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ABSTRACT 

Magnetic resonance imaging is a medical imaging technique 

that measures the response of atomic nuclei of body tissues to 

high frequency radio waves when placed in a strong magnetic 

field and that produces images of the internal organs. De-

noising is always a challenging problem in magnetic 

resonance imaging and important for clinical diagnosis and 

computerized analysis, such as tissue classification and 

segmentation. It  is well  known  that  the noise  in  magnetic 

resonance  imaging  has a  Rician  distribution. . In this paper, 

an improved de-noising technique is proposed on Magnetic 

Resonance Images highly corrupted with Rician Noise using 

wave atom shrinkage.   
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1. INTRODUCTION 
Wave atoms are a recent addition to the repertoire of 

mathematical transforms of computational harmonic analysis. 

They come either as an orthonormal basis or a tight frame of 

directional wave packets, and are particularly well suited for 

representing oscillatory patterns in images. They also provide 

a sparse representation of wave equations, hence the name 

wave atoms [1]. Magnetic Resonance Imaging (MRI) is a 

notable medical imaging technique that has proven to be 

particularly valuable for examination of the soft tissues in the 

body. MRI is primarily used to demonstrate pathological or 

other physiological alterations of living tissues and is a 

commonly used   form of medical imaging. Because of the 

resolution of MRI and the technology being essentially 

harmless it has emerged as the most accurate and desirable 

imaging technology [2]. Despite  significant improvements  in 

recent  years,  magnetic  resonance  (MR) images often  suffer  

from  low Signal  to Noise Ratio (SNR) especially  in  brain 

imaging. This paper presents an improved multi resolution de-

noising method to de- noise  Magnetic Resonance  Images 

using Wave Atom Shrinkage , histogram based noise variance 

estimation  [3]  and  modified threshold  calculation  that leads  

to the  improvement  of  SNR  in  high  noise  level  images.  

The paper is organized with sections as follows. In section 2, 

the work  related to this paper  is briefly explained, Section 3 

briefly explained  about  the  rician  noise  which  is  usually 

present  in MRI, Section 4 deals with  the explanation of  the 

estimation of  rician noise variance, used  in  this method,  In 

section 5,  the  theoretical concepts of wave atom  transforms 

is  described,  in  section  6,  the  application  of  wave  atom 

transform and wavelet  transforms  to MRI and observations 

are discussed. In section 7, the paper is concluded by briefly 

explained the pros and corns of the proposed method.  

2. RELATED WORKS 
The image processing literature presents a variety of de- 

noising methods. Many  of  the  popular  de-noising  

algorithms  suggested  are  based  on  wavelet thresholding  

[4]–[7].  These  approaches  attempt  to  separate  significant  

features from noise  in  the  frequency  domain  and  

simultaneously  preserve  them while  removing  noise.  If  the 

wavelet  transform  is  applied  on MR magnitude  data  

directly,  both  the wavelet  and  the  scaling coefficients  of  a  

noisy  MRI  image  become  biased  estimates  of  their  noise-

free  counterparts. Therefore,  it was  suggested  [5]  that  the  

application  of  the wavelet  transform  on  squared MR 

magnitude  image  data  (which is  noncentral  chi-square  

distributed) would  result  in  the wavelet coefficients no 

longer being biased estimates of  their noise-free counterparts. 

Although  the bias still  remains  in  the  scaling  coefficients,  

it  is  not  signal-dependent  and  can  therefore  be  easily 

removed [5], [7]. The difficulty with wavelet or anisotropic 

diffusion algorithms is again the risk of over-smoothing fine 

details particularly in low SNR images [8]. From these points, 

it is understood that all the algorithms have the drawback of 

over-smoothing fine details.  In  [9],  stated  that  oscillatory  

functions or oriented  textures  have  a significantly sparser 

expansion in wave atoms than  in other fixed standard  

representations  like Gabor filters, wavelets and curvelets. In 

[10], denoising using Wave Atom is done by estimating the   

noise variance by trial and error method. In [11], denoising 

using Wave Atom is done by estimating the noise variance by 

histogram technique.  

3. RICIAN NOISE  
The image intensity in magnetic resonance magnitude images 

in the presence of noise is to be governed by a Rician 

distribution. Rician noise depends on the data itself, it is not 

additive, so to add Rician noise to data, what we really mean 

is make the data Rician distributed [12],[13]. The magnetic 

resonance signals are acquired in quadrature channels. Each 

signal  produces  an  image  that  is  degraded  by  a  zero-

mean Gaussian noise of  standard deviation σ0 (which we 

define as the noise level). The two images are then combined 

into a magnitude image and the Gaussian noise PDF is 

transformed into a Rician noise PDF. The joint probability 

density of the noise from two quadrature channels can be 

expressed as [14]: 

 






















2
0

22

2
0 2

exp
2

1
, ir

ir
nn

nnp                         (1)                                                

The expectation values for the mean magnitude and the 

variance are [12]: 
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where 0I  and 1I  are modified Bessel functions of the first 

kind and X denote the MR magnitude image. 

 

4. NOISE VARIANCE ESTIMATION 
Noise  variance  estimation  plays an important role  for  the  

proper selection  of  threshold  in  the  multi-resolution  

techniques. Many noise variance estimation methods are 

available in the literature;  here  the  Automatic  estimation  of  

the  noise variance  from  the histogram of an MR  image 

developed  in [3]  is used. This method is superior in terms of 

the mean squared error. Let { il } with i = 0,..., K denote the 

set of boundaries of histogram bins. Furthermore, let in   

represent the number of observations (counts) within the bin 

[ ilil   ,1 ], which are multinomially distributed. Then, the 

joint PDF of the histogram data is given by : 
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with  
 K

i inKN
1

the total number of observations within  

the  partial  histogram  and ip  the probability that an 

observations within the partial the range  ilil ,1 .  For 

Rayleigh distributed observations, this probability is given by  
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Since 
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Using (6), (5) simplifies to 
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If the set of observations  in is fixed and  is regarded as a 

variable, the joint PDF given in (4) is called a likelihood 

function.
 
The ML estimate is then found by maximizing this 

likelihood function L with respect to σ:
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                                 (8) 

Equivalently,  the  ML  estimate  of  σ  is  found  by 

minimizing –ln L with respect  to σ : 
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Eq.  (9)  is  the  ML  estimate  of  the  noise  standard 

deviation  from  K  bins.  This result can be interpreted as 

follows.  The  joint  PDF  (4)  with  the  ML  estimate  (9)  as 

parameter  generates  the  set  of  observations  (counts)  from 

which  this parameter  is  estimated with  a  larger probability 

than a joint PDF with any other value of σ . For 

implementation software, we refer to the homepage 

http://visielab.ua.ac.be/staff/poot/BackgroundNoiseLvlEst.z.      

5. WAVE ATOM 

5.1 Generalization 
A complete collection of wave packets  x must “span” all 

positions and frequencies; we will call it a phase-space tiling, 

with wave packets as tiles. Universality it is suggested that 

two parameters should suffice to index a lot of known wave 

packet architectures: α to index whether the decomposition is 

“multiscale" (α = 1) or not (α = 0); and β to indicate whether 

basis elements should be isotropic (β =α) or on the contrary, 

elongated and anisotropic (β < α). In terms of phase-space 

localization of the wave packets, we will require that  

 the essential support of  x  be   of  size ~ 2-αj  

vs. 2-βj as scale j,with oscillations of wavelength ~2-j 

tranverse to the ridge; and 

 the essential support of  ˆ be size ~2αj vs. 2βj as 

scale j, at a distance~2j from the origin. 

In terms of α and β, we will clarify the connections between 

various transforms. Curvelets corresponds to α=1, β=1/2, 

wavelets are α=β=1, ridgelets are α=1, β=0, and the Gabor 

transforms is α=β=0. This situation is summarized in figure 1. 

Wave Atoms corresponds to α=β=1/2, having an aspect ratio 
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~2-j/2×2-j/2 in space, with oscillations of wavelength~2-j in the 

codirection  . Wave atoms come from property that they 

also provide an optimally sparse representation of wave 

propagators with applications to fast numerical solvers for 

wave equations. 

 

Fig. 1: Identification of various transforms as (α, β) 

families of wave packets. The horizontal segment at β=1/2 

indicates the only wave packet families that yield sparse 

decompositions of Fourier Integral Operators. 

5.2 Definition of Wave Atoms 
We write wave atoms as )(x , with subscript 

μ=(j,m,n)=(j,m1,m2,n1,n2). All five quantities j,m1,m2,n1,n2 are 

integer-valued and index a point (xμ,ξμ) in phase-space, as 

,2 nx j
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j CmC 22 2max
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Where C1,C2 are two positive constants  whose values are 

implied by the specifics of  the implementation. The position 

vector x is the center of )(x and the wave vector   

determines the centers of both bumps of   ˆ as ±  .  

Wave atoms as  a  variant  of  2-D  wavelet  packets  and obey  

the   parabolic  scaling  of  curvelets  wavelength=(diameter)2. 

Oscillatory functions or oriented  textures (e.g., fingerprint,  

seismic  profile,  engineering  surfaces)  have  a significantly 

sparser expansion  in wave atoms  than  in other fixed  

standard  representations  like Gabor  filters, Wavelets, and 
Curvelets. Wave  atoms have  the  ability  to  adapt  to  

arbitrary  local directions of a pattern, and to sparsely 

represent anisotropic patterns aligned with  the axes.   

In  the  following, we  shortly  summarize  the wave  atom 

transform  as  recently suggested  in  [2]. More detail can be 

found in [14]. Consider a 1-D family of wave packets 

)(, x
j
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jcmjc 2221  (where c1< c2 

are positive constants) and centered in space around 
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Then the function )(0ˆ m is determined by the formula 
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Where  mme 1  and   212  mm .The 

properties of g have to ensure that 
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      Then translates   nm  .0
form an orthonormal 

basis  RL2
. Introducing the basis functions 
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The transform    ZlRLWA 22:  maps a function u onto 

a sequence of wave atom coefficients 
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In the 2-D case, Let μ= (j, m, n). Where m= (m1, m2) and 

n=(n1, n2). We consider 
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and, the Hilbert transform wavelet packets 

     2
2,2

1
1,1

2,1 x
j

nm
x

j
nm

xx 
                    (18) 

Where for decomposition 
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(Note that the above decomposition of nm,̂  is possible 

since nm,  is real valued). A recombination 
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Provides basis functions with two bumps in the frequency 

plane being symmetric with respect to the origin. Together, 

 1
 and 

 2
  form a wave atom frame, and the wave atom 

coefficients 
)1(

uC ,
)2(

uC are the scalar products of u with 
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 1
 and 

 2
  .In [2], a discretization of this transform is 

described for the 1-D case, as well as an extension to two 

dimensions. The algorithm is based on the fast Fourier 

transform and a wrapping trick. For implementation software, 

we refer to the homepage http://www.waveatom.org/ 

software.html due to Demanet and Ying. 

6. EXPERIMENTS AND RESULTS 
This section gives a detailed study of the proposed MRI de-

noising algorithm. It compares the performance of the 

proposed method with wavelet shrinkage. It also compares 

performance of new proposed threshold with old threshold. It 

is evaluated with simulated images and real images. 

6.1 Simulated Images 
For experiments with simulated images, images were loaded 

from Matlab 7.8.0(R2009a) software. Matlab includes an MRI 

data set that contains 27 image slices of a human head. 

Results are verified for all 27 image slices. The matlab code to 

generate rician noise is down loaded from [15]. Noisy image 

with different noise levels are applied on the proposed de-

noising method and the Peak Signal to Noise ratio (PSNR) is 

obtained by 
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Here R is the maximum fluctuation in the input image data 

type. For example, if the input image has a double-precision 

floating-point data type, then R is 1. If it has an 8-bit unsigned 

integer data type, R is 255, etc. We used double-precision 
precision floating-point data type. MSE (mean square error) is 

given as  
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Where m is number of rows in the image, N(i, j) is the noisy 

image and DN(i, j) is the de-noised image. Signal to Noise 

ratio (SNR) is obtained by 
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Where x is noise free simulated images and x̂  is the noisy 

image or de-noised images. 

6.2 Real Images 
The real images were down loaded from the Open Acess 

Series of imaging Studies (OASIS) database [16]. Results are 

verified for these images. Old threshold given in [11] is given 

as: 

 Old threshold=   valval minmaxln                     (24) 

Modified new threshold is given as:  

 New threshold=     
22

minmaxln valval           (25)  

Where the noise variance, maxval is the highest pixel 

value in the image and the minval is the lowest pixel value in 

the image. We obtained better results in case of modified 

threshold for real and simulated images. Noise variance is 

estimated by the method given in [3].  

  

Fig 1: High SNR Images 

(a)Noisy image                                                                      

(b)De-noised using Wave Atom with old threshold              

(c) De-noised using Wavelet with old threshold                    

(d) De-noised using Wave Atom with new threshold            

(e) De-noised using Wavelet with new threshold        
Different quality parameters for above denoised images are 

given in table 1. 

Table 1. Quality Parameters for High SNR Images 

Quality 

parameters 

 

Denoised 

using 

Wave 

Atom 

with old 

threshold        

Denoised 

using 

Wavelet 

with old 

threshold 

Denoised 

using 

Wave 

Atom 

with new 

threshold 

Denoised 

using 

Wavelet 

with new 

threshold 

MSE(mean 

square error) 

0.00057711 0.00062766 0.00052184 0.00053499 

PSNR( peak 

signal to 

noise ratio) 

32.3874 dB 32.0227 dB 32.8246 dB 32.7165 dB 

S/MSE(signal 

to mean 

square error) 

24.7756 dB 24.4109 dB 25.2128 dB 25.1047 dB 

SNR(signal 

to noise ratio) 

19.3170 dB 18.8474 dB 19.6605 dB 19.5071 dB 

 

It is clear from table 1 that de-noised image using wave atom 

with new threshold has lowest mean square error (MSE), 

highest peak signal to noise ratio (PSNR), highest signal to 

mean square error (S/MSE) and highest signal to noise ratio 

(SNR). It is also clear from the table that quality parameters of 

image de-noised by wave atom is better as comparison to the 

quality parameters of image de-noised by wavelet.   
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Fig 2:Low SNR Images 

(a)Noisy image                                                                           

(b) De-noised using Wave Atom with old threshold                          

(c) De-noised using Wavelet with old threshold                             

(d) De-noised using Wave Atom with new threshold                      

(e) De-noised using Wavelet with new threshold        

Different quality parameters for above denoised images 

are given in table 2.  

Table 2. Quality Parameters for Low SNR Images 

 

7. CONCLUSIONS 
A better scheme is presented for the denoising of magnetic 

resonance imaging using wave atom transform. It is proved 

that the proposed threshold provides a better quality on MRI  

as compared to old threshold. The edge preserving property is 

clearly an advantage of the proposed method. 
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Quality 

parameters 

   

Denoised 

using 

Wave 

Atom 

with old 

threshold        

De-

noised 

using 

Wavelet 

with old 

threshold 

De-

noised 

using 

Wave 

Atom 

with new 

threshold 

De-

noised 

using 

Wavelet 

with new 

threshold   

MSE(mean 

square error) 

0.0031931 0.0034542 0.0024507 0.0025859 

PSNR( peak 

signal to 

noise ratio) 

24.9578 dB 24.6166 dB 26.107 dB 25.8739 dB 

S/MSE(signal 

to mean 

square error) 

17.346 dB 17.0047 dB 18.4952 dB 18.2621 dB 

SNR(signal 

to noise ratio) 

13.3389 dB 12.7882 dB 15.3178 dB 14.7623dB 


