International Journal of Computer Applications (0975 — 8887)
Volume 38— No.5, January 2012

Improved Round Robin Scheduling using
Dynamic Time Quantum

Debashree Nayak

Sanjeev Kumar Malla

Debashree Debadarshini

Lecturer Student Student
Gandhi Institute of Technology Gandhi Institute of Technology Gandhi Institute of Technology
And And And
Management,Bhubaneswar, Management,Bhubaneswar, Management,Bhubaneswar,
Odisha, India Odisha, India Odisha, India
ABSTRACT 1.1 Preliminaries

Round Robin scheduling algorithm is the widely used
scheduling algorithm in multitasking and real time
environment. It is the most popular algorithm due to its
fairness and starvation free nature towards the processes,
which is achieved by using the time quantum. As the time
quantum is static, it causes less context switching incase of
high time quantum and high context switching incase of less
time quantum. Increasing context switch leads to high avg.
waiting time, high avg. turnaround time which is a overhead
and degrades the system performance. So, the performance of
the system solely depends upon the choice of optimal time
quantum which is dynamic in nature. In this paper, we have
proposed a new variant of RR scheduling algorithm known as
Improved Round Robin (IRR) Scheduling algorithm, by
arranging the processes according to their shortest burst time
and assigning each of them with an optimal time quantum
which is able to reduce all the above said disadvantages.
Experimentally we have shown that our proposed algorithm
performs better than the RR algorithm, by reducing context
switching, average waiting and average turnaround time.

Keywords
RR Scheduling, Context Switching, Average waiting time,
Average turnaround time.

1. INTRODUCTION

Operating System is a collection of software modules to assist
programmers in enhancing system efficiency and robustness.
It is an extended machine from the user’s point of view & a
resource manager from the system point of view. Scheduling
is the most repetitively used fundamental concept in OS. In
multitasking and multiprogramming environment it is
necessary to choose the process among the number of process
present in the job pool according to their need. Allocation of
CPU to the processes is done by scheduler, which operated by
some scheduling algorithms. FCFS, SJF, Priority & RR are
different type of scheduling algorithms. In which RR is the
most popular non-preemptive scheduling algorithm. In non-
preemption, CPU is assigned to a process until its execution is
completed. But in preemption, running process is forced to
release the CPU by the newly arrived process[8,9]. Each
scheduling algorithm has its own advantages and
disadvantages. Similarly RR has a drawback which increase
average waiting time, average turnaround time and minimizes
the throughput, known as Context switch. The processes in
RR are assigned with a time quantum which is static by
nature.

A program in execution is called a process. The processes
waiting to be assigned to a processor are put in a queue called
ready queue. The time for which a process holds the CPU is
known as burst time. Arrival Time is the time at which a
process arrives at the ready queue. Turnaround time is the
total time taken by a process from its submission to its
completion. Waiting time is the amount of time a process has
been waiting in the ready queue. The number of times CPU
switches from one process to another is known as context
switch.

1.2 Scheduling Algorithms

In the First-Come-First-Serve (FCFS) algorithm, the CPU is
assigned immediately to that process which arrives first at the
ready queue. In Shortest Job First (SJF) algorithm, process
having shortest CPU burst time will execute first. If two
processes having same burst time and arrival time, then FCFS
procedure is followed. Priority scheduling algorithm, provides
the priority to each process and selects the highest priority
process from the ready queue. A small unit of time quantum is
given to each process present in the ready queue in case of
Round Robin (RR) algorithm which maintains the fairness
factor.

1.3 Motivation

In RR scheduling, processes get fair share of CPU because of
static time quantum assign to each process and the context
switch is inversely proposnal to choice of static time quantum
which degrades the overall performance of the system (high
average waiting time & average turnaround time). This factor
motivates us to design an improved algorithm which is able to
increase the system performance by reducing the number of
context switches, average waiting time & average turnaround
time using the concept of dynamic time quantum.

1.4 Related Work

The static time quantum which is a limitation of RR was
removed by taking dynamic time quantum using median
method introduced in SARR algorithm[2]. In DQRRR [1] the
median method and job mix concept is reused in a different
way. DQRRR gives better result than the classical RR
scheduling algorithm. Recently a number of new variants of
Improved RR algorithms have been developed in [3-7].

1.5 Our Contribution

In our work, we have improved the RR algorithm by taking
judiciously the dynamic time quantum and the ordering of
processes. This concept drastically reduces context switching,
average waiting time and average turnaround time.

34

1.6 Organization of Paper
Section 2 presents the proposed approach. Section 3 shows
experimental analysis. The whole work is concluded and the
future scope is discussed in section 4.

2. PROPOSED APPROACH

In our proposed algorithm, we are arranging the processes in
ascending order according to their burst time present in the
ready queue. For finding an optimal time quantum, median
method is followed. The median can be calculated using the
following formulae [2].

Y22 ifnisodd

Median (M) = L
%(Yg +YXnifniseven

Where, M = median

Y = number located in the middle of a group
of numbers arranged in ascending order
n = number of processes

Then, the optimal time quantum is calculated as follows :
Optimal Time Quantum (Oqt) = HighestBt + Median(M)

2
The optimal time quantum is assigned to each processes and
is recalculated taking the remaining burst time in account after
each cycle. This procedure goes on until the ready queue is
empty.

2.1 Proposed Algorithm
1. I/P: Process(Pn), Burst Time(bt), Arrival Time,
ready queue. O/P: Context ~ Switch(Cs),
Avg.WaitingTime(Awt), Avg.Turnarround
Time(Att)

2. Initialize: ready queue=0, Cs=0, Awt=0, Att=0
3. While (ready queue!=0)

I/ Sort the processes in ascending order according to
their Bt in ready queue

/[Find Median
/[Calculate Oqt

1. /lassign Oqt to each process
For each process i=1ton
PLi]—Oqt

2. If new process arrives
Update counter and goto step3
end while

3. Cs, Awt, Att are calculated.

4. Stop and exit.

2.2 llustration

To demonstrate the above algorithm we have considered the
following example. Arrival time is considered to be zero for
the given processes P1, P2, P3, P4 and corresponding burst
times are 60, 20, 80, 40 respectively. In first step the
processes in the ready queue are sorted in ascending order.
Then the time quantum is calculated in the second step. Here
Oqt = 65. In third step sorted processes are executed with the
optimal time quantum, i.e. P2 with bt =20, P4 having bt=40,

International Journal of Computer Applications (0975 — 8887)

Volume 38— No.5, January 2012

P1 with bt=60 and P3 with bt=80. After assigning Oqt to each
process the remaining burst time of all process are P1=0,
P2=0, P3=15 and P4=0. When a process completes its
execution, it is deleted from ready queue automatically. Then
the next time quantum is calculated from remaining burst
times as per the 3rd step in the algorithm. Here Oqt=15. Then
the remaining burst times are P3=0.In the last step P3 will
complete its execution and will be deleted from the ready
queue.

3. EXPERIMENTAL ANALYSIS

3.1 Assumptions

All the processes are assumed to be independent. Time slice is
assumed to be not more than the maximum burst time. All the
attributes like burst time, number of processes and the time
slice of all the processes are known before submitting the
processes to the processor. All processes are CPU bound. No
processes are 1/0O bound.

3.2 Experimental Frame Work

Our experiment consists of several input and output
parameters. The input parameters consist of burst time(Bt),
arrival time(At), optimal time quantum(Oqt) and the number
of processes(Pn). The output parameters consist of average
waiting time(Awt), average turnaround time(Att) and number
of context switches(Cs).

3.3 Result Obtained

Our proposed algorithm can work effectively with large
number of data. In each case we have compared our proposed
algorithm’s results with Round Robin scheduling algorithm’s
result. For RR Scheduling Algorithm we have taken 25 as the
static time quantum.

Case 1: With Zero Arrival Time

Increasing Order

We consider five processes P1, P2, P3, P4 and P5 arriving at
time O with burst time 30, 34, 62, 74, 88 respectively shown in
Table 3.1. Table 3.2 shows the comparing result of RR
algorithm and our proposed algorithm.

No. of process At Bt
P1 0 30
P2 0 34
P3 0 62
P4 0 74
P5 0 88

Table 1. Data in Increasing Order

Algorithm RR IRR
qt 25 75,13

Cs 13 5
Awt 149 85.6
Att 206.6 143.2

Table 2. Comparison between RR and IRR

35

qt=25 |
>

[P1 Jp2]pra]ra]ps]pP1]pP2][P3][pPafpPs[rPa]pPafpP5]Ps5]
0 25 50 75 100 125 130 139 164 189 214 226 250 275 288

Fig 1: Gantt chart for RR in Table 2

qt=75 qt=13

lLa o R
I-- L e
T

[P1|[P2|pP3|[Pa|pP5|PL
030 64 126 208 273 288

Fig 2: Gantt chart for IRR in Table 2

Decreasing Order

We consider five processes P1, P2, P3, P4 and P5 arriving at
time O with burst time 77, 54, 45, 19, 14 respectively shown in
Table 3. Table 4 shows the comparing result of RR algorithm
and our proposed algorithm.

Table 3. Data in Decreasing Order

No. of process At Bt
P1 0 77
P2 0 54
P3 0 45
P4 0 19
P5 0 14

Table 4. Comparison between RR and IRR

Algorithm RR IRR
qt 25 61,16
Cs 10 5
Awt 117.4 514
Att 159.2 93.2
gt=25

| |
[Ll
[pip2]pPa]pPa]pPs]rPi]r2]pP3]pP1]P2]p1]
0 25 50 75 94 108 133 158 178 203 207 209

Fig 3: Gantt chart for RR in Table 4

qt=61 qt=16

ps | p4 [pP3|pP2|p1|P1|
0 14 33 78 132193 209

Fig 4: Gantt chart for IRR in Table 4

Random Order

We consider five processes P1, P2, P3, P4 and P5 arriving at
time 0 with burst time 80, 45,62,34,78 respectively shown in
Table 3.5.Table 3.6 shows the comparing result of RR
algorithm and our proposed algorithm.

International Journal of Computer Applications (0975 — 8887)

Volume 38— No.5, January 2012

Table 5. Data in Random Order

No. of process At Bt

P1 0 80

P2 0 45

P3 0 62

P4 0 34

P5 0 78

Table 6. Comparison between RR and IRR
Algorithm RR IRR
qt 25 7181
Cs 14 7

Awt 187.2 108.8
Att 247 168

qt=25

.
| 1| P2| P3| pa|ps|p1|p2]p3|pa|ps|p3]paps|pi]ps

025 50 75 100 125150 170 195 204 229 254 266 291 296 299

Fig 5: Gantt chart for RR in Table 6

gt=71 gt=3 gt=1

[pa|p2|P3|[pPs|PL|P5|[P1]P1
0 34 79 141 212283 290 298 299

Fig 6: Gantt chart for IRR in Table 6
Case 2: Without Zero Arrival Time

Increasing Order

We consider five processes P1, P2, P3, P4 and P5 arriving at
time 0,2,6,8,14 and burst time 14,34,45,62,77 respectively
shown in Table 3.7. Table 3.8 shows the comparing result of
RR algorithm and our proposed algorithm.

Table 7. Data in Increasing Order

No. of process At Bt
P1 0 14
P2 2 34
P3 6 45
P4 8 62
P5 14 77
Table 8. Comparison between RR and IRR
Algorithm RR IRR
qt 25 14,65,12
Cs 11 5
Awt 97 56.6
Att 143.4 103

36

International Journal of Computer Applications (0975 — 8887)
Volume 38— No.5, January 2012

Table 11. Data in Random Order

qt=25
| o
™ >
[Prlp2[ps[pafps[pa[pPa[ra|Ps5|Pafps]ePs No. of process At Bt
0 14 39 64 89 114 123 143 168 193 205 230 232 Pl 0 65
P2 1 72
P3 4 50
Fig 7: Gantt chart for RR in Table 8 P4 6 43
P5 7 80
Table 12. Comparison between RR and IRR
gt=14 qgt=65 gt=12
L Algorithm RR IRR
ESEEREE ot 25 72.8
0 14 35 84 146 211 223 Cs 13 5
Awt 199.8 104.8
Att 261.8 166.8
Fig 8: Gantt chart for IRR in Table 8
Decreasing Order | qt=25 |
We consider five processes P1, P2, P3, P4, P5 arriving at time * ¥
0,2,3,4,5 and burst time 80,74,70,18,14 respectively shown in (1 [p2[pP3fpa]ps|Pa]r2]r3|palps|r1]P2]p3]pa]
Table 3.9. Table 3.10 shows the comparing result of RR 0 25 50 75 100 125 150 175 200 218 243 258 280 305 310
algorithm and our proposed algorithm.
Table 9. Data in Decreasing Order Fig 11: Gantt chart for RR in Table 12
qQt=72 qt=8
No. of process At Bt
Pl 0 80 [Pa [Pa[P1][P2] P5]P5|
P2 2 74
p3 3 7 0 43 93 158 230 302 310
P4 4 18
P5 5 14 Fig 12: Gantt chart for IRR in Table 12

Table 10. Comparison between RR and IRR . . .
With Zero Arrival Time

Algorithm RR IRR 18
qt 25 80,59,14,1 14
Cs 11 7 £ 1
Awt 136.4 105.4 % 10
Att 187.6 156.6 ¥ =
Jg' e mRR
% MW IRR
g 4
qt=25 z
™ »| °
| Pl | P2 | P2 | p4| P5 | Fl | p2| P3 | Pl | p2| P3 | P1 | Increa;-ingorder De;reafl‘:gorder Randori Order
urs’ me
0 25 50 75 93 107 132 157 182 207 231 251 256
Fig 13: Context Switching(IRR vs. RR)
Fig 9: Gantt chart for RR in Table 10 200
180
1680
qt=80 qt=59 gqt=14 qgt=1 £ 140
= 120
[PL [ps[PafpPa[prP2]rz]P2]PrPz] ;%100
0 80 94 112 171 230 241 255 256 > 80 | RR
% a0 W IRR
40
20
Fig 10: Gantt chart for RR in Table 10 o
Increas?-ngorder Decreaszl'ngorder Randon‘?order
Random Order bursttime

We consider five processes P1, P2, P3, P4 & P5 arriving at
time 0, 1,4,6,7 and burst time 65,72,50,43,80 respectively
shown in Table 3.11. Table 3.12 shows the comparing result
of RR algorithm and our proposed algorithm .

Fig 14 :Average Waiting Time(IRR vs.RR)

37

avg. turnaroundtime

I Il Il Il Il
=
=]
W

no. of contextswitches

avg. waiting time

avg. turmnaroundtime

300

250

200

150

100

250

200

150

100

300

250

200

150

50

HRR
H IRR
50
0
Increasing Order Decreasing Order Random Order
bursttime
Fig 15: Average Turnaround Time(IRR vs.RR)
Without Zero Arrival Time
M RR
N IRR
3
Increasing Order Decreasing Order Random Order
bursttime
Fig 16:Context Switching(IRR Vs RR)
B RR
M IRR
50
0
1 2 3
Increasing Order Decreasing Order Random Order
burst time
Fig 17 :Average Waiting Time(IRR vs.RR)
H RR
100 7 H IRR

1 2 3
Increasing Order Decreasing Order Random Order
bursttime

Fig 18 :Average Turnaround Time(IRR vs.RR)

International Journal of Computer Applications (0975 — 8887)

Volume 38— No.5, January 2012

4. CONCLUSION AND FUTURE WORK
From the above experimental analysis, it is proved that our
proposed IRR scheduling algorithm gives better result than
classical RR scheduling algorithm by taking avg. waiting
time, avg. turnaround time and context switch as performance
parameter. Our proposed algorithm can be extended using soft
and hard real time systems.

5. REFERENCES

[1] H.S.Behera, R.Mohanty, Debashree Nayak. “A New
Proposed Dynamic Quantum with Re-Adjusted Round
Robin Scheduling Algorithm and Its Performance
Analysis “International ~ Journal of Computer
Applications (0975 — 8887) Volume 5- No.5, August
2010.

[2] Rami J. Matarneh.“Self-Adjustment Time Quantum in
Round Robin Algorithm Depending on Burst Time of
Now Running Processes”, American J. of Applied

Sciences 6(10): 1831-1837,2009.

Abbas Noon, Ali Kalakech, Seifedine Kadry “A New
Round Robin Based Scheduling Algorithm for Operating
Systems: Dynamic Quantum Using the Mean Average”
1JCSI International Journal of Computer Science Issues,
Vol. 8, Issue 3, No. 1, May 2011 ISSN (Online): 1694-
0814.

Rakesh MohantyManas Das, M. Lakshmi Prasanna,
Sudhashree “Design and Performance Evaluation of A
New Proposed Fittest Job First Dynamic Round Robin
(FJFDRR) Scheduling Algorithm” International Journal
of Computer Information Systems, Vol. 2, No. 2, 2011.

Ajit Singh, Priyanka Goyal, Sahil Batra.” An Optimized
Round Robin Scheduling Algorithm for CPU
Scheduling” International Journal on Computer Science
and Engineering Vol. 02, No. 07, 2010, 2383-2385.

Rakesh Kumar Yadav, Abhishek K Mishra, Navin
Prakash and Himanshu Sharma “An Improved Round
Robin Scheduling Algorithm for CPU scheduling”
(IJCSE) International Journal on Computer Science and
Engineering VVol. 02, No. 04, 2010, 1064-1066.

(3]

(4]

(5]

(6]

[7] Saroj Hiranwal and K. C. Roy “Adaptive Round Robin
Scheduling Using Shortest Burst Approach Based On
Smart Time Slice” International Journal of Computer
Science and Communication Vol. 2, No. 2, July-

December 2011, pp. 319-323.

Operating Systems ,3rd Ed., H.M.Deitel, P.J.Deitel,
D.R.Choffnes .ISBN 978-81-317-1289-4.

Operating System Concepts ,8" Ed.,Abraham
Silberschatz, Peter B. Galvin, Grege Gagne . ISBN 978-
81-265-2051-0.

(8]

[0

38

