
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

34

Improved Round Robin Scheduling using

Dynamic Time Quantum

Debashree Nayak

Lecturer
Gandhi Institute of Technology

And
Management,Bhubaneswar,

Odisha, India

Sanjeev Kumar Malla
Student

Gandhi Institute of Technology
And

Management,Bhubaneswar,
Odisha, India

Debashree Debadarshini
Student

Gandhi Institute of Technology
And

Management,Bhubaneswar,
Odisha, India

ABSTRACT

Round Robin scheduling algorithm is the widely used

scheduling algorithm in multitasking and real time

environment. It is the most popular algorithm due to its

fairness and starvation free nature towards the processes,

which is achieved by using the time quantum. As the time

quantum is static, it causes less context switching incase of

high time quantum and high context switching incase of less

time quantum. Increasing context switch leads to high avg.

waiting time, high avg. turnaround time which is a overhead

and degrades the system performance. So, the performance of

the system solely depends upon the choice of optimal time

quantum which is dynamic in nature. In this paper, we have

proposed a new variant of RR scheduling algorithm known as

Improved Round Robin (IRR) Scheduling algorithm, by

arranging the processes according to their shortest burst time

and assigning each of them with an optimal time quantum

which is able to reduce all the above said disadvantages.

Experimentally we have shown that our proposed algorithm

performs better than the RR algorithm, by reducing context

switching, average waiting and average turnaround time.

Keywords

RR Scheduling, Context Switching, Average waiting time,

Average turnaround time.

1. INTRODUCTION
Operating System is a collection of software modules to assist

programmers in enhancing system efficiency and robustness.

It is an extended machine from the user’s point of view & a

resource manager from the system point of view. Scheduling

is the most repetitively used fundamental concept in OS. In

multitasking and multiprogramming environment it is

necessary to choose the process among the number of process

present in the job pool according to their need. Allocation of

CPU to the processes is done by scheduler, which operated by

some scheduling algorithms. FCFS, SJF, Priority & RR are

different type of scheduling algorithms. In which RR is the

most popular non-preemptive scheduling algorithm. In non-

preemption, CPU is assigned to a process until its execution is

completed. But in preemption, running process is forced to

release the CPU by the newly arrived process[8,9]. Each

scheduling algorithm has its own advantages and

disadvantages. Similarly RR has a drawback which increase

average waiting time, average turnaround time and minimizes

the throughput, known as Context switch. The processes in

RR are assigned with a time quantum which is static by

nature.

1.1 Preliminaries
A program in execution is called a process. The processes

waiting to be assigned to a processor are put in a queue called

ready queue. The time for which a process holds the CPU is

known as burst time. Arrival Time is the time at which a

process arrives at the ready queue. Turnaround time is the

total time taken by a process from its submission to its

completion. Waiting time is the amount of time a process has

been waiting in the ready queue. The number of times CPU

switches from one process to another is known as context

switch.

1.2 Scheduling Algorithms
In the First-Come-First-Serve (FCFS) algorithm, the CPU is

assigned immediately to that process which arrives first at the

ready queue. In Shortest Job First (SJF) algorithm, process

having shortest CPU burst time will execute first. If two

processes having same burst time and arrival time, then FCFS

procedure is followed. Priority scheduling algorithm, provides

the priority to each process and selects the highest priority

process from the ready queue. A small unit of time quantum is

given to each process present in the ready queue in case of

Round Robin (RR) algorithm which maintains the fairness

factor.

1.3 Motivation
In RR scheduling, processes get fair share of CPU because of

static time quantum assign to each process and the context

switch is inversely proposnal to choice of static time quantum

which degrades the overall performance of the system (high

average waiting time & average turnaround time). This factor

motivates us to design an improved algorithm which is able to

increase the system performance by reducing the number of

context switches, average waiting time & average turnaround

time using the concept of dynamic time quantum.

1.4 Related Work
The static time quantum which is a limitation of RR was

removed by taking dynamic time quantum using median

method introduced in SARR algorithm[2]. In DQRRR [1] the

median method and job mix concept is reused in a different

way. DQRRR gives better result than the classical RR

scheduling algorithm. Recently a number of new variants of

Improved RR algorithms have been developed in [3-7].

1.5 Our Contribution
In our work, we have improved the RR algorithm by taking

judiciously the dynamic time quantum and the ordering of

processes. This concept drastically reduces context switching,

average waiting time and average turnaround time.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

35

1.6 Organization of Paper
Section 2 presents the proposed approach. Section 3 shows

experimental analysis. The whole work is concluded and the

future scope is discussed in section 4.

2. PROPOSED APPROACH
In our proposed algorithm, we are arranging the processes in

ascending order according to their burst time present in the

ready queue. For finding an optimal time quantum, median

method is followed. The median can be calculated using the

following formulae [2].

 Median (M) =
 ifnisevenYY

ifnisoddY

nn

n

2
1

2

2
2

2

1






Where, M = median

Y = number located in the middle of a group

of numbers arranged in ascending order

 n = number of processes

Then, the optimal time quantum is calculated as follows :

Optimal Time Quantum (Oqt) =

2

)(MMedianHighestBt 

The optimal time quantum is assigned to each processes and

is recalculated taking the remaining burst time in account after

each cycle. This procedure goes on until the ready queue is

empty.

2.1 Proposed Algorithm
1. I/P: Process(Pn), Burst Time(bt), Arrival Time,

ready queue. O/P: Context Switch(Cs),

Avg.WaitingTime(Awt), Avg.Turnarround

Time(Att)

2. Initialize: ready queue=0, Cs=0, Awt=0, Att=0

3. While (ready queue!=0)

// Sort the processes in ascending order according to

their Bt in ready queue

//Find Median

 //Calculate Oqt

1. //assign Oqt to each process

For each process i=1 to n

P[i] Oqt

2. If new process arrives

Update counter and goto step3

end while

3. Cs, Awt, Att are calculated.

4. Stop and exit.

2.2 Illustration
To demonstrate the above algorithm we have considered the

following example. Arrival time is considered to be zero for

the given processes P1, P2, P3, P4 and corresponding burst

times are 60, 20, 80, 40 respectively. In first step the

processes in the ready queue are sorted in ascending order.

Then the time quantum is calculated in the second step. Here

Oqt = 65. In third step sorted processes are executed with the

optimal time quantum, i.e. P2 with bt =20, P4 having bt=40,

P1 with bt=60 and P3 with bt=80. After assigning Oqt to each

process the remaining burst time of all process are P1=0,

P2=0, P3=15 and P4=0. When a process completes its

execution, it is deleted from ready queue automatically. Then

the next time quantum is calculated from remaining burst

times as per the 3rd step in the algorithm. Here Oqt=15. Then

the remaining burst times are P3=0.In the last step P3 will

complete its execution and will be deleted from the ready

queue.

3. EXPERIMENTAL ANALYSIS

3.1 Assumptions
All the processes are assumed to be independent. Time slice is

assumed to be not more than the maximum burst time. All the

attributes like burst time, number of processes and the time

slice of all the processes are known before submitting the

processes to the processor. All processes are CPU bound. No

processes are I/O bound.

3.2 Experimental Frame Work
Our experiment consists of several input and output

parameters. The input parameters consist of burst time(Bt),

arrival time(At), optimal time quantum(Oqt) and the number

of processes(Pn). The output parameters consist of average

waiting time(Awt), average turnaround time(Att) and number

of context switches(Cs).

3.3 Result Obtained
Our proposed algorithm can work effectively with large

number of data. In each case we have compared our proposed

algorithm’s results with Round Robin scheduling algorithm’s

result. For RR Scheduling Algorithm we have taken 25 as the

static time quantum.

Case 1: With Zero Arrival Time

Increasing Order

We consider five processes P1, P2, P3, P4 and P5 arriving at

time 0 with burst time 30, 34, 62, 74, 88 respectively shown in

Table 3.1. Table 3.2 shows the comparing result of RR

algorithm and our proposed algorithm.

Table 1. Data in Increasing Order

Table 2. Comparison between RR and IRR

No. of process At Bt

P1 0 30

P2 0 34

P3 0 62

P4 0 74

P5 0 88

Algorithm RR IRR

qt 25 75,13

Cs 13 5

Awt 149 85.6

Att 206.6 143.2

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

36

Fig 1: Gantt chart for RR in Table 2

Fig 2: Gantt chart for IRR in Table 2

Decreasing Order

We consider five processes P1, P2, P3, P4 and P5 arriving at

time 0 with burst time 77, 54, 45, 19, 14 respectively shown in

Table 3. Table 4 shows the comparing result of RR algorithm

and our proposed algorithm.

Table 3. Data in Decreasing Order

Table 4. Comparison between RR and IRR

Fig 3: Gantt chart for RR in Table 4

 Fig 4: Gantt chart for IRR in Table 4

Random Order
We consider five processes P1, P2, P3, P4 and P5 arriving at

time 0 with burst time 80, 45,62,34,78 respectively shown in

Table 3.5.Table 3.6 shows the comparing result of RR

algorithm and our proposed algorithm.

Table 5. Data in Random Order

Table 6. Comparison between RR and IRR

Fig 5: Gantt chart for RR in Table 6

Fig 6: Gantt chart for IRR in Table 6

Case 2: Without Zero Arrival Time

Increasing Order

We consider five processes P1, P2, P3, P4 and P5 arriving at

time 0,2,6,8,14 and burst time 14,34,45,62,77 respectively

shown in Table 3.7. Table 3.8 shows the comparing result of

RR algorithm and our proposed algorithm.

Table 7. Data in Increasing Order

Table 8. Comparison between RR and IRR

No. of process At Bt

P1 0 77

P2 0 54

P3 0 45

P4 0 19

P5 0 14

Algorithm RR IRR

qt 25 61,16

Cs 10 5

Awt 117.4 51.4

Att 159.2 93.2

No. of process At Bt

P1 0 14

P2 2 34

P3 6 45

P4 8 62

P5 14 77

No. of process At Bt

P1 0 80

P2 0 45

P3 0 62

P4 0 34

P5 0 78

Algorithm RR IRR

qt 25 71,8,1

Cs 14 7

Awt 187.2 108.8

Att 247 168

Algorithm RR IRR

qt 25 14,65,12

Cs 11 5

Awt 97 56.6

Att 143.4 103

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

37

Fig 7: Gantt chart for RR in Table 8

Fig 8: Gantt chart for IRR in Table 8

Decreasing Order
We consider five processes P1, P2, P3, P4, P5 arriving at time

0,2,3,4,5 and burst time 80,74,70,18,14 respectively shown in

Table 3.9. Table 3.10 shows the comparing result of RR

algorithm and our proposed algorithm.

Table 9. Data in Decreasing Order

Table 10. Comparison between RR and IRR

Fig 9: Gantt chart for RR in Table 10

Fig 10: Gantt chart for RR in Table 10

Random Order
We consider five processes P1, P2, P3, P4 & P5 arriving at

time 0, 1,4,6,7 and burst time 65,72,50,43,80 respectively

shown in Table 3.11. Table 3.12 shows the comparing result

of RR algorithm and our proposed algorithm .

Table 11. Data in Random Order

Table 12. Comparison between RR and IRR

Fig 11: Gantt chart for RR in Table 12

Fig 12: Gantt chart for IRR in Table 12

With Zero Arrival Time

Fig 13: Context Switching(IRR vs. RR)

Fig 14 :Average Waiting Time(IRR vs.RR)

No. of process At Bt

P1 0 80

P2 2 74

P3 3 70

P4 4 18

P5 5 14

Algorithm RR IRR

qt 25 80,59,14,1

Cs 11 7

Awt 136.4 105.4

Att 187.6 156.6

No. of process At Bt

P1 0 65

P2 1 72

P3 4 50

P4 6 43

P5 7 80

Algorithm RR IRR

qt 25 72,8

Cs 13 5

Awt 199.8 104.8

Att 261.8 166.8

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

38

Fig 15: Average Turnaround Time(IRR vs.RR)

Without Zero Arrival Time

Fig 16:Context Switching(IRR Vs RR)

Fig 17 :Average Waiting Time(IRR vs.RR)

Fig 18 :Average Turnaround Time(IRR vs.RR)

4. CONCLUSION AND FUTURE WORK
From the above experimental analysis, it is proved that our

proposed IRR scheduling algorithm gives better result than

classical RR scheduling algorithm by taking avg. waiting

time, avg. turnaround time and context switch as performance

parameter. Our proposed algorithm can be extended using soft

and hard real time systems.

5. REFERENCES
[1] H.S.Behera, R.Mohanty, Debashree Nayak. “A New

Proposed Dynamic Quantum with Re-Adjusted Round

Robin Scheduling Algorithm and Its Performance

Analysis “International Journal of Computer

Applications (0975 – 8887) Volume 5– No.5, August

2010.

[2] Rami J. Matarneh.“Self-Adjustment Time Quantum in

Round Robin Algorithm Depending on Burst Time of

Now Running Processes”, American J. of Applied

Sciences 6(10): 1831-1837,2009.

[3] Abbas Noon, Ali Kalakech, Seifedine Kadry “A New

Round Robin Based Scheduling Algorithm for Operating

Systems: Dynamic Quantum Using the Mean Average”

IJCSI International Journal of Computer Science Issues,

Vol. 8, Issue 3, No. 1, May 2011 ISSN (Online): 1694-

0814.

[4] Rakesh MohantyManas Das, M. Lakshmi Prasanna,

Sudhashree “Design and Performance Evaluation of A

New Proposed Fittest Job First Dynamic Round Robin

(FJFDRR) Scheduling Algorithm” International Journal

of Computer Information Systems, Vol. 2, No. 2, 2011.

[5] Ajit Singh, Priyanka Goyal, Sahil Batra.” An Optimized

Round Robin Scheduling Algorithm for CPU

Scheduling” International Journal on Computer Science

and Engineering Vol. 02, No. 07, 2010, 2383-2385.

[6] Rakesh Kumar Yadav, Abhishek K Mishra, Navin

Prakash and Himanshu Sharma “An Improved Round

Robin Scheduling Algorithm for CPU scheduling”

(IJCSE) International Journal on Computer Science and

Engineering Vol. 02, No. 04, 2010, 1064-1066.

[7] Saroj Hiranwal and K. C. Roy “Adaptive Round Robin

Scheduling Using Shortest Burst Approach Based On

Smart Time Slice” International Journal of Computer

Science and Communication Vol. 2, No. 2, July-

December 2011, pp. 319-323.

[8] Operating Systems ,3rd Ed., H.M.Deitel, P.J.Deitel,

D.R.Choffnes .ISBN 978-81-317-1289-4.

[9] Operating System Concepts ,8th Ed.,Abraham

Silberschatz, Peter B. Galvin, Grege Gagne . ISBN 978-

81-265-2051-0.

