transformation

language is supposed to be executed. From a model

transformation point of view, the imperative approach is

also similar to direct-manipulation. A well-defined

control flow exists, which means that all statements in

the transformation code are executed in order. Imperative

model transformation techniques focus on how the

transformation has to be executed. Because of the

simplicity, imperative model transformation languages

are easier to learn. The transformation is described as a

sequence of actions, which is especially useful if the

order of a set of transformation rules needs to be

controlled explicitly [21].

 Source

Metamodel

Transformation

Definition

Target

Metamodel

Source

Model

Target

Model
Transformation

Engine

Conforms to Conforms to

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

16

 Declarative languages do not offer explicit control flow.

Declarative approaches focus on what the transformation

has to accomplish. Procedural details of the

transformation are hidden, which results in a smaller

amount of code. These transformations describe

relationship between the source and the target

metamodels which can be interpreted as bidirectional.

 Hybrid transformation languages offer both imperative

language constructs and declarative language constructs.

Imperative approaches are powerful, but based on

verbose therefore harder to read and understand.

Declarative languages may not be suitable for complex

transformation tasks.

 Graph transformation languages are based on algebraic

graph grammars and are a subcategory of declarative

languages. Model elements and their relationships are

seen as graph vertices and edges. Graph transformation

rules have a left hand side, and a right hand side, which

correspond to the source and target model of the

transformation. Models are interpreted as graphs, and

graph transformations manipulate sub-graphs. Graph-

based does not necessarily mean that the transformation

is specified in a visual way.

 Template-based languages are used for model-to-text

transformations. Templates contain fragments of the

target text and a metaprogram that can access the source

model. These languages are combined with the visitor

pattern to traverse the internal structure of a model.

5. COMPOSITION AND WEAVING
Model composition in its simplest form refers to the

mechanism of combining two models into a new one. Without

further information or requirements the definition of model

composition is quite abstract. Denoting the universe of models

with M we get the following definition of model composition

operators:

 Model composition operator: A model composition

operator is a function with two models as input, which

produces a composed model as output: : M × M M.

Given the semantics of models, we can infer properties

of the semantics of a composition operator by relating

the semantics on its source and resulting model.

 Property preserving (PP) operator: A composition

operator : M×M M is property preserving on the left

argument, if for any m1, m2 M it holds: sm (m1 m2)

 sm (m1). Analogously, it is property preserving on the

right argument, iff sm (m1 m2) sm (m2) and property

preserving (PP) if both properties hold. Property

preservation is important for a composition operator, as it

ensures that no information and thus, no design decisions

that were present in a source model are lost in the

composition. We can infer that property preservation is

equivalent to: m1, m2 M: sm (m1 m2) sm (m1)

sm (m2).

 Fully property preserving (FPP) operator: A composition

operator : M×M→M is fully property preserving, iff

 m1, m2 M: sm (m1 m2) = sm (m1) sm (m2).

 Consistency preserving (CP) operator: A composition

operator : M×MM is consistency preserving (CP),

iff m1, m2 M: sm (m1) sm (m2) ≠ sm (m1

m2) ≠

 General Semantic Composition Operator: The semantic

composition operator is a function with two sets of

systems as input which produces a set of systems as

output:: D × D D. We say the diagram commutes

iff m1, m2 M: sm (m1 sm2) = sm (m1) sm (m2).

A commuting diagram corresponds to a fully property

preserving composition as defined above and exhibits the

same advantages as discussed above. We therefore

impose the requirement that the model element should

always commute. If not, at least the relaxed version must

be considered: m1, m2 M: sm (m1 m2) sm

(m1) sm (m2). Therefore, the syntactic operator

reflects the semantic composition and an additional

refinement. However, in the following we use

intersection as semantic composition only.

 The semantic mapping sm defines an equivalence relation

on models as m1 m2 sm (m1) = sm (m2). The set of

semantically equivalent models is denoted by[m1] = { m2

| m1 m2 }.

 A weaving model must conform to the weaving

metamodel. A weaving model contains abstract and

declarative links that are used to generate integrated

model transformations for the target model. A model

integration transformation addresses the interoperability

issue. The weaving process begins with the designer

provides the input metamodels MMA and MMB and a

sequence of matching transformations is executed. They

produce a weaving model with a set of links between

MMA and MMB. The designer verifies the links (and

corrects them, if necessary) and a transformation model

is generated based on the set of links. The transformation

produced is used to transform a model conforming to

MMA into a model conforming to MMB.

 A weaving metamodel is a model MMW = (GM,ωM,µM),

that defines link types, such that:

 GM = (NM, EM,M),

 NM = NL ∪ NLE ∪ NO, NL denotes the link types, NLE

denotes the link endpoint types and NO denote other

auxiliary nodes,

 M: EM → (NL × NLE) ∪ (NO × NM), i.e., a link type

refers to multiple link endpoint types and the

auxiliary nodes refer to any kind of node.

 A weaving model is a model MW = (GW,ωW,µW), a graph

GW = (NW, EW,W), such that its reference model is a

weaving metamodel (ωW = MMW).

Depending on the goals to be achieved by model merging,

following properties are required to be addressed:

 Completeness: If a concept appears in one of the source

models, it is represented in the merged model as well.

This is to ensure that no information is lost in the merge

process.

 Non-redundancy: If a concept appears in more than one

source model; only one copy of it is included in the

merged model.

 Minimality: Merge does not introduce new information,

which is neither present nor implied by the source

models.

 Totality: Merge is computable for an arbitrary set of

models. This property is of particular importance if one

wants to tolerate inconsistency between the source

models.

 Soundness: Merge supports the expression and preserva-

tion of semantic properties.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

17

Atlas Model Weaver (AMW) is used for inter-model

correspondence on the basis of use of operators. The

semantics of these relationships can be defined as a

transformation expressing how related elements have to figure

in the composed model. It offers abstraction mechanisms by

the definition of simple correspondences (weaving operators)

between two metamodels. The operational semantics of the

weaving operators is determined by a higher-order

transformation that takes a weaving model as input and

generates model transformation code. The weaving models

are compiled into low-level transformation code in terms of

ATL which is a mixture of declarative and imperative

language constructs. Thus, it is difficult to debug a weaving

model in terms of weaving operators, because they do not

explicitly remain in the model transformation code. Finally, a

weaving operator always connects source metamodel

elements to target metamodel elements, so it is not possible to

realize complex transformation logic by the composition of

operators [22].

Kompose is a composition tool built on top of Kermeta, a

metamodeling environment allowing adding behavior to

metamodels. Kompose is a generic framework to support

model composition. The core composition mechanism is

implemented in Kermeta as a separate metamodel that can be

specialized for a specific domain metamodel in order to easily

define composition operators for that domain. The framework

is made of a generic model element merge algorithms and a

directive language. The specialization for a specific

metamodel is done by defining appropriate signatures for the

classes of this metamodel. Kompose uses signatures to infer

model relationships. A signature is a set of values extracted

from model elements properties values, such as its name and

its type. iMAP is an approach for creation of links. The links

are then used for matching source model transformation to

target model [23].

Modeling Aspects using a Transformation Approach (MATA)

proposes a radically different approach than the two previous

ones. Indeed, the composition becomes asymmetric, as one

model plays the role of base model while the other is seen as

an aspect. In MATA, composition of a base and aspect model

is specified by a graph rule. Given a base model, MB, crosscut

by an aspect model, MA, a MATA composition rule merges

MA and MB to produce a composed model MAB. MATA graph

rules are defined over the concrete syntax of the modeling

language. This is in contrast to almost all known approaches

to model transformation which typically define

transformations at the meta-level, that is, over the abstract

syntax of the modeling language. MATA considers aspect

composition as a special case of graph transformation. In

general, a graph consists of a set of nodes and a set of edges.

Each metaclass becomes a node in the type graph and each

meta-association becomes an edge in the type graph.

Similarity Flooding can be used for model transformation in

three phases. First transformation phase calculates similarity

values between model elements and creates a propagation

graph, second transformation phase propagates the similarity

values through nodes that are connected, and third

transformation phase selects the best matching results and

creates a weaving model. The output weaving model contains

links generated by the matching transformations. The

accuracy of the weaving model depends basically on

similarities calculations and selection of similarity values.
Clio produces transformations based on a set of relationships.

Clio has supports the production of complex mappings with

nested structures. The definition of the relationships cannot be

extended, which hardens the task of creating complex kinds of

mappings [24] [25].

6. COMPARATIVE ANALYSIS
Model Transformation is a central issue in Model Driven

Development which deals with conformance of source model

to target model on the basis of metamodel mappings. The

comparative analysis is based on the transformation rule

support, rule scheduling, and rule application control. It can

be interpreted from the comparison that imperative model

transformation languages offer powerful features and

flexibility than other approaches. Relational approaches offer

multidirectionality and it is up to the user to select the basis of

model transformation. Table 1 indicates transformation rules

while Table 2 indicates transformation language feature.

Table 3 summarizes the rule application control whereas

Table 4 addresses the rule application control.

Table 1. Transformation rules

Feature ATL QVT ModelMorf Kermata

Multidirectionality N N Y N

Syntactic

Preservation

Y N Y N

Application

Conditions

Y Y N Y

Aspects N N N Y

Table 2. Transformation Language Features

Feature ATL QVT ModelMorf Kermata

Abstract

Syntax

Y Y N N

Text

Syntax

Y Y Y Y

 Graphical

Syntax

N N N N

Language

Paradigm

Hybrid Imperative Imperative Imperative

Element

Creation

Implicit Implicit Explicit Explicit

Table 3. Rule Application Control

Feature ATL QVT ModelMorf Kermata

Deterministic Y N Y N

Non

Deterministic

N N N N

 Interactive N N N N

Table 4. Rule Scheduling

Feature ATL QVT ModelMorf Kermata

Implicit

Form

Y N Y N

Explicit

Form

Y Y Y Y

 Explicit

Condition

Selection

N N N N

Iterative

Selection

N N N N

Conflict

Resolution

N N N N

Rule

integration

Recursive Recursive ----------- Recursive

Phasing Y Y Y N

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.7, January 2012

18

7. CONCLUSION
In this paper, we have discussed the principal components of

MDA and the interrelated components. We have discussed the

model theory and terminologies that can facilitate the model

designer for better understanding of the model. We showed

that model generation process consists of model composition,

transformation and weaving. We have elaborated on the

semantic aspects of model element composition through use

of composition operators. We observe that a transformation

describes design decisions with relation to the mapping

between metamodel elements.

We have also discussed the four primary elements of the

MDE process: languages, models, programs, and model

transformations. This knowledge is used in the following

chapters to obtain a better understanding of the performance

of model transformations. Transformation languages are

designed to generate an output model, given an input

metamodel, an input model, and an output metamodel.

Throughout the years, numerous projects have implemented

their ideas on how a transformation language ought to look

like. The popular transformation languages are the ATL and

QVT, created by INRIA and the OMG respectively. ATL is a

hybrid language, which compiles its transformations to byte

code, QVT is a declarative language that allows bidirectional

transformations to be created.

8. REFERENCES
[1] Seidewitz, E., What models means, IEEE Soft. 20(5),

26–32 (2003)

[2] Selic, B, The pragmatics of model-driven development,

IEEE Software 20(5), 19–25 (2003)

[3] Barbero M, Jouault F, Bézivin J (2008) Model driven

management of complex systems: implementing the

macroscope’s vision. In: Proceedings of the 15th annual

IEEE international conference and workshop on

engineering of computer based systems (ECBS 2008), 31

March–4 April 2008. IEEE Computer Society, Belfast,

pp 277–286

[4] OMG, UML 2.0 Superstructure Specification, August

2005. Document formal/05-07-04. Available at

http://www.omg.org/

[5] OMG, Meta Object Facility (MOF) Core Specification,

version 2.0, January 2006, Document formal/06-01-01,

Available at http://www.omg.org/

[6] OMG, UML 2.0 Infrastructure Specification, March

2006, Document formal/05-07-05, Available at

http://www.omg.org/

[7] L. Tratt, Model transformations and tool integration,"

Software and Systems Modeling, vol. 4, no. 2, pp. 112

[8] L. Tratt. Model transformations and tool integration.

Journal of Software and Systems Modeling, 4(2):112–

122, May 2005.

[9] T. Mens and P. Van Gorp, \A taxonomy of model

transformation," Electr. Notes Theor. Comput. Sci, vol.

152, pp. 125-142, 2006.

[10] OMG Architecture Board, Model driven architecture—A

technical perspective, OMG Document ormsc:01-07-01.

Available at www.omg.org

[11] OMG, MOF 2.0 query/views/transformations RFP, OMG

Document ad/02-04-10, Available at www.omg.org

[12] OMG, OMG meta-object facility (MOF), OMG

Document formal/01-11-02, Available at www.omg.org

[13] Mellor, S.J., Scott, K., Uhl, A., Weise, D., MDA

Distilled: Principle of Model Driven Architecture.

Addison-Wesley, Reading (2004)

[14] Kent, S., Model driven engineering. In Proceedings of

IFM International Formal Methods 2002, vol. 2335,

Lecture Notes in Computer Science. Springer, Berlin

Heidelberg New York (2002)

[15] Czarnecki, K., Helsen, S., Classification of model

transformation approaches. In: Proceedings of the 2nd

OOPSLA Workshop on Generative Techniques in the

Context of the Model Driven Architecture, Anaheim

(2003)

[16] Mens, T., Demeyer, S., Janssens, D., Formalizing

behavior preserving program transformations, In:

Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.

(eds.) Proceedings Graph Transformation—First

International Conference, ICGT 2002, Barcelona, Spain,

vol. 2505, Lecture Notes in Computer Science, Springer,

Berlin Heidelberg New York (2002)

[17] Van Der Straeten, R., Jonckers, V., Mens, T., Supporting

model refactoring through behavior inheritance

consistencies, In: BaarT., et al (eds.) UML 2004—The

Unified Modeling Language, Model Languages and

Applications, 7th International Conference, Lisbon,

Portugal, vol. 3273, Lecture Notes in Computer Science,

Springer, Berlin Heidelberg New York (2004)

[18] Bézivin J (2005), On the unification power of models.

Software System Model (SoSym) 4(2): 171–188

[19] Jouault F, Kurtev I (2006), On the architectural

alignment of ATL and QVT. In: Proceedings of the

2006ACMsymposium on applied computing (SAC 06),

ACM, Dijon, pp 1188–1195

[20] Balogh, A., Németh, A., Schmidt, A., Ráth, I., Vágó, D.,

Varró, D., Pataricza, A.: The VIATRA2 model

transformation framework, In: Proceedings of ECMDA

2005—Tools Track, 2005

[21] B´ezivin J, Lemesle R (2000), Some Initial

Considerations on the Layered Organization of

Metamodels, In: SCI 2000/ISAS 2000, International

Conference on Information Systems, Analysis and

Synthesis, vol IX, Orlando, August 2000

[22] L. Tratt. The MT model transformation language. In

Proc. ACM Symposium on Applied Computing, pages

1296–1303, April 2006.

[23] Amelunxen C, Königs A, Rötschke T, Schürr A (2006),

MOFLON: A standard-compliant metamodeling

framework with graph transformations, In: Rensink A,

Warmer J (eds) Model driven architecture—foundations

and applications: second European conference, ECMDA-

FA 2006. Lecture notes in computer science, Vol. 4066.

Springer, Bilbao, pp 361–375

[24] Bézivin J, Jouault F, Rosenthal P, Valduriez P (2005),

Modeling in the large and modeling in the small. In:

Model driven architecture, European MDA workshops:

foundations and applications, MDAFA 2003 and

MDAFA 2004. Lecture notes in computer science, Vol.

3599. Twente, The Netherlands, pp 33–46

[25] M. D. Del Fabro and P. Valduriez, Semi-automatic

model integration using matching transformations and

weaving models," in SAC '07:Proceedings of the 2007

ACM symposium on Applied computing. New York,

NY, USA: ACM Press, 2007, pp. 963-970.

