
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

22

A New Approach 160-bit Message Digest Algorithm

Priteshwar Nath Sallam
School of IT, Rajiv Gandhi

Technical University Bhopal,
(M.P) India

Jitendra Agrawal
School of IT, Rajiv Gandhi

Technical University Bhopal,
(M.P) India

Santosh Sahu
School of IT, Rajiv Gandhi

Technical University Bhopal,
(M.P) India

ABSTRACT

This paper introduces a new approach of MD Algorithm for

security design. This approach comprises of the 160-bit hash

algorithm for secure message digest. The results show that the

160-bit Message Digest Algorithm code is more secured than

128-bit Message Digest Algorithm code. This effort can

alternate efficiently the accessible Message Digest Algorithm

and hash function implementations for security design, so this

approach proves a high security step towards design.

Keywords

MD Algorithm; Hash Function; Data Integrity;

1. INTRODUCTION
The software is designed for security purpose. A hash value

computes a permanent length output called the message digest

from an input message of different lengths. The MD5 message

digest algorithm was developed by Ron Rivest at MIT. Until

the last few years when both burst force and cryptanalytic

concerns have arose , MD5 was most widely used secure hash

algorithm. It is a widely-used 128-bit hash function, used in

various applications Including SSL/TLS, IPSec, and many

other cryptographic protocols. The MD5 algorithm breaks a

sleeve into 512 bit input blocks. Every block is run from side

to side a series of functions to produce a exceptional bit hash

value for the sleeve[1].This paper explain how to design MD

160 algorithm and how MD 160 is more secure than past 128

bit hash algorithms.

2. HASH FUNCTION
A hash function H is a transformation that takes a variable-

size input m and proceeds a fixed-size string, which is called

the hash value h .Hash functions with just this property have a

variety of general computational uses, but when working in

cryptography the hash functions are regular chosen to have

some supplementary properties. This is a contract in lots of

programming languages that allocate the user to dominate

equality and hash functions for an object, that if two objects

are the same their hash codes must be the same. Hash

functions compress a n (arbitrarily) large number of bits into a

small number of bits.

The hash function properties are:-

 Output does not reveal information on input.

 Hard to find collisions (different messages with

same hash).

 One way cannot be reversed.

3. STRENGTH OF MD 160
Every hash function with more inputs than outputs will

essentially have collisions. This hash function MD-160 that

generate 160 bits of output from an randomly large input.

Since it must generate one of 2160 outputs for each member of

a much larger set of inputs, the pigeon hole opinion

guarantees that some inputs will hash to the same output.

Collision conflict doesn't mean that no collisions exist; simply

that they are hard to find. The birthday "paradox" spaces an

upper bound on collision conflict: if a hash function generate

N bits of output, an attacker who computes "only" 2N/2 hash

operations on arbitrary input is likely to find two matching

outputs. If there is an easier method than this brute force

attack, it is typically measured a flaw in the hash function.

Cryptographic hash functions are usually considered to be

collision resistant. But many hash functions that were once

thought to be collision resistant were later broken. MD5 and

SHA-1 in exacting both have published approaches more

efficient than brute force for pronouncement collisions.

However, some compression functions have a proof that

pronouncement collisions are at least as difficult as some hard

mathematical problem (such as integer factorization or

discrete logarithm). Those functions are called provably

secure.

4. DATA INTEGRITY
Data integrity assertion and data basis authentication are

important security services in an economic statement,

electronic business, electronic mail, software distribution, data

storeroom and so on[3]. The messages are broadest of

verification within computing systems Encompasses

uniqueness authentication, meaning source Authentication and

message contented authentication. One that deals with

individual message only without regard to large context

generally provides protection against message modification

only. Data integrity is compulsory within a record at its design

steps. from beginning to the end use of standard

rules and procedures, and is maintained through the use of

error inspection and validation routines[3].

Data integrity divided are four categories:-

 Entity integrity

 Domain integrity

 Referential integrity

 User-defined integrity

4.1 Entity integrity
Entity Integrity ensures that there are no replica reports within

the table and that the field that identifies each documents

within the table is matchless and never null.

4.2 Domain integrity
Domain Integrity mostly used for business rules. A domain is

the position of all probable values for a given element. A

domain integrity check usually just called a domain constraint

is a rule that defines these legal values.

4.3 Referential integrity
Referential integrity is a main property of data which are

required for one attribute. Referential integrity is a record

http://en.wikipedia.org/wiki/SHA-256
http://en.wikipedia.org/wiki/Discrete_logarithm

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

23

thought that ensures that associations between tables remain

consistent. Referential integrity works for RDBMS.

 Fig4: Data Integrity System

4.4 User-defined integrity
User Define Integrity most commonly define by user that

involve in the business. User-defined integrity allows you to

define precise business rules that do not descend into one of

the other integrity categories.

5. MD 160 BIT ALGORITHM
MD 160 is an algorithm that is used to authentic data

integrity from side to side the creation of a 160-bit message

digest from data input that is claimed to be as exceptional to

that explicit data as a fingerprint is to the explicit person. This

algorithm is designed on the base of MD5 that was designed

by R. Rivest in 1991. In 1993 some weaknesses in it’s

propose be critical exposed. In 2004 meticulous Wang et al.

generated a collision for MD5, accessible at Euro Crypt 2005

in [4]. Authors in [5] and [6] then extended this collision

construction method, leading to the surprising result presented

in [7] at the beginning of 2009. The authors devised a

convenient attack situation, where they successfully created a

scoundrel digital identity certificate issued by an unconscious

real-world Certification Authority (CA) and trusted by all

common web browsers. The MD5 hash function was

developed in 1994 developed by Professor Ronald L. Rivest

of MIT, is intended for use with digital signature .Changing

for one digit in any of the input blocks should have a

cascading produce that finally alters the hash results[2]. MD5

algorithm is to produce a message digest of information in

organize to prevent tampering. We view the entire file as a

large text message, and result in a unique MD5 message

digest by the irreversible string alteration method. In the

future, if the stuffing of file are changed, we only recalculate

MD5 message digest of this categorizer and will find the

difference from the original message digest. MD5 is one of

the most admired hash functions for many applications such

as IPsec [9].we have enthusiastic comparison with MD5, we

arbitrarily change 1 to 1024 bits in plain text in that order, and

for every adjust we repeat our algorithm and MD5 each for 20

time and record the normal rate of difference in message

digests. The authentication does not need to order the original

data but only need to have a valuable digest to authenticate

the identity of client. This reduces the prospect that original

data grasped by the intruder significantly and guarantees the

information security. Let’s See it design from 160 bit message

digest algorithm:-

5.1 Padding Bits
The message is "padded" (extended) so that its length (in bits)

is congruent to 448, modulo 512. That is, the message is

extended so that it is just 64 bits shy of being a multiple of

512 bits long. Padding is always performed, even if the length

of the message is already congruent to 448, modulo

512.Padding is performed as follows: a single "1" bit is

appended to the message, and then "0" bits are appended so

that the length in bits of the padded message becomes

congruent to 448, modulo 512. In all, at least one bit and at

most 512 bits are appended [11].

5.2 Append length
A 64-bit representation of b (the length of the message before

the padding bits were added) is appended to the result of the

previous step. In the unlikely event that b is greater than 2^64,

then only the low-order 64 bits of b are used [11].

5.3 Initialize MD Buffer
A Five-word buffer (A, B, C, D, E) is used to compute the

message digest. Here each of A, B, C, D, E is a 32-bit register.

These registers are initialized to the following values in

hexadecimal, low-order bytes first.

 Word A: 01 23 45 67

 Word B: 89 ab cd ef

 Word C: fe dc ba 98

 Word D: 76 54 32 10

 Word E: c3 d2 d1 f0

This step uses a 80-element table T[1 ... 80] constructed from

the sine function.

Do the following:

 /* Process each 16-word block. */

 For i = 0 to N/16-1 do

 /* Copy block i into X. */

 For j = 0 to 20 do

 Set X[j] to M[i*16+j].

 end /* of loop on j */

/* Save A as AA, B as BB, C as CC, and D as DD,E as EE. */

 AA = A

 BB = B

 CC = C

 DD = D

 EE = E

 /* Round 1. */

 /* Let [abcd k s i] denote the operation

 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */

 /* Do the following 20 operations. *

 [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3]

[BCDA 3 22 4]

 [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7

22 8]

 [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11]

[BCDA 11 22 12]

 [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]

[BCDA 15 22 16]

 [ABCE 16 7 17] [EABC 17 12 18] [CEAB 18 17 19]

[BCEA 19 22 20]

 /* Round 2. */

 /* Let [abcd k s i] denote the operation

 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */

 /* Do the following 20 operations. */

How do secure my

firewall

How do find

Virus in my pc

Virous in my

pc

DATA

INTEGRITY

How do secure

my computer

How do

secure my

network

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

24

[ABCD 1 5 21] [DABC 6 9 22] [CDAB 11 14 23] [BCDA 0

20 24]

 [ABCD 5 5 25] [DABC 10 9 26] [CDAB 15 14 27]

[BCDA 4 20 28]

 [ABCD 9 5 29] [DABC 14 9 30] [CDAB 3 14 31]

[BCDA 8 20 32]

 [ABCD 13 5 33] [DABC 2 9 34] [CDAB 7 14 35]

[BCDA 12 20 36]

 [ABCE 1 5 37] [EABC 6 9 38] [CEAB 11 14 39] [BCEA

0 20 40]

 /* Round 3. */

 /* Let [abcd k s t] denote the operation

 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */

 /* Do the following 20 operations. */

[ABCD 5 4 41] [DABC 8 11 42] [CDAB 11 16 43] [BCDA

14 23 44]

 [ABCD 1 4 45] [DABC 4 11 46] [CDAB 7 16 47]

[BCDA 10 23 48]

 [ABCD 13 4 49] [DABC 0 11 50] [CDAB 3 16 51]

[BCDA 6 23 52]

 [ABCD 9 4 53] [DABC 12 11 54] [CDAB 15 16 55]

[BCDA 2 23 56]

 [ABCE 5 4 57] [EABC 8 11 58] [CEAB 11 16 59]

[BCEA 14 23 60]

 /* Round 4. */

 /* Let [abcd k s t] denote the operation

 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */

 /* Do the following 20 operations. */

[ABCD 0 6 61] [DABC 7 10 62] [CDAB 14 15 63] [BCDA 5

21 64]

 [ABCD 12 6 65] [DABC 3 10 66] [CDAB 10 15 67]

[BCDA 1 21 68]

 [ABCD 8 6 69] [DABC 15 10 70] [CDAB 6 15 71]

[BCDA 13 21 72]

 [ABCD 4 6 73] [DABC 11 10 74] [CDAB 2 15 75]

[BCDA 9 21 76]

 [ABCE 0 6 77] [EABC 7 10 78] [CEAB 14 15 79]

[BCEA 5 21 80]

 /* Then perform the following additions. (That is

increment each of the four registers by the value it had before

this block was started.) */

 A = A + AA

 B = B + BB

 C = C + CC

 D = D + DD

 E = E + EE

 end /* of loop on i */

5.4 Process Message in 16-Word Blocks
This is the heart of the algorithm, which includes four

“rounds” of processing. We take as input three 32-bit words

and produce as output one 32-bit word [11]

 F(X,Y,Z) = XY v not(X) Z

G(X,Y,Z) = XZ v Y not(Z)

H(X,Y,Z) = X xor Y xor Z

I(X,Y,Z) = Y xor (X v not(Z))

5.5 Outputs
The L 512-bit blocks have been processed, the output from

L^th age is the 160-bit message digest.

Fig 5.5: MD 160 output

6. RESULT
Hence when 160 bit is used in place of 128 bit Message

Digest, collision is reduced and security is improved. Even

this scheme is of 160 bits and need 280 bits for birthday

paradox but it is strong enough for the first and second pre

image attack. We can extend the length of hash to 256 or 512

bits to be more resistible against birthday attack which

compared with its ancestors, is more powerful.

In cryptography, a brute force attack or exhaustive key

search is a strategy that can be used against in any encrypted

data [15] theoretically by an attacker who is unable to take

advantage of any flaws in an encryption system that would

otherwise make his/her task easier.

The analysis of string by cryptool and comparison is done

sequentially by the tools like entropy, floating frequency,

histogram, n-gram, autocorrelation that are explained in detail

in the following paragraphs.

 A B C D E

E

A B C D E

M[i]

]

T[i]

+

+ F

<<<s

FOX Hash

function

7A C5 AA 30 35

6F 51 40 02 C9

4C 26 9D F6 BE

65
Hash

function

51 B0 4F BF 28

2E FD FD 52 84

F7 64 99 5D 89

7A

Hash

function

71 1B A8 A0 E8

10 DF 8D FD 45

1F 7B 4F EC FF

BB

9A 20 C3 A2 40

18 F5 93 90 99 27

B1 36 56 F7 5E

Hash

function

THE RED

BOX WALK

ACROSS ICE

iceIce
THE RED

BOX SLOW

RUN CROSS

ICE

THE RED

BOX RUN

ACROSS ICE

Input String Hash Data (160 bit)

Fig 5.0: Conversion of hash value

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

25

6.1 Entropy
The entropy of a source thus indicates its characteristic

distribution. It measures the average amount of information

which one can obtain through observation of the source or,

conversely, the indeterminacy which prevails over the

generated messages when one cannot observe the source.

Table 1 Calculate the entropy

S.N String
Entropy (maximum

possible entropy 4.70)

1 FOX 1.58

2
THE RED BOX RUN

ACROSS ICE
3.65

3
THE RED BOX WALK

ACROSS ICE
3.78

4
THE RED BOX SLOW

RUN ACROSS ICE
3.80

6.2 Floating Frequency
The floating frequency is the character which occurs most

frequently. The input must contain at least 64 character(s)

from the current alphabet. Calculate the all string Table 1.

Fig 6.2: Floating frequency

6.3 Histogram
A histogram is one of the basic quality tools. It is used to

graphically summarize and display the distribution and

variation of a process data set. The main purpose of a

histogram is to clarify the presentation of data.

Fig 6.3: Histogram display

6.4 N-Gram
N-grams are essential in any task in which we have to identify

words in noisy, ambiguous input. N-gram is a adjacent

sequence of n items from a given sequence of text or speech.

Fig 6.4: N-gram

6.5 Auto correction
This auto correction functionality is usually implemented by

finding the string that is most similar to the given search

string. The difference between two strings or minimum

operation required to transform one string to another string is

called edit distance between two strings. So edit distance is

calculated between each string in database and given search

string, the string having minimum edit distance cost is

selected for the results.

Fig 6.5 Auto correction

7. CONCLUSION
The simplified MD5 message-digest algorithm is simple to

implement, and provides a ”fingerprint” or message digest of

a message of random length. It is conjectured that the

complexity of two messages having the same message digest

is of the order of 2ˆ64 operations, and that the complexity of

any message having a given message digest is of the order of

2ˆ160 operations. The Message Digest 128 bit algorithm

is slightly cheaper to compute, however Message Digest

Algorithm 128 is currently very vulnerable to collision

attacks. Message digest compresses any stream of bytes into a

160 bit value. This compression goes only in one dimension.

If you give the hash of a random stream of bytes to someone,

there is no theoretical way for them to go back to unique

stream of bytes.

http://en.wikipedia.org/wiki/Sequence

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.5, January 2012

26

7. REFERENCES
[1] R.Rivest. The MD5 Message-Digest Algorithm

[rfc1321]

[2] Janaka Deepakumara, Howard M. Heys and R.

Venkatesan, FPGA IMPLEMENTATION OF MD5

HASH ALGORITHM, FacuIq of Engineering and

Applied Science Memorial University of Newfoundland

St. John S, NF, Canada.

[3] Danyang Cao, Bingru Yang, Design and

implementation for MD5-based data integrity

checking system, College of Information Engineering,

North China University of Technology

, NCUT Beijing 100144, China

[4] X. Wang and H. Yu, “How to Break MD5 and Other

Hash Functions”, in: Ronald Cramer (ed.), Advances

in Cryptology - EUROCRYPT 2005, vol. 3494 of

Lecture Notes in Computer Science, pages 19-35,

Springer,2005.

[5] M. Stevens, “On collisions for MD5”, MSc

Thesis,Eindhoven University of Technology, June 2007

[6] M. Stevens, A. Lenstra and B. de Weger “Chosen-prefix

Collisions for MD5 and Colliding X.509 Certificates for

Different Identities”, in Moni Naor (eds), Science, pages

1-22, Springer Verlag, Berlin, 2007.

[7] A. Sotirov, M. Stevens, J. proceedings of Advance in

Cryptology - EUROCRYPT 2007, vol. 4515 of

 Lecture Notes in Computer Appelbaum, A. Lenstra, D.

Molnar, D.A. Osvik, B. de Weger, “MD5 considered

harmful today: Creating a rogu CA certificate”, 2009.

[8] Kimmo Järvinen, Matti Tommiska and Jorma Skyttä,

Hardware Implementation Analysis of the MD5 Hash

Algorithm, Helsinki University of Technology Signal

Processing Laboratory Shenyang, China Otakaari 5 A,

FIN-02150, Finland

[9] “IP Security Protocol (ipsec),”

http://www.ietf.org/html.charters/ipsec-charter.html

[10] Janaka Deepakumara, Howard M. Heys and R.

Venkatesan, FPGA IMPLEMENTATION OF

MD5 HASH ALGORITHM, FacuIq of Engineering and

Applied Science Memorial University of Newfoundland

St. John S, NF, CanadaA I B 3x.

[11] MD5 Algorithm Description,

http://www.cotse.com/CIE/RFC/1321/7.htm.

[12] Goldwasser, S. and Bellare, M. "Lecture Notes on

Cryptography". Summer course on cryptography, MIT,

1996-2001

[13] M.M.J. Stevens (June 2007). On Collisions forMD5.

http://www.win.tue.nl/hashclash/On%20Collisions%20fo

r%20MD5%20-%20M.M.J.%20

[14] Xiaoyun Wang, Yiquin Lisa Yin, Hongobo Yu. Finding

Collisions in the Full SHA-1.

http://people.csail.mit.edu/yiqun/SHA1AttackProceeding

Version

[15] Christof Paar, Jan Pelzl, Bart Preneel

(2010). Understanding Cryptography: A Textbook for

Students and Practitioners. Springer.

p. 7. ISBN 3642041000

http://www.ietf.org/html.charters/ipsec-charter.html
http://www.cotse.com/CIE/RFC/1321/3.htm
http://www.cotse.com/CIE/RFC/1321/7.htm
http://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-%20M.M.J.
http://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-%20M.M.J.
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/3642041000

