
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.3, January 2012

33

A Comparative Study: Data Compression on

TANGLISH Natural Language Text

S Sankar

Associate Professor, KCG College of Technology
Research Scholar, Hindustan University

Chennai, Tamilnadu, India

Dr. S Nagarajan
Professor and Head of Department of IT

Hindustan University
Chennai, Tamilnadu, India

ABSTRACT

In this age of information and in the era of distributed on-line

and mobile computing, one thing is on the rise at an

exponential rate is storage space for information. Growing

office automation, digitizing libraries, on-line business

transactions, and Meta data storage we need a huge storage

space. Since more and more new users become a part of the

Internet society the significance of data transmission develops

to a great extent as never prior to. If data to be stored or

transmitted represented efficiently this can be conquered. Data

compression techniques are playing a vital role in representing

the information. This paper investigates the use of lossless

data compression on the Tanglish language text and compares

the performance based upon Huffman coding.

Keywords

Lossless Data compression, Huffman coding, and Tanglish

Language.

1. INTRODUCTION
Data compression is a method of bit reduction technique that

uses a smaller amount of bits to represent information. The

purpose is to reduce the amount of memory space,

transmission bandwidth required. Also, it helps to increase

data transmission rate over wired or wireless networks. On the

other side, compressed data must be decompressed in order to

make use of them. Compression schemes are generally

classified into lossless and lossy. In lossless compression

schemes what is compressed can be recovered without any

loss of information. For that reason, they are appropriate to

compress only textual data where meaning and clarity of the

information is greatly anticipated. With lossy compression

schemes, there will be some loss of information during

decompression that is acceptable or unnoticed. So they are

suitable for processing audio and video files where loss of

resolution is ignored, depending on the preferred quality. The

method characterized in this study is a kind of lossless

compression used to compress a plain text.

A plain text is a form of highly unformatted text usually

consists of alphanumeric and control characters. These

characters are represented either in fixed length or variable

length in the form of binary numbers 0 and 1 while storing

and transmitting them. ASCII code and Unicode are fixed

length coded character set tables that comprise numbers,

letters, punctuation and various typographic and mathematical

symbols and other characters. Each character in the set is

represented by unique binary numbers. ASCII stands for

American Standard Code for Information Interchange

contains a set of 128 characters where the capital letter „A‟

has decimal number 65 and is not stored as it is rather as

1000001. A character in the ASCII table has 7 bit length.

Unicode is a Universal character set table contains 65535

characters that cover almost all the characters, punctuations,

and symbols in the world. UTF-8 (Unicode Transformation

Format in 8 bits) is a type of Unicode character set where each

character has 1 to 4 bytes long, for example, a Tamil language

character „அ‟ (read as „a‟) has decimal value 2949 and is

stored as 11100000 10101110 10000101. In a fixed length

code, each character has the same length, so it is possible to

calculate exactly where each character begins therefore it is

quicker to find a particular character for the decompression

but it occupies more memory.

Consider a message M having symbol set {abcaabcaaabbc}. If

it is represented in fixed length code as a=00, b=01 and c=10

then each bit string is a codeword for a symbol. Now the

message can be encoded as 00011000000110000000010110

where the total number of bits is 26. If a message contains n

number of distinct symbols then each symbol will require

exactly [log2 n] length of bits. In the example just given,

number of distinct symbols in the message is n=3, as a result

we need [log2 3] = 2 bits to represent each symbol. Grouping

of n bit length from the beginning of the encoded binary string

will result a symbol. By scanning from the beginning the first

two bits 00 results a symbol „a‟ and the next two bits 01 result

a symbol „b‟ and so on. If n bits are required to encode a

symbol, then 2n distinct symbols can be encoded. In ASCII,

each character has exactly 7 bit length, so that there are

27=128 distinct symbols. Total number of bits required to

encode complete message can be computed as, length of the

message * number of bits per symbol. Reducing the length of

the code is very important since the amount of time required

for the data transmission always proportional to the number of

bits required to encode it.

A variable length code comes with the solution for this where

each character will be represented with different length of

code. Suppose the symbols represented as a=0, b=10, and

c=01 then the entire message is encoded as 01001001001000

101001 where the total number of bits are 20 which is 23.08%

less compared to fixed length variable code. But the problem

with this is how to recognize the end of one codeword and the

beginning the next one during decode. The first bit is 0 and

the next bit is 1 so whether to decode it as 0 which is „a‟ or as

01 which is „c‟. Thus this is ambiguous. To prevail it a prefix

code is followed. A prefix code is a variable length code it

uses prefix rule where no codeword is a prefix of another.

Once a certain bit pattern is assigned as codeword of a

symbol, no other codeword should start with that bit pattern.

If a bit pattern 0 was assigned as the codeword of „a‟, then no

other codes could start with 0. Therefore the codeword for the

symbol „c‟ should not be 01 rather than it can be 11. If so, all

codeword can be unambiguously decodable since once we get

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.3, January 2012

34

a match, there is no longer codeword that can also match.

Various lossless variable length code algorithms have been

proposed and used. Some of the techniques in use are the

Huffman Coding, Run Length Encoding, Arithmetic Encoding

and Dictionary Based Encoding [8]. This paper studies the

efficiency of codeword created for the Tanglish language text

using Huffman coding.

2. HUFFMAN CODING
The Huffman code algorithm generates a prefix and variable

length codeword for a symbol based on the symbol

probability distribution pi, where i = 1, 2, 3. . . n. The

frequency distribution of all the symbols of the source is

calculated in order to calculate the probability distribution.

According to the probabilities, the codeword for each symbol

are assigned. It assigns shorter codeword for higher

probability symbols and longer codeword for smaller

probability symbols [8]. This algorithm is optimal in the sense

that the average number of bits required to represent a symbol

is minimized, subject to the constraint that the codeword

satisfies the prefix rule, as defined above. Average number of

bits required to encode the message can be computed as,

 where li is the codeword length of a symbol

and pi is the probability of a symbol [13]. The compression

ratio as a measure of efficiency has been considered and can

be calculated as, Compression ratio= (Compressed file

size/Source file size) * 100 % [8].

The idea behind the algorithm is, first construct an optimal

binary tree so-called Huffman tree which adopts a greedy

approach. The greedy method suggests construct a solution

through a sequence of steps, considering one input at a time.

At each step, make a locally optimal choice among the

currently available all feasible choices; once made it cannot be

changed on subsequent steps and that choice may lead to the

development of the globally optimal solution. An optimal

merging pattern is followed to construct the Huffman tree. In

which sort the symbols in increasing order based on their

probabilities (p1≤p2≤p3≤ . . . ≤pn). At each step merge two

smallest probability symbols together. If any two symbols

have equal probabilities, interchange them based on their

appearance in the ASCII or Unicode table. When more than

two sorted symbols are to be merged together, the merge can

be accomplished by repeatedly merging sorted symbols in

pairs. The leaf nodes represent the given symbols and are

called as external nodes. The remaining nodes are called as

internal nodes. Each internal node has exactly two children

and its value is obtained by merging the probabilities of its

two children. Tree is built in a bottom up fashion [14].

2.1 Algorithm for Huffman Tree
Input: Symbol set with their respective probability

distribution. (Probability of a symbol=frequency of a symbol /

total number of symbols in the message)

Output: Huffman Tree T+

1. Sort the symbol set based on their probability in non

decreasing order

2. Construct a forest tree F for the given symbol set where

each tree having only one node include the symbol and its

probability

3. Repeat {

3.1 Choose the nodes with the minimum and next to

minimum probabilities respectively

3.2 Create a new node T+. Node value for T+ = sum

(minimum probability node, next to minimum

probability node)

3.3 Attach a minimum probability node on left to T+ and

next to the minimum probability node on right to T+

3.4 Assign 0 to left branch and 1 to the right branch.

Insert T+ into F

3.5 Sort the tree F in non decreasing order

4. } Until (no more than one node tree in F)

5. Now F has only one tree T+. Output T+.

2.2 Encoding
A path from root of T+ to the corresponding leaf node defines

codeword for a particular symbol. Right margins should be

justified, not ragged.

2.3 Algorithm for Decoding
Input: Codeword generated during encode

Output: Symbol

1. Start from the root of the tree T+.

2. Examine the first bit in the input

3. If it is 1, move to the left child.

4. If it is 0, move to the right child.

5. If it is leaf node then output its symbol.

6. If it is not a leaf node then

6.1 Examine the next bit in the input

6.2 Go to step 3 and proceed

3. TANGLISH
Tanglish is a dialect in which a sentence is formed in Tamil

borrows words from English. It is an informal language. If it

is difficult to find appropriate Tamil words in writing or

verbal communication, identical word in English will be used

in place. Now it is becoming a fashionable language used by

Tamil speaking people in Tamilnadu, a southern state of

India. It is a new hybrid language where a sentence is formed

by mixing of linguistic features of both Tamil and English

even though both has a different syntactical pattern, has found

its way into the media - electronic and print [7].

A sentence in Tanglish language can be constructed in three

different forms:

Form 1: Inserting English word in the place of the Tamil

word in a sentence usually found in Tamil magazine and oral

communication

Form 2: Representing English word in Tamil usually found in

web pages

Form 3: Representing Tamil word in English frequently used

in SMS (Simple Message Service) messages and web pages

4. PROPOSED APPROACH
This paper applies the Huffman code technique on the above

said forms and compares the compression ratio to determine

which form is an efficient. A sentence, “car is breakdown” is

taken as a sample message for the demonstration. This

sentence can be written in Tanglish as:

Form 1: car breakdown aagivitathu

Form 2: kaar piraegtovun aagivitathu

Form 3: vakanam paLuthagi vitathu

The following section illustrates the creation of Huffman tree

and the codeword for these different forms of representation.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.3, January 2012

35

4.1 Data compression on Form1
Figure 1 shows Huffman tree generated for the message “car

breakdown aagivitathu”. Table 1 shows the codeword

generated for the same.

 25

 0 1

 9 16

 0 1 0 1

 4 a 8 8

 0 1 0 1 0 1

 r 4 4 4 4

 0 1 0 1 0 0 1

 i 2 2 2 2 t 2 2

 0 1 0 1 0 1 0 1 0 1 0 1

 d h v e w n c b g k u o

Fig 1: Huffman tree for Form1 message

The encoded message is now,

11000010010001100100110101011110110010111111011010

111000010111100100010100100011010111011001111110.

Average number of bits required to encode = 5 / 25 * 2 + 2 /

25 (3 + 3 + 4 + 4) + 1 / 25 (5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +

5 + 5 + 5)

= 98 / 25 = 3.92

Space required for actual message= 25 x 8 = 200 bits

Space required for encoded message= 98 bits

Compression ratio= 49%

Table 1. Codeword for Form1 message

Symbol Frequency Probability Codeword

a

r

i

t

d

h

v

e

w

n

c

b

g

k

u

o

5

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

5/25

2/25

2/25

2/25

2/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

1/25

01

000

001

1000

1101

10010

10011

10100

10101

10110

10111

11000

11001

11100

11101

11110

11111

4.2 Data compression on Form2

Figure 2 illustrates the Huffman tree generated for encoding

the message “kaar piraegtovun aagivitathu”. Table2

information is used to encode this message. The encoded

message is,

10100000011101111101010111110001011110000101011011

00100111010111100001000011110001101000010110111001

Average number of bits required to encode = 6 / 28 * 2 + 3 /

28 (3 + 3) + 2 / 28 (4 + 4 + 4 + 4 + 4) + 1 / 28 (5 + 5 + 5 + 5 +

5 + 5)

= 100 / 28

= 3.57

Space required for actual message= 28 x 8 = 224 bits

Space required for encoded message= 100 bits

Compression ratio= 44.64%

 28

 0 1

 12 16

 0 1 0 1

 a 6 8 8

 0 1 0 1 0 1

 t i 4 4 4 4

 0 1 0 1 0 1 0 1

 g u 2 2 v 2 r

 0 1 0 1 0 1

 k p o e n h

Fig 2: Huffman tree for Form2 message

Table2 lists the codeword generated for the above message.

Table 2. Codeword for Form2 message

Symbol Frequency Probability Codeword

a

t

i

g

u

v

r

k

p

o

e

n

h

6

3

3

2

2

2

2

2

1

1

1

1

1

1

6/28

3/28

3/28

2/28

2/28

2/28

2/28

2/28

1/28

1/28

1/28

1/28

1/28

1/28

00

010

011

1000

1001

1100

1110

1111

10100

10101

10110

10111

11010

11011

4.3 Data compression on Form3

Figure 3 shows the Huffman tree constructed for the message

“vakanam paLuthagi vitathu”. Table 3 shows the codeword

generated for the same. The actual message is now encoded

as,

11110110100011010101111010011011001111001100100000

0110111110100111111101100011000001100.

Average number of bits required to encode = 6 / 25 * 2 + 3 /

25 * 3 + 2 / 25 (3 + 3 + 4 + 4 + 4) + 1 / 25 (5 + 5 + 5 + 5 + 5 +

5)

= 87 / 25

= 3.48

 25

 0 1

 10 15

 0 1 0 1

 4 a 7 8

 0 1 0 1 0 1

 h t 4 4 4

 0 1 0 1 0 1

 2 2 u i 2 v

 0 1 0 1 0 1

 k n p g L m

Fig 3: Huffman tree for Form3 message

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.3, January 2012

36

Space required for the actual message

= Total number of symbols * 8 bits per symbol

= 25 x 8

= 200 bits

Space required for encoded message= 87 bits

Compression ratio= 43.5%

Table 3. Codeword for Form3 message

Symbol Frequency Probability Codeword

a

t

h

u

i

v

k

n

p

g

L

m

6

3

2

2

2

2

2

1

1

1

1

1

1

6/25

3/25

2/25

2/25

2/25

2/25

2/25

1/25

1/25

1/25

1/25

1/25

1/25

01

100

000

001

1100

1101

1111

10100

10101

10110

10111

11100

11101

5. RESULTS AND DISCUSSION
Ten different plaint text files written in English with different

sizes are considered. The file sizes are 2524 bytes, 2023 bytes,

3334 bytes, 2867 bytes, 4109 bytes, 2878 bytes, 4745 bytes,

5189 bytes, 5432 bytes, and 4901 bytes respectively. The

content of each file is translated into above mentioned three

different forms in Tanglish language and Huffman coding is

applied on each of them and the results are compared.

5.1 Results
Table 4 shows Huffman coding results where it summarizes

the results of average number of bits required to encode and

compression ratio for each file. According to the results

shown in Table4, for file 1 and 10 the algorithm generates

higher compression ratio in Form1. This happens due to the

direct use of actual English words in the place of Tamil words

at high rate. The files 4 and 6 has lower compression ratio

due to lesser use of actual English words.

Table 4. Huffman coding results

File

Average number of

bits required to

encode

Compression ratio

(%)

Form

1

Form

2

Form

3

Form

1

Form

2

Form

3

F1 3.92 3.57 3.48 49.00 44.64 43.50

F2 3.50 3.53 3.57 43.75 44.08 44.64

F3 3.55 3.53 3.47 44.32 44.12 43.38

F4 3.32 3.45 3.22 41.52 43.36 39.86

F5 3.95 3.91 3.77 49.39 48.94 47.14

F6 3.21 3.35 3.50 40.18 42.01 43.75

F7 3.87 3.84 3.81 48.40 48.06 47.70

F8 3.84 3.72 3.88 48.04 46.59 48.56

F9 3.90 3.87 3.87 48.84 48.38 48.38

F10 4.00 3.98 3.67 50.00 49.75 45.91

For all other files the compression ratio is almost same range

in Form1. In Form2, the files 5, 7, 9 and 10 has higher

compression ratio where it is found a large amount of actual

English words are written in Tamil words. In Form3, most of

the file has a lower compression ratio since average number of

bits required to encode message is less for each file than for

the same in Form 1 and 2.

5.2 Discussion
From the figure 4, it has been found that compression ratio

gradually decreasing in the order of Form1>Form2>Form3

and compressing the files saves the disk space and

transmission time. Also, we found from Table 1, 2 and 3 that

Huffman code generates a short codeword for the symbol

which has higher probability and lengthy codeword for the

symbol which has lower probability.

Fig. 4 Compression Ratio

38

40

42

44

46

48

50

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

File

P
e
r
c
e
n

ta
g

e

Form1 Form2 Form3

6. CONCLUSION
A lossless data compression algorithm is carried out on

different file. Each file is translated in three different forms of

Tanglish language and Huffman coding is applied on each of

them. The resulting compression ratios are compared. We can

observe that often placing directly actual English words in the

place of Tamil words in a Tanglish Language sentence turn

out a better result than either representing the English words

in Tamil or Tamil words in English in terms of data

compression. Also, it is observed that Huffman code produces

average number of bits required to encode a message is higher

for Form1 than others.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.3, January 2012

37

7. REFERENCES
[1] Abu Shamim Mohammad Arif, Asif Mahamud, and

Rashedul Islam. 2009. An enhanced static data

compression scheme of Bengali short message.

International Journal of Computer Science and

Information Security. Volume 4. No. 1 & 2.

[2] Asher, R.E., and Annamalai, E. 2002. Colloquial Tamil-

The Complete Course for Beginners. Routledge

Publication. ISBN 0-203-99424-8.

[3] Brent, R. P. 1987. A linear algorithm for data

compression. The Australian Computer Journal.

Volume 19. No.2.

[4] David R. Mcintyre, and Michael A. Pechura. 1985. Data

compression using static Huffman code-decode tables.

Communications of the ACM. Volume 28. Issue 6.

[5] Haroon Altarawneh, and Mohammad Altarawneh. 2011.

Data Compression Techniques on Text Files: A

Comparison Study. International Journal of Computer

Applications. Volume 26. No. 5.

[6] Huffman, D. A. 1951. A method for the construction of

minimum redundancy codes. Proceedings IRE. Volume

40. Pages 1098-1101.

[7] Kanthimathi, K. 2009. Tamil-English Mixed Language

Used in Tamilnadu. The International Journal of

Language Society and Culture. Issue 27. ISSN 1327-

774X.

[8] Kodituwakku, S.R., and Amarasinghe, U.S. Comparison

of lossless data compression algorithms for text data.

Indian Journal of Computer Science and Engineering.

Volume 1. No. 4. Pages 416-425.

[9] Mamta Sharma. 2010. Compression Using Huffman

Coding. International Journal of Computer Science and

Network Security. Volume 10. No.5.

[10] Mohammed Rafiul Hassan, and Baikunth Nath, 2005.

Data compression using Huffman coding – a novel

approach. International Conference on Applied

Computing. ISBN: 972-99353-6-X.

[11] Popuri Ramesh Babu, Gonuguntla Rama Swamy,

Daruvuri Ravi Kiran, and Devireddy Srinivasa Kumar4.

2009. A novel approach for data compression in E- mail.

International Journal of Research and Reviews in

Applied Sciences. Volume 1. Issue 1. ISSN: 2076-734X,

EISSN: 2076-7366

[12] Sayood. K. 2000. Introduction to Data Compression.

Second Edition. Morgan Kaufmann publications.

[13] Viswanath. K. 2002. General Article: Communication

Information. Resonance. Volume 7. No. 2. Pages 26-32.

DOI: 10.1007/BF02867266.

[14] William Ford, and William Topp. 2002. Data Structure

with C++ using STL. Prentice Hall. ISBN: 0-13-085850-

1.

[15] Ziv, J. and Lempel, A. 1977. A universal algorithm for

data compression. IEEE Transactions on Information

Theory. IT-23(3). Pages 337-343.

