
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.10, January 2012

34

Two Round Scheduling (TRS) Scheme for Linearly

Extensible Multiprocessor Systems

Abdus Samad

University Women’s Polytechnic
Faculty of Engg. & Tech.

Aligarh Muslim University, Aligarh
India

M. Qasim Rafiq
Dept. of Computer Engineering

Faculty of Engg. & Tech.
Aligarh Muslim University, Aligarh

India

Omar Farooq
Dept. of Electronics Engineering

Faculty of Engg. & Tech.
Aligarh Muslim University, Aligarh

India

ABSTRACT

Balancing the computational load over multiprocessor

networks is an important problem in massively parallel

systems. The key advantage of such systems is to allow

concurrent execution of workload characterized by

computation units known as processes or tasks. The

scheduling problem is to maintain a balanced execution of all

the tasks among the various available processors (nodes) in a

multiprocessor network. This paper studies the scheduling of

tasks on a pool of identical nodes which are connected

through some interconnection network. A novel dynamic

scheduling scheme named as Two Round Scheduling (TRS)

scheme has been proposed and implemented for scheduling

the load on various multiprocessor interconnection networks.

In particular, the performance of the proposed scheme is

evaluated for linearly extensible multiprocessor systems,

however, a comparison is also made with other standard

existing multiprocessor systems. The TRS operates in two

steps to make the network fully balanced. The performance of

this scheme is evaluated in terms of the performance index

called Load Imbalance Factor (LIF), which represents the

deviation of load among processors and the balancing time for

different types of loads. The comparative simulation study

shows that the proposed TRS scheme gives better

performance in terms of task scheduling on various linearly

extensible multiprocessor networks for both uniform and non-

uniform types of loads.

General Terms

Parallel and Distributed Systems, Scheduling & Load

Balancing.

Keywords

Dynamic Scheduling, Multiprocessor, Interconnection

Network, Tasks, Two Round Scheme.

1. INTRODUCTION
The efficient management of parallelism on an

interconnection network involves optimizing conflicting

performance indices, like the minimization of communication

and scheduling overheads and uniform distribution of load

among the nodes. In such a system more than one nodes

process the various jobs concurrently. Each job may consist of

various tasks that could be executed independently. The

number of tasks allocated to each processor has to be

controlled in such a way that a high speed execution of

processes may occur while maintaining high processor

utilization. In such a system, if some nodes remain idle while

others are extremely busy, system performance will be

degraded drastically. Therefore, scheduling of tasks becomes

an important problem for multiprocessor system architectures

and consequently it has a substantial effect on the system

performance and utilization. It is required that all the

processors should share the load evenly that would lead to

complete the job in minimum possible time

Scheduling may be performed at the local level or global level

based on the information they use to make load balancing

decisions [1]. In the global schemes, the scheduling decision

is made using global knowledge: i.e. all the processors take

part in the synchronization and send their performance

profiles to the scheduler. Scheduling algorithms can be

classified as either static or dynamic. The static algorithm

performs by a predetermined policy, whereas, the dynamic

algorithm makes its decision at run time according to the

status of the system [2], [3].

The important parameter when dynamic scheduling

algorithms are implemented on a parallel system is the

configuration of the interconnection network. The parallel

system generally uses a regular point-to-point interconnection

network, instead of a random network configuration. Over the

years, many different interconnection networks have been

used in commercially available concurrent systems and

numerous research prototypes have been proposed and

evaluated in the literature [4], [5], [6]. Prime examples are

found in ring network, hypercube, debruijn network, Linearly

Extensible Tree (LET) network, Linearly Extensible Cube

(LEC) network, star graphs [7], [8], [9], [10]. The choice of

the topology of the interconnection network is critical in the

design of massively parallel computer systems.

Interconnection networks may be categorized into two major

groups on the basis of their complexity and scalability. The

first category includes high complex networks because of

their exponential expension and hence posses poor scalability

[11], [12], [13]. Some examples are hypercube, Twisted

hypercube, de_Bruijn networks etc. The second category of

multiprocessor systems is of Linearly Extensible Networks,

which are lesser complex. These networks are highly scalable

networks i.e. the size of the system (e.g., the number of nodes)

can be increased with minor or no change in the existing

configuration. These include LET, LEC and Tree type

networks. In this paper two linearly extensible multiprocessor

interconnection networks having similar topological

properties are considered for the purpose of simulation (Fig.

1 to Fig. 2). In addition the performance is also evaluated for

standared hypercube architecture (Fig. 3) and a comparative

study is made.The important properties [7], [8] of these

interconnection networks are given in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.10, January 2012

35

The rest of the paper is organized into five sections. Section 1

is the introduction. Section 2 is an overview of the given

scheduling problem. This is followed by the design and

implementation of the proposed Two Round Scheduling

scheme in section 3. The simulation results in section 4,

provides the comparative study that shows the applicability of

the proposed scheme. Section 5 concludes the paper.

Table 1: Summary of some Interconnection network

characteristic

Type Size (N)

(Nodes)

Degree

(d)

Diameter

(D)

Bisection

Width (b)

Extensibility

Hypercube N = 2n
 N n 2n-1 Exponential

LET

n

k

k
1

4 √N 2log2(n+2) Linear

LEC N=2*n 4 O ([N]) N Linear

Fig 1: A six processor LET network

Fig 2: A six processor LEC network

Fig 3: An eight processor hypercube network

2. DYNAMIC TASK SCHEDULING

PROBLEM
The performance of a multiprocessor system can be

characterized by communication delay, distribution of load

among the processors and scheduling overhead [12], [13],

[14], [15]. There are many schemes which are based on the

principle of minimum distance feature [7] [16]. Minimum

distance is the property which assures the minimization of the

communication in distributing subtasks and collecting partial

results. A scheduling scheme operates with this property such

as Minimum Distance Scheduling (MDS) minimizes overhead

and ensures the maximum possible speedup, however, at the

cost of idle unconnected node(s) [7], [9]. In this scheme, the

adjacency matrix of the network is used to satisfy the

minimum distance property. A „one‟ in the matrix indicates a

link between two nodes whereas a „zero‟ indicates there is no

link between nodes. For load balancing, the MDS algorithm

determines the value of Ideal Load (IL) at various stages of

the load (task generation). IL is calculated by summing the

load of each node in the network divided by the total number

of nodes available in the network. The processors having a

load value greater than the IL are considered as overloaded

processors. Similarly, processors having lesser load than the

value of IL are termed as underloaded processors. In other

words the overloaded (donors) and underloaded (acceptors)

processors are identified based on a threshold value known as

IL. Each donor processor, during balancing, selects tasks for

migration to the various connected and underloaded

processors (i.e. the processors having a „one‟ in the adjacency

matrix) and thus maintaining minimum distance. Mostly any

load balancing algorithm considers the overall load on the

network. However, in this algorithm the load is mapped

through various stages of the task structure. Each stage

represents a particular state of the task structure which

consists of finite number of tasks

2.1 Dynamic Load Model
For the purpose of simulation we assume a simple problem

characterization in which the load is partitioned into a number

of tasks. Each task can be an independent program or

partitioned modules of a single program. However, all the

tasks are independent and may be executed on any processor

in any sequence. The scheduling performance of the strategy

has been tested on the three different networks by simulating

artificial dynamic load. In order to simulate the load on the

given networks, it is characterized into two groups of task

structures i.e. uniform and non-uniform load. For a

meaningful simulation, tree structures that forms a

representative sample of programs are needed which are to be

executed on the network. The tree is considered as a test

problem on which the schemes are to be applied. In case of

uniform load, tasks are generated in a deterministic manner in

the form of a regular tree. Each node of the tree represents a

task, and executed in parallel in breadth-first manner starting

from the root task which is assigned to some given nodes of

the network. The total number of nodes in the task tree at a

level represents a particular stage of the load.

In order to characterize non-uniform load (non-deterministic

load), the total problem is conceived to be an arbitrary tree

which unwind itself level by level. A task scheduled on a

processor spawns an arbitrary or random number of subtasks,

which are part of the whole problem tree. Thus the load on

each processor is varying at run time creating unbalance, and

balancer/scheduler has to be invoked after each stage.

P

0

P

1

 P

4

P

3

P

5

P

2

P

6

P

7

P

2

P

3

P

4

P

5

P

0

P

1

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.10, January 2012

36

Using the above pattern of task structure (load), the

performance of the networks has been tested for various

scheduling schemes as well as with a new scheduling scheme.

The performance is measured in terms of Load Imbalance

Factor (LIF) i.e. the load imbalance left after a balancing

action at each stage of the load. The above simulation has

been performed on various similar multiprocessor networks

using IBM server X series 226 having Intel Xeon 3.0 GHz

processor.

3. TWO ROUND SCHEDULING (TRS)

SCHEME
A new scheme has been proposed for solving load balancing

problem with unpredictable load estimates. The proposed

algorithm works as an extension of MDS and named as Two

Round Scheduling scheme. It is dynamic in the sense that no

priori knowledge of the load is assumed. TRS scheme takes

into consideration those acceptor nodes which are not

connected directly to donor node. There may be more than

one path between the donor and acceptor processors which

require multi-hop. However, large number of hopes gives

minimum load imbalance and hence, LIF is smaller (i.e. less

than the standard range of 40%). The proposed TRS algorithm

has a constraint in the scheduling to consider only one

processor as intermediate node between donor and acceptor

nodes. To perform the load balancing, the algorithm calculates

ideal load value for each stage of the task structure, which is

used as a threshold to detect load imbalances and make load

migration decisions. The load imbalance factor for kth stage,

denoted as LIFk, is defined as:

LIFk = [max {loadk (Pi)} - (ideal_load)k] / (ideal_load)k (1)

where,

 (ideal_load)k = [loadk(P0) + loadk(P1) +…+ loadk (PN-1)] / N,

 (2)

and max (loadk(Pi)) denotes the maximum load pertaining to

stage k on a processor Pi ,0 ≤ i ≤ N-1, and loadk(Pi) stands for

the load on processor Pi due to kth stage. Each stage of the task

structure (load) represents a finite number of tasks. Based on

the IL value, the donor (overloaded) processors and acceptors

(underloaded) processors are identified. Migration of task can

take place between donor and acceptor processors only. The

whole algorithm is implemented in „C‟ language. A pseudo

code of the algorithm is shown in Table 2.

Table 2: The trs algorithm

trs()

{

/* Generate task at 0th processor, tgs indicates task

generation at a particular stage*/

/* Consider LMAX is the maximum load on a processor at a

particular load stage */

tgs[0] = 1;

while (it_count1 < LMAX)

{

/* calculate IL and RIL */

IL = Calculate_IL (tgs);

RIL = ceil (IL);

printf (tgs);

/* For all processors check whether the load on a particular

processor is exceeding the RIL (Rounded IL). If so then

migrate the load*/

/* Let the total number of processors are equal to PMAX */

for (it_count2 = 0; it_count2 < PMAX; ++ it_count2)

{

if (tgs [it_count2] > RIL)

{

/* Migrate till load at processors become equal to or less

then RIL */

while (true)

{

migrate (it_count2)

if (tgs [it_count2] < = RIL) break;

} } }

printf (trs)

/* calculate LIF */

LIF = (max(tgs) – IL) / IL;

/* Enter into the next level of the task generation (ts

indicates task structure)*/

tgs = ts * tgs;

it_ count ++;

} }

/* Functions used by the algorithm */

Calculate_IL (X[])

{

sum = 0; /* x[i] indicates load at ith processor */

for (i = 0; i < PMAX; ++i)

sum = sum + x[i];

return (sum / PMAX);

}

/* Perform migrations */

migrate (p_number)

{

/* Get the set of connected processors to the processor for

which migration is being called i.e. p_number */

for (i =0; i < PMAX; ++i)

{

if (connect ed (i, p_number, level))

temp [k++] = i ;

k--;

}

/ * Get the small loaded processor number */

small = temp [0];

for (i = 0 ; i < PMAX; ++i)

if (tgs [temp[i]] < tgs [small])

small = temp [j];

/* Transfer the load from p_number to the smallest loaded

and connected processors */

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.10, January 2012

37

while (tgs[p_mumber] != IL || tgs[small] != IL)

{

 tgs [p_number] --;

tgs [small] + =1; }

 }

/* Check the under loaded processors which are not

connected. If any repeat the above procedure for the next

level of connectivity */

}

/* Function used to find the maximum load on a processor

*/

max (X [])

{

max = x [0];

for (i =0; i < PMAX; ++ i)

if (x [i] > max) max = a [i] ;

return (max);

}

/* Function to check the connectivity of processor i with

processor j. Assume the level of connectivity is given (1 or

2)*/

int connected (int i, int j, int level) /* returns true if

processors i, j are connected */

{

 /* printf("\n node %d is connected to %d: %d", i, j, adj

[i][j]); */

 if (level = = 1)

 return adj [i][j];

 for(int k = 0; k < PMAX; k++)

 {

 if (k = = i || k = = j) continue;

 if (connected (i ,k , 1) && connected (k, j, 1))

 {

 /* printf("\n node %d is connected to %d through

%d", i, j, k); */

 return 1;

 } }

 return 0; }

 end of procedure

4. SIMULATION AND ANALYSIS OF

RESULTS
To draw general conclusion about the effectiveness of the

proposed TRS scheme, it has been implemented on various

multiprocessor networks under the same environment. The

simulation run consists of generating various types of load

and mapping them on the six processors Linearly Extensible

Tree (LET), six processors LEC and eight processors

hypercube networks. The estimation of LIF is obtained for

various stages of the tasks structures and the curves are

plotted as the average percent LIF against the load for

different stages shown in Figure 4.

LIF FOR UNIFORM LOAD (TRS)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Load at various stages

A
v
e
ra

g
e

 L
IF

 (
%

)

LEC LET Hypercube

Fig 4: TRS scheme on various multiprocessor networks

The trends of curves obtained in Figure 4 indicate the

behaviors of the load imbalance factor with respect to the load

at various stages on various multiprocessors networks for

uniform task structure. It is clear from the curve that initially

the value of LIF starts from zero and reaches to its maximum

value for all the multiprocessor networks. This high value of

LIF is due to lesser numbers of tasks generated and balancing

on the networks. When sufficient numbers of tasks are

available a lesser value of LIF is obtained. Therefore, a good

balancing is achieved when more numbers of tasks are

available.

To study the effect of proposed Two Round Scheduling

scheme, the simulation results are evaluated for linearly

extensible multiprocessors i.e. LET and LEC networks and

are compared with other standard networks such as

Hypercube network. The comparative study indicates similar

behavior on all the multiprocessor networks for uniform load.

The value of LIF starts reducing when sufficient numbers of

tasks are available and finally approaches to zero in all the

multiprocessors networks. However, the value of LIF is

similar in case of LET and LEC networks. This indicates that

the TRS algorithm is performing equally well on both the

LET and LEC networks for uniform load. The reason for

better performance in LET and LEC networks for uniform

load is due to the lesser number of processors in the networks.

To check further that the TRS is performing better on LEC or

LET, the load balancing time (i.e. time taken to get a zero

value of LIF) of TRS scheme is evaluated on both the

networks (i.e. LEC and LET). The balancing time at various

load stages for uniform task structure are evaluated as another

performance parameter, for all the multiprocessor networks

mentioned above and curves are plotted as Time verses Load

at different stages, shown in Figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.10, January 2012

38

0

250

500

750

1000

1250

1500

1750

2000

2250

1 2 3 4 5 6 7 8

A
v
e
ra

g
e
 T

im
e
 (
m

s
)

Load at various stages

BALANCING TIME FOR UNIFORM LOAD

LEC LET Hypercube

Fig 5: Performance of various multiprocessor networks

The performance results shown in Figure 5 indicate that in all

the multiprocessor networks, the balancing time increases as

the number of tasks increases. However, the balancing time in

LEC network is always lesser as compared to other networks.

Therefore, albeit the LEC and the LET networks produce

similar results in terms of LIF when TRS is implemented for

uniform load, LET gives an inferior performance when

balancing time is taken into consideration. Thus, it may be

concluded that the LEC network is outperforming in

comparison to Hypercube network and gives comparable

performance with LET network.

In case of non-uniform load (Figure 6), the effect of variation

of load is clearly indicated in the curves. The LIF starts from

zero and reaches to its high value which stays high for several

stages of the task generation on all the multiprocessor

networks. This high value of LIF is due to the lesser number

of tasks running on the networks during these stages. The

smaller number of tasks could not be balanced among all the

processors of the networks which indicate an inefficient

balancing in the networks. However, in all the cases the value

of LIF starts decreasing towards minimum as the numbers of

tasks are sufficient. In general the value of LIF is lesser in

case of LEC network except the earlier stages of the load

generation when sufficiently tasks are not available.

Therefore, it may be concluded that the LEC network is

performing better with TRS algorithm for non-uniform load

also.

The performance of LEC is also evaluated in terms of load

balancing time for non-uniform load. The TRS scheme is

implemented on various multiprocessor networks and

balancing time on each of the network is evaluated for various

load stages. For comparison purpose the curves are plotted as

Time verses Load (non-uniform) shown in Figure 7.

LIF FOR NON UNIFORM LOAD

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load at various stages

A
v

e
r
a

g
e
 L

IF
 (

%
)

LEC LET Hypercube

Fig 6: TRS scheme on various multiprocessor networks

Fig 7: Performance of various multiprocessor networks

The performance results shown in Figure 7 indicate the

behavior of balancing time when TRS scheme is implemented

on various multiprocessor networks for non-uniform load. It is

observed from the curves that there is no regular pattern in the

balancing time with load. In case of non-uniform load the

behavior of the tasks is unpredictable; therefore, the balancing

time varies on each of the multiprocessor network. In general,

the Hypercube network shows different behavior in the time.

On the other hand LEC and LET indicate similar effect on the

change in balancing time for various load stages. This is due

to the fact that both the LEC and LET networks have smaller

number of processors. It might be possible that the tasks

available are lesser and consequently these lesser tasks are

efficiently balanced on smaller number of processors.

However, LEC shows the lesser balancing time.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.10, January 2012

39

To authenticate the performance of the proposed TRS scheme

with the LEC network, it is desirable to implement other

standard dynamic scheduling schemes on LEC. In the present

work, in addition to the proposed TRS scheme, some reported

dynamic scheduling schemes have also been implemented on

the LEC network under the same environment [14], [15], [16],

[17],[18]. In particular, the following two scheduling schemes

were considered and have been implemented on LEC network

after appropriate modification. These schemes have given

optimal performance on the particular multiprocessor

networks for which they are designed.

 Minimum Distance Scheduling (MDS)

 Hierarchical Balancing Method (HBM)

In case of MDS, migration from donor processor is done to

the directly connected acceptors. Tasks are not allowed to

migrate acceptors which are not connected directly. The HBM

scheme is an asynchronous and decentralized approach. It

classifies the multiprocessor system into a hierarchy of

balancing domain. For the purpose of simulation the LEC

network is divided into three level of hierarchy namely level0,

level1 and level2 and the imbalance are evaluated. The

estimation of average percentage of LIF is obtained and the

curves are plotted against the various load stages for uniform

load, shown in Figure 8.

VARIOUS SCHEDULING SCHEMES ON LEC

0

25

50

75

100

125

150

175

200

225

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load at various stages

A
v
e
ra

g
e
 L

IF
 (

%
)

TRS MDS HBM

 Fig 8: Comparison of TRS with other scheduling schemes

on LEC

The TRS scheme shows the lesser imbalance with negligible

average value of LIF as we tend to higher load stages. The

value of LIF becomes zero, when the network receives good

amount of load and thus, it is immediately balanced.

Therefore, it can be said that the TRS scheme has a high

degree of balancing, which makes the LEC network as

effectively utilized in comparison to other scheduling

schemes, when implemented on LEC. The other scheduling

schemes are unable to achieve high degree of balancing for

uniform and non-uniform types of load structure. TRS scheme

indicates the superior values, i.e. lesser values at every point

as well as lesser values of LIF at peaks with respect to other

scheduling schemes.

5. CONCLUSIONS

The overall performance of the multiprocessor system is

affected by a number of factors, such as communication

delays, imbalance of load among the processor and scheduling

overheads. Scheduling plays a vital role to improve the

performance of the system and hence a Two Round

scheduling algorithm has been proposed and implemented on

various similar multiprocessor systems. The performance

evaluated in terms of load imbalance and the balancing time.

The performance of the TRS algorithm is highly dependent on

the connectivity of the various nodes available in the network.

However, the algorithm allocates the tasks to the available

processors in the network whether they are connected directly

or indirectly. From the comparison made on the graphs based

on various simulation results, it may be concluded that TRS

scheme is performing well on linearly extensible

multiprocessor type systems in general and on LEC network

in particular while considering the factor of LIF and its

balancing time. The proposed TRS scheduling scheme is

performing better, degree of balancing is higher and the

network utilization is efficient. Therefore, it can be concluded

that proposed TRS scheme is ideally suited for linearly

extensible multiprocessor networks. The proposed TRS

scheme may be applied to other similar multiprocessor

network for better network utilization.

6. REFERENCES
[1] M. J. Zaki, Wei Li, and S. Parthasarathy, “Customized

Dynamic Load Balancing for a Network of

Workstations”, Journal of Parallel and distributed

Computing, no. 43, 1997, 156-162.

[2] Z. Zeng, B. Veeravalli, “Design and Performance

Evaluation of Queue-and-Rate-Adjustment Dynamic

Load Balancing Policies for Distributed Networks”,

IEEE Trans. on Computers, vol. 55, no. 11, 2006, 1410-

1422.

[3] S. Salleh, N. A. B. Aziz, N. A Azmee and N. H.

Mohammed, “Dynamic Multiprocessor Scheduling for

the Reconfigurable mesh Computing Network”, Journal

of Technology, University of Technology, Malaysia, vol.

37, 2002, 55-66.

[4] B. Parhami., “Challenges in interconnection network

design in the era of multiprocessor and massively parallel

Microchips” In Proceedings of International Conference

on communication in Computing, 241-246.

[5] S. Kim and A. V Veidenbaum, “Interconnection

network organization and its impact on performance and

cost in shared memory multiprocessors” Journals of

parallel computing, vol. 25, 1999, 283-309.

[6] A. Patel, A. Kasalik, and C. McCrosky, “Area Efficient

VLSI Layout for binary Hypercube”, IEEE Transaction

on Computers, vol. 49, no. 2, 2006, 160-169.

[7] M. Q. Rafiq, P. Kumar and J. P. Gupta., “A Novel Tree-

Structured Multiprocessor Network”, In Proceedings of

International Conference of on Robotics Vision and

Parallel Processing for Automation, Malaysia, vol. 2,

1995, 576-585.

[8] A. Samad, M. Q. Rafiq and O. Farooq, “A Novel

Algorithm for Fast Retrieval of Information from A

Multiprocessor Server”, In Proceedings of 7th WSEAS

International Conference on Software Engineering,

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.10, January 2012

40

Parallel and Distributed Systems (SEPADS '08),

University of Cambridge, UK, 2008, 68-73.

[9] A. Samad and M. Q. Rafiq, “A Novel Server

Architecture for Networking”, In Proceedings of Int‟l

Conference on Robotics, Vision Information and Signal

Processing, Malaysia, 2005, 1029-1032.

[10] B. Towles and W. Dally. Principles and Practices of

Interconnection Network. Morgan Kaufmann Press, san

Francisco.

[11] A. Ishfaq and A. Ghafoor, “Semi-Dostributed Load

Balancing For Massively Parallel Multicomputer

Systems”, IEEE Transaction on Software Engineering,

vol. 17, no. 10, 1991, 987-1004.

[12] W. M. H. LeMair and A. P. Reeves, “Strategies for

dynamic load balancing on highly parallel computers”,

IEEE Transaction on Parallel and Distributed Systems,

vol. 4, no. 9, 1993, 979-92.

[13] H. Attiya, “Two phase Algorithm for Load Balancing in

Heterogeneous Distributed Systems”, In Proceedings of

12th Euromicro Conference on Parallel, Distributed and

Network-Based Processing (Euro-PDP‟04), 2004, 434-

439.

[14] M. Bertogna., M. Cirinei, and G. Lipari, “Schedulability

analysis of Global scheduling algorithm on

multiprocessor platforms”, IEEE Transactions on Parallel

and Distributed Systems, vol. 20, no. 4, 2009, 553-566.

[15] M. Dobber, R. V. D. Mei and G.Koole, “Dynamic Load

Balancing and Job Replication in a Global-Scale Grid

Environment: A Comparison” IEEE Transaction on

Parallel and Distributed Systems, vol. 20, no. 2, 2009,

207-218.

[16] Yiqiu Fang, Fei Wang, Junwei Ge, “A Task Scheduling

Algorithm Based on Load Balancing in Cloud

Computing” Lecture Notes in Computer Science, Issue:

6318, Publisher: Springer-Verlag, 2010, 271-277.

[17] Bertogna, M., Cirinei, M., and Lipari, G., “Schedulability

analysis of Global scheduling algorithm on

multiprocessor platforms”, IEEE Transaction on Parallel

and Distributed Systems, volume 20, number 4, 2009,

553-566.

[18] D.I. George Amalarethinam and G.J. Joyce Mary, “A

new DAG based Dynamic Task Scheduling Algorithm

(DYTAS) for Multiprocessor Systems”. International

Journal of Computer Applications (0975 – 8887) Vol. 19,

No. 8, 2011, 24-28.

