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ABSTRACT 

Dempster-Shafer Theory (DST) of Evidence is a powerful and 

flexible mathematical tool for handling uncertainty, 

impreciseness, and incomplete information. It can be used 

when both epistemic and aleatory uncertainties are present in 

the problem under consideration. The fundamental and 

important object of this theory of evidence is the primitive 

function called basic probability assignment (bpa). In the 

absence of empirical data, experts in related fields provide 

necessary information (bpa).  However how to obtain BPA is 

still an open issue. In this paper, we propose methods to 

determine BPA when only the minimum, maximum and most 

likely values of the parameter are known. An example is 

illustrated to demonstrate and check the efficiency of the 

proposed methods. We have also developed an extended 

version of uncertainty measurement in evidence theory in 

order to calculated total uncertainty in the body of evidence 

obtained by the proposed methods. 

Keywords: Evidence Theory, Basic Probability Assignment, 

Fuzzy Set 

1 INTRODUCTION 

Modelling real problems typically involves processing 

uncertainty of three types. Uncertainty due to randomness 

(Aleotary uncertainty), uncertainty due to lack of specification 

and uncertainty due to ambiguity about set boundaries 

(fuzziness). Traditionally probability theory is used to deal 

with aleatory uncertainty and fuzzy theory takes care of 

fuzziness. Dempster put forward a theory and now it is known 

as evidence theory or Dempster- Shafer theory (1976). This 

theory is nowadays widely uses for the epistemic and aleatory 

uncertainty analysis. The use of Dempster-Shafer theory in 

risk analysis has many advantages over the conventional 

probabilistic approach. It provides convenient and 

comprehensive way to handle engineering problems 

including, imprecisely specified distributions, poorly known 

and unknown correlation between different variables, 

modelling uncertainty, small sample size, and measurement 

uncertainty. The fundamental and important object of this 

theory of evidence is the primitive function called basic 

probability assignment (bpa). But how to obtain basic 

probability is still open issue. Various researchers tried to 

address this problem using different methods. S. P. 

Kurkowska et al. 2000 [4] calculated BPA in Diagnosis 

support considering actual population. Z. Zuo et al 2009 [6] 

proposed a method of rough set theory based on random set 

and BP neural network to obtain BPA. Z. Yibing et al, 2010 

[5] developed method to assign BPA based on fuzzy 

subordinate. W. Jiang et al, 2011 [7] proposed a new method 

to obtain BPA based on distance measure between the sample 

data under test and model of attribute of species. In this paper, 

we also propose three methods of assigning BPA when only 

three values of the parameter are known, viz. minimum, 

maximum and most likely value.  

2 BASIC CONCEPT OF FUZZY SET 

THEORY 

Environmental/human health risk assessment is an important 

aid in any decision-making process in order to minimize the 

effects of human activities on the environment. Unfortunately, 

usually environmental data tends to be vague and imprecise, 

so uncertainty is associated with any study related with these 

kinds of data. Fuzzy set theory provides a way to characterize 

the imprecisely defined variables, define relationships 

between variables based on expert human knowledge and use 

them to compute results. In this section, some necessary 

backgrounds and notions of fuzzy set theory [3] that will be 

required in the sequel are reviewed.  

Definition 2.1 Let X be a universal set. Then the fuzzy subset 

A of X is defined by its membership 

function : [0,1]A X   

Which assign a real number ( )A x in the interval [0, 1], to 

each element x A , where the value of ( )A x  at x shows 

the grade of membership of x in A.
 

Definition 2.2 Given a fuzzy set A in X and any real number 

α   [0, 1]. Then the α -cut or α -level or cut worthy set of A, 

denoted by α A is the crisp set 

 : ( )AA x X x    
 

The strong a cut, denoted by α +A is the crisp set
 

 : ( )AA x X x      

Definition 2.3 The support of a fuzzy set A defined on X is a 

crisp set defined as  

Supp (A) =  : ( ) 0Ax X x 
 

Definition 2.4 The height of a fuzzy set A, denoted by h(A) is 

the largest membership grade obtain by any element in the set 

and it is denoted as  

 

 

Definition 2.5 A fuzzy number is a convex normalized fuzzy 

set of the real line R whose membership function is piecewise 

continuous. 
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Definition 2.6 A triangular fuzzy number A can be defined as 

a triplet [a, b, c]. Its membership function is defined as:  

,

( )

,
A

x a
a x b

b a
x

c x
b x c

c b




  

 
  

 

 

Definition 2.7 A trapezoidal fuzzy number A can be 

expressed as [a, b, c, d] and its membership fuzzy number is 

defined as: 

,

( ) 1,

,

A

x a
a x b

b a

x b x c

d x
c x d

d c




  


  
 
  

  

3 BASIC CONCEPTS OF DEMPSTER-

SHAFER THEORY OF EVIDENCE  

Evidence theory [2] is one of the important tools to handle 

both aleatory and epistemic uncertainty. The use of Dempster-

Shafer theory in risk analysis has many advantages over the 

conventional probabilistic approach. It provides convenient 

and comprehensive way to handle engineering problems 

including, imprecisely specified distributions, poorly known 

and unknown correlation between different variables, 

modelling uncertainty, small sample size, and measurement 

uncertainty. 

A frame of discernment (or simply a frame), usually denoted 

as is a set of mutually exclusive and exhaustive 

propositional hypotheses, one and only one of which is true. 

Evidence theory is based on two dual non-additive measure, 

i.e. belief measure and plausible measure. There is one 

important function in Dempster-Shafer theory to define belief 

measure and plausible measure which is known as basic 

probability assignment (bpa). 

A function : 2 [0,1]m    is called basic probability 

assignment (bpa) on the set   if it satisfies the following 

two conditions: 

( ) 0m    

( ) 1
A

m A


  

Where   is an empty set and A is any subset of . 

The Basic Probability Assignment function (or mass function) 

is a primitive function. Given a frame,  , for each source of 

evidence, a mass function assigns a mass to every subset of 

 , which represents the degree of belief that one of the 

hypotheses in the subset is true, given the source of evidence. 

The subset A of frame   is called the focal element of m, if 

m (A) > 0. 

Using the basic probability assignment (bpa), belief measure 

and plausibility measure are respectively determined as 

( ) ( ),
B A

Bel A m B A


 
 

and  ( ) ( )
B A

Pl A m B


   

Here m(B) is the degree of evidence in the set B alone, 

whereas Bel(A) is the total evidence in set A and all subset B 

of A and the plausibility of an event A is the total evidence in 

set A, plus the evidence in all sets of the universe that intersect 

with A. Where Bel(A) and Pl(A) represent the lower bound 

and upper bound of belief in A. Hence, interval [Bel(A) , 

Pl(A)] is the range of belief in A . 

Given two mass functions m1 and m2, Dempster-Shafer theory 

also provides Dempster's combination rule for combining 

them, which is defined as follows: 

1 2

1 2

( ) ( )

( )
1 ( ) ( )

A B C

A B

m A m B

m C
m A m B













 

4 UNCERTAINTY QUANTIFICATION 

The concept [1] of information is intimately connected with 

the concept of uncertainty. The most fundamental aspects of 

this connection is that uncertainty involved in any problem 

solving situation is a result of some information deficiency. 

Information (pertaining to the model within which the 

situation is conceptualized) may be incomplete, imprecise, 

fragmentary, not fully reliable, vague, contradictory, or 

deficient in other ways. In general, these various information 

deficiencies may result in different types of uncertainty. 

Uncertainty based information was first conceive in terms of 

classical set theory and, later, in terms of probability theory. 

In addition to classical set theory and probability theory, 

uncertainty based information is now well understood in fuzzy 

set theory, possibility theory and evidence theory. 

Three types of uncertainty are now recognized in the five 

theories, in which measurement of uncertainty is currently 

well established. They are: nonspecificity (or imprecision), 

which is connected with sizes (cardinalities) of relevant sets of 

alternatives; fuzziness (or vagueness), which results from 

imprecise boundary of fuzzy sets; and strife (or discord), 

which expresses conflicts among the various sets of 

alternatives. In this section we briefly explain the different 

uncertainty measure.  

4.1 Uncertainty in Crisp Set 

4.1.1 Nonspecificity of crisp sets: 

Measurement of uncertainty (and associated information) was 

first conceived in terms of classical set theory. It was shown 

by Hartley (1928) that using a function form the class of 

function 

( ) .log | |,bU A c A  

Where | |A denotes the cardinality of a finite nonempty set 

A, and b, c are positive constant (b>1, c>0), is the only 

sensible way to measure the amount of uncertainty associated 

with a finite set of possible alternatives. Each choice of values 

of the constant b and c determines the unit in which 

uncertainty is measured. When b = 2 and c =1, which is the 

most common choice, uncertainty is measured in bits, and we 

get 

2( ) log | | ...(1)U A A
 

The function U is called Hartley function. The form (1) is 

applicable only for finite sets. However, this form may be 

approximately modified to infinite sets on R. Given a 
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measurable and Lebesgue-integral subset A of R, the 

corresponding Hartley function is given by  

( ) log[1 ( )] ...(2)U A A 
 

where µ(A) is the measure of A defined by the Lebesgue 

integral of the characteristic function of A. For instance, when 

A is an interval [a, b] on R, then µ(A) = b - a and  

( ) log[1 ]U A b a  
 

4.2. Uncertainty in Fuzzy Set Theory 

4.2.1 Nonspecificity  of Fuzzy Sets: 

A natural generalization of the Hartley function from classical 

set theory to fuzzy set theory was proposed in the early 1980s 

under the name U-uncertainty. For any nonempty fuzzy set A 

defined on a finite universal set X, the generalized Hartley 

function has the form: 

 
( )

2
0

1
( ) log ... 3

( )

h A

U A A d
h A

    

Where A

 denotes the cardinality of the α-cut of A and 

h(A) is the height of A.  

When a nonempty fuzzy set A is defined on R, and the α-cuts 

of αA are infinite sets, we have to calculate U(A) by modified 

the form  

 
( )

2
0

1
( ) log [1 ( )] ... 4

( )

h A

U A A d
h A

    

which is a generalization of (2). It is assume that αA is a 

measurable and Lebesgue-integral function; µ(
αA ) is the 

measure of 
αA defined by the Lebesgue integral of the 

characteristic function of αA. As for continuous fuzzy set α-

cuts produces close interval i.e., αA = [A1(α), A2(α)], then µ(
αA 

)= [A2(α) - A1(α)]. So, (4) becomes 

 
( )

2 2 1
0

1
( ) log [1 ( ) ( )] ... 5

( )

h A

U A A A d
h A

    

 

4.2.2. Fuzziness of fuzzy sets: 

Other than nonspecificity, fuzzy sets have one more form of 

uncertainty and that is fuzziness. 

There are different ways of measuring fuzziness but the 

following is the most frequently used. For a fuzzy set A, 

defined on an universal set X, the fuzziness f(A) is given by  

f(A) =  {1 - 2A(x) - 1: xX}. 

If X is some interval of R, say X = [a, b], then the above 

formula is replaced by  

( ) (1 2 ( ) 1)
b

a
f A A x dx   f(A)  

4.3. Uncertainty in Evidence Theory: 

In evidence theory two types of uncertainty, nonspecificity 

and strife coexist and both are measured in the same units. 

 

 

4.3.1 Nonspecificity 

The Hartley function, as a measure of nonspecificity, was first 

generalized from classical set theory, fuzzy set theory and 

possibility theory. Once this generalization function, the U-

uncertainty, was well established in possibility theory, a 

special branch of evidence theory, it was relatively easy to 

generalized it further and make it applicable within all of 

evidence theory. 

For a body of evidence (, m), the nonspecificity is defined 

by the formula 

2( ) ( ) log ...(6)
A

N m m A A


  

4.3.2 Strife 

The another uncertainty, strife, of evidence theory is defined 

by the formula 

2( ) ( ) log ( ) ...(7)
A B

A B
S m m A m B

A 


   

Since the two types of uncertainty, nonspecificity and strife, 

coexist in evidence theory, and both are measured in the same 

units, it is reasonable to consider the possibility of adding 

their individual measure to form a measure of total 

uncertainty. The total uncertainty is defined by the formula: 

2 2

2

2

( ) ( ) ( )

( ) log ( ) log ( )

( ) log ...(8)
( )

A A B

A

B

NS m N m S m

A B
m A A m A m B

A

A
m A

m B A B

  





 


 




  




 

This is applicable only when the focal elements of the body of 

evidence are finite. We have proposed an approximate 

modification of (8) to be applicable for infinite case. In the 

proposed modification A is replaced by [1 + (A)], where 

µ(A) is the measure of A defined by the Lebesgue integral of 

the characteristic function of A. So the total uncertainty is 

given by  

2

2

[1 ( )]
( ) ( ) log ...(9)

( )[1 ( )]A

B

A
NS m m A

m B A B










 



 

  In particular for A = [1, b] (A) = b – a. So (9) takes the 

form
 

2

2

[1 ]
( ) ( ) log ...(10)

( )[1 ]A

B

b a
NS m m A

m B d c



 


 



 

In the sequel we will be using the form (10) for calculation of 

uncertainty for a body of evidence. 

5. Proposed Methods to obtain BPA 

In this section we proposed three new methods of bpa 

assignment when only information about the parameter is the 

minimum, maximum and most likely value. Generally in such 

a situation, the parameter is expressed a triangular fuzzy 

number with [min, max] as support and the most likely value 

as core. Then there is a standard procedure of obtaining focal 

elements from a fuzzy number and assigning bpas. For that n 
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number of equally spaced -cuts are considered which gives n 

nested intervals. These nested intervals are the focal elements 

and each interval is assigned the bpa 1/n.  In all the proposed 

methods we also consider a triangular fuzzy number with the 

[min, max] as support and the most likely value as core. We 

then discretize the fuzzy number by considering finite number 

of alpha-cuts. That gives a family of nested intervals. 

Considering these nested intervals as focal elements we assign 

bpa by different approaches.  

The focal elements are given by the alpha-cut as 

{ : ( ) } [ , ], ( 1,2,3..., )
lower upperi A i i iA x x A A i n       , 

with 
0 1 21 ... 0n         , 

where [0,1] . 

(I) In the first approach we first integrate the membership 

function between different alpha-cuts i.e.,  

 
( ) ( )

iupper

ilower

A

A
A

x dx





 

The using normalizing procedure the basic probability 

assignments associated to αAi is defined as  

  

  

( )

( )

( )

( )

( )

iupper

ilower

iupper

ilower

A

A
A

i A

A
A

i

x dx

m A

x dx


















 

(II) In the second approach BPA is assigned as 

 

1

1

(1 )
( )

(1 )

i i
i

i i

i

m A  

 








 

(III) In the third approach each -cut is considered as a 

confidence interval with level of confidence 1 - . 

Consequently using normalization procedure, the BPA for the 

focal element is assigned as 

 
1

( )
(1 )

i
i

i

i

m A 






  

5.1. Numerical Example: 

To demonstrate and make use of the proposed methods we 

consider an example. We consider a the fuzzy number A = [2, 

6, 10] having membership function  

2
,2 6

4
( )

10
,6 10

4

A

x
x

x
x

x




 

 
  



 

BPA is calculated using our proposed methods and which are 

given in the following table1, table 2 and table 3 respectively. 

Here we have considered alpha-cuts corresponding to α0=1, 

α1= 0.8, α2= 0.6, α3= 0.4, α4= 0.2, α5= 0.0. 

 

Focal 

Elements 

[5.2, 

6.8] 

[4.4, 

7.6] 

[3.6, 

8.4] 

[2.8, 

9.2] 

[2, 

10] 

BPA 0.095 0.168 0.221 0.253 0.263 

 

Table 1: BPA obtained from fuzzy number using method 

(I) 

Focal 

Elements 

[5.2, 

6.8] 

[4.4, 

7.6] 

[3.6, 

8.4] 

[2.8, 

9.2] 

[2, 10] 

BPA 0.1429 0.2286 0.2571 0.2286 0.1429 

 

Table 2: BPA obtained from fuzzy number using method 

(II) 

Focal 

Elements 

[5.2, 

6.8] 

[4.4, 

7.6] 

[3.6, 

8.4] 

[2.8, 

9.2] 

[2, 

10] 

BPA 0.067 0.133 0.200 0.267 0.333 

 

Table 3: BPA obtained from fuzzy number using method 

(III) 

The total uncertainty is calculated in each of the above cases 

using (10).  

Total Uncertainty 

Method I Method II Method III 
Existing 

Method 

 

1.9308 

 

 

1.8224 

 

 

1.9852 

 

 

1.8335 

 

 

From the BPAs obtained from the three approaches we have 

calculated cumulative Plausibility and Belief measures. The 

figures below depict the bound of uncertainty.    

           Plausibility and Belief obtained from Method-I 
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 Plausibility and Belief obtained from Method-II 

 

       Plausibility and Belief obtained from Method-III 

Plausibility and Belief obtained from the existing standard 

method 

 

Superimposition of the measures obtained by four different 

approaches is depicted below:  

Red: Method I 

Blue: Method II 

Black: Method III 

Orange: Existing method 

6. Conclusion: 

Evidence Theory is a branch of mathematics that concerns the 

combination of empirical evidence in an individual's mind in 

order to construct a coherent picture of reality. It is an 

important tool of uncertainty modelling when both epistemic 

and aleatory uncertainties are present in the problem under 

consideration. In the absence of empirical data, experts in 

related fields provide necessary information. The fundamental 

and important object of this theory of evidence is the primitive 

function called basic probability assignment (bpa). The 

method of assigning bpas depends upon the problem under 

consideration and so it is an open issue. Various researchers 

have dealt with this issue. We have considered the situation 

when the only information available about the parameter 

under consideration is minimum value, maximum value and 

the most likely value. In general in such a situation a 

triangular fuzzy set (or a possibility distribution as the case 

may be) is considered with support as the interval [min, max] 

and the most likely value as the core. There is a standard 

procedure of obtaining focal elements from a fuzzy number 

and assigning bpas. However we feel that as the fuzzy number 

is obtained only from the information of the minimum, 

maximum and the most likely value, the existing procedure of 

assigning bpas may not be always reasonable. We have 

proposed three ways of assigning bpas in such situation. The 

three methods are compared with the existing standard method 

using a numerical example. We have also calculated total 

uncertainty in each of the cases. Total uncertain is seen least 

in Method II. That is also evident from the figure showing the 

superimposition of all the methods. We do not claim any 

method to be best. It all depends upon the underlying 

problem. We should clearly understand what the uncertain 

parameter actually represents and should know the nature of 

the uncertainty involved with the parameter before applying 

one or the other method of assigning bpa. 
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