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ABSTRACT 

Balancing the computational load over multiprocessor 

networks is an important problem in massively parallel 

systems. The key advantage of such systems is to allow 

concurrent execution of workload characterized by 

computation units known as processes or tasks. The 

scheduling problem is to maintain a balanced execution of all 

the tasks among the various available processors (nodes) in a 

multiprocessor network. This paper studies the scheduling of 

tasks on a pool of identical nodes which are connected 

through some interconnection network. A novel dynamic 

scheduling scheme named as Two Round Scheduling (TRS) 

scheme has been proposed and implemented for scheduling 

the load on various multiprocessor interconnection networks. 

In particular, the performance of the proposed scheme is 

evaluated for linearly extensible multiprocessor systems, 

however, a comparison is also made with other standard 

existing multiprocessor systems. The TRS operates in two 

steps to make the network fully balanced. The performance of 

this scheme is evaluated in terms of the performance index 

called Load Imbalance Factor (LIF), which represents the 

deviation of load among processors and the balancing time for 

different types of loads. The comparative simulation study 

shows that the proposed TRS scheme gives better 

performance in terms of task scheduling on various linearly 

extensible multiprocessor networks for both uniform and non-

uniform types of loads. 

General Terms 

Parallel and Distributed Systems, Scheduling & Load 

Balancing. 

Keywords 

Dynamic Scheduling, Multiprocessor, Interconnection 

Network, Tasks, Two Round Scheme. 

 

1. INTRODUCTION 
The efficient management of parallelism on an 

interconnection network involves optimizing conflicting 

performance indices, like the minimization of communication 

and scheduling overheads and uniform distribution of load 

among the nodes. In such a system more than one nodes 

process the various jobs concurrently. Each job may consist of 

various tasks that could be executed independently. The 

number of tasks allocated to each processor has to be 

controlled in such a way that a high speed execution of 

processes may occur while maintaining high processor 

utilization. In such a system, if some nodes remain idle while 

others are extremely busy, system performance will be 

degraded drastically. Therefore, scheduling of tasks becomes 

an important problem for multiprocessor system architectures 

and consequently it has a substantial effect on the system 

performance and utilization. It is required that all the 

processors should share the load evenly that would lead to 

complete the job in minimum possible time 

Scheduling may be performed at the local level or global level 

based on the information they use to make load balancing 

decisions [1]. In the global schemes, the scheduling decision 

is made using global knowledge: i.e. all the processors take 

part in the synchronization and send their performance 

profiles to the scheduler. Scheduling algorithms can be 

classified as either static or dynamic. The static algorithm 

performs by a predetermined policy, whereas, the dynamic 

algorithm makes its decision at run time according to the 

status of the system [2], [3]. 

The important parameter when dynamic scheduling 

algorithms are implemented on a parallel system is the 

configuration of the interconnection network. The parallel 

system generally uses a regular point-to-point interconnection 

network, instead of a random network configuration. Over the 

years, many different interconnection networks have been 

used in commercially available concurrent systems and 

numerous research prototypes have been proposed and 

evaluated in the literature [4], [5], [6]. Prime examples are 

found in ring network, hypercube, debruijn network, Linearly 

Extensible Tree (LET) network, Linearly Extensible Cube 

(LEC) network, star graphs [7], [8], [9], [10]. The choice of 

the topology of the interconnection network is critical in the 

design of massively parallel computer systems. 

Interconnection networks may be categorized into two major 

groups on the basis of their complexity and scalability. The 

first category includes high complex networks because of 

their exponential expension and hence posses poor scalability 

[11], [12], [13]. Some examples are hypercube, Twisted 

hypercube, de_Bruijn networks etc. The second category of 

multiprocessor systems is of Linearly Extensible Networks, 

which are lesser complex. These networks are highly scalable 

networks i.e. the size of the system (e.g., the number of nodes) 

can be increased with minor or no change in the existing 

configuration.  These include LET, LEC and Tree type 

networks. In this paper two linearly extensible multiprocessor 

interconnection networks having similar topological 

properties are considered for the purpose of simulation  (Fig. 

1 to Fig. 2). In addition the performance is also evaluated for 

standared hypercube architecture (Fig. 3) and a comparative 

study is made.The important properties [7], [8] of these 

interconnection networks are given in Table 1. 
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The rest of the paper is organized into five sections. Section 1 

is the introduction. Section 2 is an overview of the given 

scheduling problem. This is followed by the design and 

implementation of the proposed Two Round Scheduling 

scheme in section 3. The simulation results in section 4, 

provides the comparative study that shows the applicability of 

the proposed scheme. Section 5 concludes the paper. 

Table 1: Summary of some Interconnection network 

characteristic 

Type Size (N) 

(Nodes) 

Degree 

(d) 

Diameter 

(D) 

Bisection 

Width (b) 

Extensibility 

Hypercube N = 2n
 N n 2n-1 Exponential 

LET 




n

k

k
1
 

4 √N 2log2(n+2) Linear 

LEC N=2*n 4 O ([N]) N Linear 

 

 

 

 

 

 

 

Fig 1: A six processor LET network 

 

Fig 2: A six processor LEC network 

 

 

 

 

 

 

 

 

Fig 3: An eight processor hypercube network 

2. DYNAMIC TASK SCHEDULING 

PROBLEM 
The performance of a multiprocessor system can be 

characterized by communication delay, distribution of load 

among the processors and scheduling overhead [12], [13], 

[14], [15]. There are many schemes which are based on the 

principle of minimum distance feature [7] [16]. Minimum 

distance is the property which assures the minimization of the 

communication in distributing subtasks and collecting partial 

results. A scheduling scheme operates with this property such 

as Minimum Distance Scheduling (MDS) minimizes overhead 

and ensures the maximum possible speedup, however, at the 

cost of idle unconnected node(s) [7], [9]. In this scheme, the 

adjacency matrix of the network is used to satisfy the 

minimum distance property. A „one‟ in the matrix indicates a 

link between two nodes whereas a „zero‟ indicates there is no 

link between nodes. For load balancing, the MDS algorithm 

determines the value of Ideal Load (IL) at various stages of 

the load (task generation). IL is calculated by summing the 

load of each node in the network divided by the total number 

of nodes available in the network. The processors having a 

load value greater than the IL are considered as overloaded 

processors. Similarly, processors having lesser load than the 

value of IL are termed as underloaded processors. In other 

words the overloaded (donors) and underloaded (acceptors) 

processors are identified based on a threshold value known as 

IL. Each donor processor, during balancing, selects tasks for 

migration to the various connected and underloaded 

processors (i.e. the processors having a „one‟ in the adjacency 

matrix) and thus maintaining minimum distance. Mostly any 

load balancing algorithm considers the overall load on the 

network. However, in this algorithm the load is mapped 

through various stages of the task structure. Each stage 

represents a particular state of the task structure which 

consists of finite number of tasks 

2.1 Dynamic Load Model 
For the purpose of simulation we assume a simple problem 

characterization in which the load is partitioned into a number 

of tasks. Each task can be an independent program or 

partitioned modules of a single program. However, all the 

tasks are independent and may be executed on any processor 

in any sequence. The scheduling performance of the strategy 

has been tested on the three different networks by simulating 

artificial dynamic load. In order to simulate the load on the 

given networks, it is characterized into two groups of task 

structures i.e. uniform and non-uniform load. For a 

meaningful simulation, tree structures that forms a 

representative sample of programs are needed which are to be 

executed on the network. The tree is considered as a test 

problem on which the schemes are to be applied. In case of 

uniform load, tasks are generated in a deterministic manner in 

the form of a regular tree. Each node of the tree represents a 

task, and executed in parallel in breadth-first manner starting 

from the root task which is assigned to some given nodes of 

the network. The total number of nodes in the task tree at a 

level represents a particular stage of the load.  

In order to characterize non-uniform load (non-deterministic 

load), the total problem is conceived to be an arbitrary tree 

which unwind itself level by level. A task scheduled on a 

processor spawns an arbitrary or random number of subtasks, 

which are part of the whole problem tree. Thus the load on 

each processor is varying at run time creating unbalance, and 

balancer/scheduler has to be invoked after each stage. 
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Using the above pattern of task structure (load), the 

performance of the networks has been tested for various 

scheduling schemes as well as with a new scheduling scheme. 

The performance is measured in terms of Load Imbalance 

Factor (LIF) i.e. the load imbalance left after a balancing 

action at each stage of the load. The above simulation has 

been performed on various similar multiprocessor networks 

using IBM server X series 226 having Intel Xeon 3.0 GHz 

processor. 

3. TWO ROUND SCHEDULING (TRS) 

SCHEME 
A new scheme has been proposed for solving load balancing 

problem with unpredictable load estimates. The proposed 

algorithm works as an extension of MDS and named as Two 

Round Scheduling scheme. It is dynamic in the sense that no 

priori knowledge of the load is assumed. TRS scheme takes 

into consideration those acceptor nodes which are not 

connected directly to donor node. There may be more than 

one path between the donor and acceptor processors which 

require multi-hop. However, large number of hopes gives 

minimum load imbalance and hence, LIF is smaller (i.e. less 

than the standard range of 40%). The proposed TRS algorithm 

has a constraint in the scheduling to consider only one 

processor as intermediate node between donor and acceptor 

nodes. To perform the load balancing, the algorithm calculates 

ideal load value for each stage of the task structure, which is 

used as a threshold to detect load imbalances and make load 

migration decisions. The load imbalance factor for kth stage, 

denoted as LIFk, is defined as: 

LIFk = [max {loadk (Pi)} - (ideal_load)k] / (ideal_load)k                   (1) 

where, 

 (ideal_load)k = [loadk(P0) +  loadk(P1)  +…+  loadk (PN-1)] / N, 

                                                         (2) 

and max (loadk(Pi)) denotes the maximum load pertaining to 

stage k on a processor Pi ,0 ≤ i ≤ N-1, and loadk(Pi ) stands for 

the load on processor Pi due to kth stage. Each stage of the task 

structure (load) represents a finite number of tasks. Based on 

the IL value, the donor (overloaded) processors and acceptors 

(underloaded) processors are identified. Migration of task can 

take place between donor and acceptor processors only. The 

whole algorithm is implemented in „C‟ language. A pseudo 

code of the algorithm is shown in Table 2. 

 
Table 2: The trs algorithm 

trs( ) 

{ 

/* Generate task at 0th processor, tgs indicates task 

generation at a particular stage*/ 

/* Consider LMAX is the maximum load on a processor at a 

particular load stage */ 

tgs[0] = 1; 

while (it_count1 < LMAX) 

{ 

/* calculate IL and RIL */ 

IL = Calculate_IL (tgs); 

RIL = ceil (IL); 

printf (tgs); 

/* For all processors check whether the load on a particular 

processor is exceeding the RIL (Rounded IL). If so then 

migrate the load*/ 

/* Let the total number of processors are equal to PMAX */ 

for (it_count2 = 0; it_count2 < PMAX; ++ it_count2) 

{ 

if (tgs [it_count2]  > RIL)    

{ 

/* Migrate till load at processors become equal to or less 

then RIL */ 

while (true)  

{ 

migrate (it_count2) 

if (tgs [it_count2] < = RIL ) break; 

} } } 

printf (trs) 

/* calculate LIF */ 

LIF = (max(tgs) – IL) / IL; 

/* Enter into the next level of the task generation  (ts 

indicates task structure)*/ 

tgs = ts * tgs;           

it_ count ++; 

}  } 

/* Functions used by the algorithm */ 

Calculate_IL (X[ ]) 

{ 

sum = 0; /* x[i] indicates load at ith processor */ 

for (i = 0; i < PMAX; ++i ) 

sum = sum + x[i]; 

return (sum / PMAX);   

} 

/* Perform migrations */ 

migrate (p_number) 

{       

/* Get the set of connected processors to the processor for 

which migration is being called i.e. p_number */ 

for (i =0; i < PMAX; ++i ) 

{ 

if (connect ed (i, p_number, level)) 

temp [k++] = i ; 

k--; 

} 

/ * Get the small loaded processor number */ 

small = temp [0]; 

for (i = 0 ; i < PMAX; ++i) 

if (tgs [temp[i] ] < tgs [small] ) 

small = temp [j]; 

/* Transfer the load from p_number to the smallest loaded 

and connected processors */ 
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while (tgs[p_mumber] != IL || tgs[small] != IL) 

{ 

 tgs [p_number] --; 

tgs [small] + =1; } 

 } 

/* Check the under loaded processors which are not 

connected. If any repeat the above procedure for  the next 

level of connectivity */ 

} 

/* Function used to find the maximum load on a processor 

*/ 

max (X [ ] )  

{ 

max = x [0]; 

for (i =0; i < PMAX; ++ i) 

if (x [i] > max ) max = a [i] ; 

return (max); 

} 

/* Function to check the connectivity of processor i with 

processor j. Assume the level of connectivity is given (1 or 

2)*/ 

int connected (int i, int j, int level) /* returns true if 

processors i, j are connected */ 

{ 

   /* printf("\n node %d is connected to %d: %d", i, j, adj 

[i][j]); */ 

   if (level = = 1) 

   return adj [i][j]; 

   for(int k = 0; k < PMAX; k++) 

   { 

      if (k = = i || k = = j) continue; 

      if (connected (i ,k , 1) && connected (k, j, 1 )) 

      { 

 /* printf("\n node %d is connected to %d through 

%d", i, j, k); */ 

 return 1;  

            }   } 

   return 0;        } 

    end of procedure 

 

4. SIMULATION AND ANALYSIS OF 

RESULTS 
To draw general conclusion about the effectiveness of the 

proposed TRS scheme, it has been implemented on various 

multiprocessor networks under the same environment. The 

simulation run consists of generating various types of load 

and mapping them on the six processors Linearly Extensible 

Tree (LET), six processors LEC and eight processors 

hypercube networks. The estimation of LIF is obtained for 

various stages of the tasks structures and the curves are 

plotted as the average percent LIF against the load for 

different stages shown in Figure 4. 
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Fig 4: TRS scheme on various multiprocessor networks 

 

The trends of curves obtained in Figure 4 indicate the 

behaviors of the load imbalance factor with respect to the load 

at various stages on various multiprocessors networks for 

uniform task structure. It is clear from the curve that initially 

the value of LIF starts from zero and reaches to its maximum 

value for all the multiprocessor networks. This high value of 

LIF is due to lesser numbers of tasks generated and balancing 

on the networks. When sufficient numbers of tasks are 

available a lesser value of LIF is obtained. Therefore, a good 

balancing is achieved when more numbers of tasks are 

available. 

To study the effect of proposed Two Round Scheduling 

scheme, the simulation results are evaluated for linearly 

extensible multiprocessors i.e. LET and LEC networks and 

are compared with other standard networks such as 

Hypercube network. The comparative study indicates similar 

behavior on all the multiprocessor networks for uniform load. 

The value of LIF starts reducing when sufficient numbers of 

tasks are available and finally approaches to zero in all the 

multiprocessors networks. However, the value of LIF is 

similar in case of LET and LEC networks. This indicates that 

the TRS algorithm is performing equally well on both the 

LET and LEC networks for uniform load. The reason for 

better performance in LET and LEC networks for uniform 

load is due to the lesser number of processors in the networks. 

To check further that the TRS is performing better on LEC or 

LET, the load balancing time (i.e. time taken to get a zero 

value of LIF) of TRS scheme is evaluated on both the 

networks (i.e. LEC and LET). The balancing time at various 

load stages for uniform task structure are evaluated as another 

performance parameter, for all the multiprocessor networks 

mentioned above and curves are plotted as Time verses Load 

at different stages, shown in Figure 5. 
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Fig 5: Performance of various multiprocessor networks 

 

The performance results shown in Figure 5 indicate that in all 

the multiprocessor networks, the balancing time increases as 

the number of tasks increases. However, the balancing time in 

LEC network is always lesser as compared to other networks. 

Therefore, albeit the LEC and the LET networks produce 

similar results in terms of LIF when TRS is implemented for 

uniform load, LET gives an inferior performance when 

balancing time is taken into consideration. Thus, it may be 

concluded that the LEC network is outperforming in 

comparison to Hypercube network and gives comparable 

performance with LET network. 

In case of non-uniform load (Figure 6), the effect of variation 

of load is clearly indicated in the curves. The LIF starts from 

zero and reaches to its high value which stays high for several 

stages of the task generation on all the multiprocessor 

networks. This high value of LIF is due to the lesser number 

of tasks running on the networks during these stages. The 

smaller number of tasks could not be balanced among all the 

processors of the networks which indicate an inefficient 

balancing in the networks. However, in all the cases the value 

of LIF starts decreasing towards minimum as the numbers of 

tasks are sufficient. In general the value of LIF is lesser in 

case of LEC network except the earlier stages of the load 

generation when sufficiently tasks are not available. 

Therefore, it may be concluded that the LEC network is 

performing better with TRS algorithm for non-uniform load 

also. 

The performance of LEC is also evaluated in terms of load 

balancing time for non-uniform load. The TRS scheme is 

implemented on various multiprocessor networks and 

balancing time on each of the network is evaluated for various 

load stages. For comparison purpose the curves are plotted as 

Time verses Load (non-uniform) shown in Figure 7.  
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Fig 6: TRS scheme on various multiprocessor networks 

 

 

Fig 7: Performance of various multiprocessor networks 

 

The performance results shown in Figure 7 indicate the 

behavior of balancing time when TRS scheme is implemented 

on various multiprocessor networks for non-uniform load. It is 

observed from the curves that there is no regular pattern in the 

balancing time with load. In case of non-uniform load the 

behavior of the tasks is unpredictable; therefore, the balancing 

time varies on each of the multiprocessor network. In general, 

the Hypercube network shows different behavior in the time. 

On the other hand LEC and LET indicate similar effect on the 

change in balancing time for various load stages.  This is due 

to the fact that both the LEC and LET networks have smaller 

number of processors. It might be possible that the tasks 

available are lesser and consequently these lesser tasks are 

efficiently balanced on smaller number of processors. 

However, LEC shows the lesser balancing time.  
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To authenticate the performance of the proposed TRS scheme 

with the LEC network, it is desirable to implement other 

standard dynamic scheduling schemes on LEC. In the present 

work, in addition to the proposed TRS scheme, some reported 

dynamic scheduling schemes have also been implemented on 

the LEC network under the same environment [14], [15], [16], 

[17],[18]. In particular, the following two scheduling schemes 

were considered and have been implemented on LEC network 

after appropriate modification. These schemes have given 

optimal performance on the particular multiprocessor 

networks for which they are designed. 

 Minimum Distance Scheduling (MDS)  

 Hierarchical Balancing Method (HBM) 

In case of MDS, migration from donor processor is done to 

the directly connected acceptors. Tasks are not allowed to 

migrate acceptors which are not connected directly. The HBM 

scheme is an asynchronous and decentralized approach. It 

classifies the multiprocessor system into a hierarchy of 

balancing domain. For the purpose of simulation the LEC 

network is divided into three level of hierarchy namely level0, 

level1 and level2 and the imbalance are evaluated. The 

estimation of average percentage of LIF is obtained and the 

curves are plotted against the various load stages for uniform 

load, shown in Figure 8.  
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 Fig 8: Comparison of TRS with other scheduling schemes 

on LEC 

 

The TRS scheme shows the lesser imbalance with negligible 

average value of LIF as we tend to higher load stages. The 

value of LIF becomes zero, when the network receives good 

amount of load and thus, it is immediately balanced. 

Therefore, it can be said that the TRS scheme has a high 

degree of balancing, which makes the LEC network as 

effectively utilized in comparison to other scheduling 

schemes, when implemented on LEC. The other scheduling 

schemes are unable to achieve high degree of balancing for 

uniform and non-uniform types of load structure. TRS scheme 

indicates the superior values, i.e. lesser values at every point 

as well as lesser values of LIF at peaks with respect to other 

scheduling schemes.  

 

 

5. CONCLUSIONS 

The overall performance of the multiprocessor system is 

affected by a number of factors, such as communication 

delays, imbalance of load among the processor and scheduling 

overheads. Scheduling plays a vital role to improve the 

performance of the system and hence a Two Round 

scheduling algorithm has been proposed and implemented on 

various similar multiprocessor systems. The performance 

evaluated in terms of load imbalance and the balancing time. 

The performance of the TRS algorithm is highly dependent on 

the connectivity of the various nodes available in the network. 

However, the algorithm allocates the tasks to the available 

processors in the network whether they are connected directly 

or indirectly. From the comparison made on the graphs based 

on various simulation results, it may be concluded that TRS 

scheme is performing well on linearly extensible 

multiprocessor type systems in general and on LEC network 

in particular while considering the factor of LIF and its 

balancing time. The proposed TRS scheduling scheme is 

performing better, degree of balancing is higher and the 

network utilization is efficient. Therefore, it can be concluded 

that proposed TRS scheme is ideally suited for linearly 

extensible multiprocessor networks. The proposed TRS 

scheme may be applied to other similar multiprocessor 

network for better network utilization. 
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