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ABSTRACT 

This paper presents fault tolerant control systems FTC in a 

hybrid system framework. Due to the discrete nature of fault 

occurrence and reconfiguration, FTC systems are considered 

hybrid in nature. Thus, in this work, actuator fault 

recoverability is studied by utilizing a controllability concept 

of hybrid systems. The hybrid formalism allows the 

recoverability’s analysis based on the controllability concept 

of hybrid systems. Fault recovery is also studied based on 

control energy limitation in order to determinate admissible 

recovery solutions. 
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1. INTRODUCTION 
Active Fault Tolerant Control (AFTC) systems are systems 

where faults are explicitly detected and accommodated 

through changing of the control laws in order to recover the 

system to the nominal performance as much as possible. The 

AFTC systems merge several disciplines into a common 

framework to achieve this aim. The desired features are 

obtained through on-line fault diagnosis, automatic condition 

assessment and calculation of appropriate remedial actions to 

avoid certain consequences of a fault. Generally, these 

consequences become more and more undesirable as the time 

goes on, thus, the detection and the accommodation delays 

must be taken into consideration while synthesizing an active 

fault tolerant control approach. 

A fault is a discrete event that acts on a system and its 

occurrence changes some of the properties of the process. The 

goal of fault-tolerant control is in turn to respond to the 

occurrence of a fault such that the faulty system is still well 

behaved. Thus, for both passive and active tolerance and due 

to the discrete nature of fault occurrence and reconfiguration, 

FTC systems are hybrid in nature [8], [9]. 

Besides, safe-critical systems are becoming more and more 

complicated so that the conventional LTI model is no more 

sufficient to describe the dynamic of this kind of complex 

systems. FTC system description in hybrid formalism allows 

studying fault recoverability as system property by studying 

the controllability of the hybrid system modeling the FTC 

system [10].    

 Hybrid description provides the possibility of taking the 

timing issue in FTC into consideration. The time issue 

constituted by fault detection and fault accommodation delays 

and their effect on the time of the system’s mission is rarely 

studied in FTC approaches although it can be very influencing 

in the performances and control qualities   [11]-[13].   

In the hybrid description of the FTC, detection instant and 

accommodation or reconfiguration one can be considered as 

switching instants from one mode to another. Therefore, these 

switching instants can be optimized in order to satisfy an 

optimal performance index after the fault’s occurrence. 

This paper is organized as the first section describes how a 

FTC system can be viewed as a hybrid system by presenting 

the common characteristics and elements between both 

systems. The second section demonstrates the study of fault 

recoverability based on hybrid system’s controllability. In the 

third section, the admissibility of the actuator recovery is 

studied based on control energy index and time optimization. 

Theoretical results are proved by an illustrative example in the 

section 4. Finally, concluding remarks are provided.   

2. FTC SYSTEMS AND SWITCHING 

HYBRID SYSTEMS 
In the last few decades, there has been a huge amount of 

research on a special class of systems, which are called hybrid 

systems. Hybrid systems can be described as systems that are 

controlled by discrete events in the higher level, while their 

dynamical behaviors are governed by continuous dynamical 

laws in the lower level.  

Switching systems are a class of hybrid systems. The behavior 

and control of switching hybrid systems is based on the 

concept of modes. Each mode corresponds to a dynamical 

law. Mode switching (or mode transition) refers to switching 

the mode of operation of the system from the current mode to 

the next mode according to a mode sequence. The instants 

when moving from one mode to another are called the 

switching time instants. These instants will be the critical 

instants related to the fault detection and recovery in the FTC 

system. 

2.1 FTC system viewed as a switching 

system 
Fault Tolerant Control systems are switching hybrid in nature 

because they obey a set of possible dynamical laws. The fault 

occurrence and the accommodation or reconfiguration are 

discrete events that dictating the continuous dynamical 

behavior of the system. 

The continuous dynamics of switching systems is given by the 

following differential equation: 
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where
nx X  is the state vector, 

py Y  is the 

measure vector and 
mu U  is the control vector. 

Matrices iA , iB  and iC  describe a kind of specific linear 

dynamic at the ith mode. The system is assumed to have a 

finite number of modes, that is   and i Q, size Q l    . 

The set Q denotes the set of all discrete states or modes of the 

system. The structure of the discrete part of the plant is 

defined by the set of modes Q and a mode-transition function 

 with p c p: Q Q       constitutes the plant's 

alphabet where c c   denote the control events 

manipulating the control variables and p p  denote 

events that result from additional physical modes, which are 

part of the plant itself as a result of its discrete features. Each 

physical mode corresponds to a unique event p p   which 

is triggered each switching time through an event-generator 

function p p: X   that is corresponding to transitions 

between regions associated with physical modes. These 

elements are presented in figure 1, where pq denotes the 

present mode: 

 

Fig 1: Hybrid System schema. 

A Fault Tolerant Control system is a system that can change 

in a discrete way through change in states caused by faults 

occurrence. Plant architecture can be changed by switch-over 

functions. Parameters or structure of the controller can be 

changed by logic in a supervisor automaton that getting its 

input from an FDD block. While moving to describe a FTC 

system analogously to the switching hybrid system's 

description, the following elements are re-defined: 

 The mode-transition function 

 with p c p f r: Q ' Q '          

constitutes the plant's alphabet where c and p  

are the same, f f  denote the fault events and 

r r  are the control events reconfiguring the 

faulty system, as it is showed in figure 2 with 

pq denoting the actual control mode. 

 Another event-generator function d d:Y  , 

with d d  are the events generated from the 

FDD task to the supervisor automaton. 

 Three modes are defined; the nominal mode stands 

from the initial instant of the system till the fault’s 

occurrence that is 0 , ft t
 , the faulty mode stands 

during  , rtf t  with rt  presents the time of 

applying the accommodating control law and finally 

the reconfiguration mode is active in the interval 

 ,r mist t  where the system enters the post-fault 

interval till mist , the time fixed to the system's end 

of mission. 

Since after the fault detection at an instant called dt , still 

active the faulty mode and as the instant dt is the known one, 

we will replace in the cited intervals the occurrence 

instant ft by dt . These instants verify the piecewise linear 

inequality constraint: 

       0 f d r mist t t t t                                 (2)  

In this work, actuator fault will be considered, caused by a 

loss of control factor efficiency and presented by: 

 ( ),  ( )f n iB B I diag                             (3)  

with I is the identity matrix and ,  1,...,i i p   indicates the 

ith  actuator state,  affected  if 0 1i  . 

2.2 Advantages of the Switching Hybrid 

formalism 
One principle advantage is that SH model allows the 

mathematical formalization of the critical time instants in the 

AFTC system and, thus, the possibility of study and analyzes 

the FDD and the FTC delays in relation with the system and 

the control performances. In the literature, several researches 

were interested by the optimal control of SH systems and a 

specific attention was given to the optimization of the 

switching instants. 

 

 

Fig 2: Fault Tolerant Control system modeled by 

switching system. 
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The cited works elaborated and used different techniques and 

methods in order to solve the time optimization problem, 

which may be usually nonconvex, such that the Luus-Jaakola 

optimization procedure which is a well tested, efficient direct 

search method for the similar optimal switched systems, the 

gradient-descent algorithms, the nonlinear optimization 

techniques to locate the switching instants in. 

A second benefit of the SH model is that the fault 

recoverability can be viewed as system's propriety since it can 

be studied from the SH system's controllability. 

SH system's controllability use the following definitions: 

Definition 1: Hybrid system given by the equation (1) is 

called controllable if there exists a timed switching mode set 

denoted as   1 1

l

i i i i
q ,t ,q 

 and a corresponding piecewise 

continuous input signal  u t , such that system (1) evolving 

under these two kinds of distinct inputs is reachable from an 

initial hybrid state  0 0q ,x to an aim state  T Tq ,x within a 

finite time interval  0,T [15].  

We assume that there are no discontinuous state jumps during 

mode switches. 

Definition 2: System (1) is called (completely) control 

reconfigurable if and only if the controllability property of the 

nominal system is kept by the faulty system. 

Seeing that the FTC system (4) is described by a hybrid 

schema where the faulty mode is one of the own system 

modes, then, the control reconfigurability is directly 

guaranteed from the controllability of system (4). 

Definition 3: From Definition 1 and Definition 2, an affected 

system viewed as a hybrid system is recoverable from a set of 

faults if it is control reconfigurable and thus, if its hybrid 

model is controllable. 

3. RECOVERABILITY STUDY BASED 

SH CONTROLLABILITY 
Hybrid systems controllability is studied in [10], [15] and [16] 

where necessary and sufficient conditions were defined. 

Motivated by these works, the controllability of system (4) 

returns to define the two modes controllability matrix:  

 

             
1

c

n n
n n nW B AB A B 

 
                         (5) 

            
1

c

f n
f f fW B AB A B 

 
                        (6) 

Then, we can define a combined matrix CW for the whole 

system expressed by: 

                          
n f

C c cW W W 
 

                                    (7) 

Equation (7) represents the controllability matrix for system 

(4); this latter is controllable if and only if CW  is of full row 

rank. 

Theorem 1: The AFTC system (4) with nominal and faulty 

modes is controllable if the controllability matrix CW  defined 

in (7) is of full row rank. 

Proof: With respect to the piecewise LTI property of (4), the 

continuous state at mist can be expressed as:   

                    

       

     

   

0

0

0
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d
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n
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f

t
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


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
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







                 (8) 

By setting        0

0
mis d dA t t A t t

mis misx x t e e x t
 

   and by 

defining the following expressions: 

   

 

0mis d d

mis d

A t t A t t
n

A t t
f

T e e

T e

 


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

  
The relation (8) can be expressed as: 
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Denoting the 
thi additive term on the right-hand side of (9) 

by iX , we have: 

                    
   

1

i
i

i

t A t
i i i

t
X T e B u d


 





                       (10) 

Divide interval  1,i it t  into n subintervals, and denote the 

dividing points as 1,0 1,...i i nt t   with the 

property 1,0 1,...i i nt t   .  

Then we can define the piecewise continuous input  u t  as a 

piecewise constant function, denoted as 

1,..,j n with 1,..,j n . 

According to the Cayley–Hamilton Theorem [16], the 

exponential matrix 
Ate  can be expressed as: 

      
1

1
0 1

0

n
At n i

n i

i

e t I t A t A  







            (11) 

 

By using the input  u t definition and relation (11), the 

equation (10) becomes: 
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  (12) 

In (12), the matrix F constructed by using the expansion 

coefficients of 
Ate is the same for both nominal and faulty 

mode since the matrix A is the same and there exists a real 

sequence  ,d mist t which satisfies 0 d mist t t   and makes 

F nonsingular [16]. 

The relation (9) is thus rewritten as: 

        
n f

mis n c n f c fx T W FU T W FU                                (13) 

 

Lemma 1: For a set of matrices  
1

k

i i
T


 where each iT  has 

the form  and i i i iT I E E  is a constant matrix; there 

exists a set of  i  (are small enough); such that there are iP  

matrices with the same order as iT  so that: 

      1 1 1k k krank T P T P rank P P          (14) 

By using Lemma 1 and by considering the assumption that the 

controllability matrix cW  is of full row rank, and then we get 

   n f n f
n c f c c crank T W T W rank W W n    

   
. 

4. ADMISSIBILITY OF FAULT 

RECOVERY  
As it was mentioned in Remark 1, the hybrid controllability 

can response to the actuator fault recovery by control 

reconfiguration in absence of system constraints, however, 

this is practically unrealistic. 

Control energy limitation and\or time deadlines are 

considered as system limitations that deciding about the fault 

recoverability’s admissibility [12], [14]. 

4.1 Control energy admissibility 
Staroswiecki in [14] defined the recovery measure as being 

the maximum loss of efficiency allowable for a control 

solution that still achieves the objective in the presence of 

fault.  This solution is the so-called admissible solution 

satisfying the admissibility conditions specified by the 

selected discussion criterion. This loss of efficiency can be 

defined by a maximum cost of controlling the faulty system, 

whatever the initial state in the unit sphere or by a maximum 

loss of efficiency in the faulty system control, whatever the 

control objective.  The energy is given by: 

 

                         

0

( , ) ( ) ( )J u t u t u t dt



                            (15) 

 

In this work, we consider a normalized function depending on 

the initial conditions   0 1L x  , 0 0t  ,   such that: 

                               
  

0
ˆ 0

L x
J x


                            (16) 

  ˆ 0J x is the optimal cost resulting from minimizing (15)  

and  defines a uniform bound for the energy spent in 

controlling the faulty system, whatever the initial state in the 

unit sphere. The definition of this bound results from the 

theorem of the continuous dependence of the differential 

equations solutions considering the initial condition 

 0 nx  such that  0 1x  [17]. The maximum cost is 

then given by the maximum eigenvalue of  0nK solution of 

the Riccati equation, then, the energy limit is   0max nK . 

This previous analysis explains that in this case of energy 

limitation, even when the hybrid controllability of the system 

(nominal and faulty modes) is satisfied, fault can be 

unrecoverable if the reconfiguration solution is not admissible 

considering the energy constraint. 

Then the recovery conditions are: 

1- The faulty system is hybrid controllable; 

2- The spent energy for recovery is lower than the 

maximum value. 

4.2 Temporal admissibility 
Time delays in fault diagnosis and in fault tolerance can cause 

stability problems in feedback control systems if they are very 

important. In another side, if these delays are very short so 

that the consequences are FDD uncertainties, imprecise post-

fault model or even performances violation by causing 

actuator saturation or excessive control energy [11], [12].  

Thus, it is quite interesting to look for optimal delays that 

guarantying acceptable performance degradation and 

achievement of temporal and physical system constraints, here 

the end time of the system’s mission and the control energy. 

When considering the fault detection instant and the 

reconfiguration instant as switching instants between modes 

in a hybrid system, it is possible to optimize these critical 

instants based on the parameterization of the switching 

instants in the problem of optimal fault tolerant control [18]. 

5. NUMERICAL APPLICATION 
Considering the system given by the following matrices: 

 

3

0.0565 29.072 175.610 9.6783 1.6022

0.0601 0.7979 0.2996 0 0

9.218 10 0.0179 0.1339 0 0

0 1 0 0 0

0 0 1 0 0

A 

  
 

  
 
    
 
 
 
 
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 

0.1339 0.1339 2.0092

2.3491 2.3491 0.7703

0.0444 0.0444 1.3575

0 0 0

0 0 0

0 0 0 0 1

nB

C

 
 


 
   
 
 
 
 



                (17) 

 

This model represents the lateral-directional dynamics of a 

McDonnell F-4C Phantom flying at Mach 0.6 at an altitude of 

35000 ft, where the model is in [19]. The control objective is 

to regulate a disturbed yaw angle to the 

origin 5( ) 0( )y x radian  . The control inputs u1, u2 and u3 

correspond to the left aileron, the right aileron and the rudder 

surface displacement, respectively. 

The system has three actuators  , ,I a b c , in the nominal 

mode
max ( ) 19.6246nK  energy unit, with nK is the 

nominal control gain solution of Riccati equation. 

 

Considering the actuator faults scenarios given by a total 

failure of one or two actuators, assuming that one fault 

occurring during the functional time of the system. A failure 

in the actuator a is characterized by the matrix: 

 

0 0.1339 2.0092

2.3491 0 0.7703

0.0444 0.0444 0

0 0 0

0 0 0

fB

 
 
 
  
 
 
 
 

 

 

Under all these faulty situations, the faulty system still 

controllable; hybrid controllability is verified for all scenarios. 

However, Table 1 shows that the fault is recoverable, 

regarding the energy limit defined as  max2 nK , just for 

two situations; a failure in the first actuator a or  the second 

one b. Solutions written in bold in Table 1 are the admissible 

recovery solutions.    

 

Table 1. Actuator set and their characteristics  

Actuators set max  

 , ,a b c  19.6246 

 ,a b  1.0747.103 

 ,a c  19.7667 

 ,b c  19.7667 

 a  1.0981.103 

 b  1.0981.103 

 c  80.7268 

 

6. CONCLUSION 
This work studied a representation of an active fault tolerant 

control AFTC system within a hybrid system framework. The 

fault recovery was firstly viewed as a system property that can 

be guaranteed by the hybrid system’s controllability. Then, 

the fault recoverability was studied based on an energy 

limitation and a second necessary condition was determined 

other than the control reconfigurability. 

In future work, the hybrid formalism for AFTC systems will 

be used to study the temporal issue in AFTC and to find 

optimal diagnosis and reconfiguration delays to achieve 

AFTC performances optimization. 
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