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ABSTRACT 

In this paper, a method has been presented to convert finite 

automaton to fuzzy automaton as fuzzy automaton is better 

than finite automaton for strings comparison when individual 

levels of similarity for particular pairs of symbols or 

sequences of symbols are defined. A finite automaton is 

useful in determining whether a given string is accepted or not 

whereas fuzzy automaton determines the extent to which the 

string is accepted. 

1. INTRODUCTION 
Approximate string matching is the technique of finding 

approximate matches to a pattern in a given text. Approximate 

string matching is very fundamental to text processing 

because a spell check program must be able to identify the 

closest match for a given text string which is not found in the 

dictionary. Approximate string matching finds applications in 

the areas like Computational Biology, Signal Processing, Text 

Retrieval or Spell Checker, Correction systems for optical 

character recognition and Software to assist natural language 

translation. 

Edit distance 
The edit distance between two strings of characters is nothing 

but the number of operations required to transform one string 

into another. Edit distance can be defined in various ways.  

Following two edit distances are the most commonly used 

ones.  

 Hamming distance 

 Levenshtein distance 

 

Hamming distance 
The Hamming distance between two strings of equal length is 

nothing but the number of positions in which the 

corresponding symbols differ. i.e., it measures the minimum 

number of substitutions (also called number of errors) 

required to change one string into the other. 

 

Example: 

The Hamming distance between "road" and "ride" is 3, 

between 11011 and 10011 is 1 and between 438765 and 

428664 is 3. 

 

Levenshtein distance 
The levenshtein distance between two strings is defined as the 

minimum number of edits  required to transform one string 

into the other with the allowable edit operations being 

insertion, deletion and substitution of a single character. 

 

For example, the levenshtein distance between "abcd" and 

"afcde" is 2, because the following two edits change one to 

the other. Also there is no way this can be done with fewer 

than two edits: 

1. abcd → afcd (substitution of 'f' for 'b') 

2. afcd → afcde (insertion of 'e') 

The distance d (x, y) between two strings x and y is the 

minimal cost of a sequence of operations that transform x into 

y.  The cost of each of the operations allowed by levenshtein 

distance namely insertion, deletion and replacement or 

substitution is assumed to be 1. Note that Hamming distance 

allows only substitution  whose cost is 1 and is valid only for 

two strings of equal length whereas Levenshtein distance 

holds for two strings of different lengths. Hamming distance 

is denoted by R whereas levenshtein distance is denoted by 

DIR. In other words,   

R (P, P0) is defined as the minimum number of symbol 

replacement operations required for the conversion of string P 

into string P0 or vice versa.  DIR (P, P0) is defined as the 

minimum number of operations of symbol deletion (D), 

insertion (I) or replacement (R) required for the conversion of 

string P into string P0 or vice versa. 

In this paper, a technique has been presented which can be 

used to search or match strings in special cases when some 

pairs of symbols are more similar to each other when 

compared to other pairs. This kind of similarity cannot be 

handled by usual search algorithms. A spell checker based on 

a dictionary of correct words and abbreviations is a common 

way by which basic checking of a given text document can be 

carried out by searching each of its words in our dictionary. A 

word which is not found in the dictionary is highlighted and a 

correction is suggested. The suggested words are those in the 

dictionary which are closest to the unknown word in the sense 

that those words can be obtained from the unknown word by 

means of addition, deletion and replacement of symbols. 

It is not too difficult to implement this common model. But it 

does not take into consideration the fact that some pairs of 

symbols are more similar than others. This is very specific to 

the language. For example in Latin alphabet `a' and `e' or `i' 

and `y' are somewhat related and hence more similar than for 

example `w' and `b'. In many European languages we can find 

some letters of extended Latin alphabet whose similarity 

solely depends on the nature of the language. The primary 

concern here is that it can't be simply implemented using 

standard string search models. 

A fuzzy automaton allows to define individual levels of 

similarity for particular pairs of symbols or sequences of 

symbols and hence can be used as a base for providing a 

better string search operation. So conversion of the given 

finite automaton to fuzzy automaton using the similarity 

function is presented in the following section. 

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
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2. CONSTRUCTION OF FUZZY 

AUTOMATON USING FINITE 

AUTOMATON AND SIMILARITY 

FUNCTION 
Consider a finite automaton M = (Q, , q0, , F). gs is a 

similarity function which defines similarity level between 

each pair of input symbols. In other words, 

 gs:  x   [0, 1] defined as follows 

 

                       1 if ai and aj are fully equal 

  gs (ai, aj) =    0 if ai and aj are completely different 

                       a value between 0 and 1 depending on the    

                       similarity between ai and aj.  

 

 

Assume gs is a symmetric function so that  

gs (ai, aj) = gs (aj, ai). With M, associate a fuzzy automaton  

M' = (Q', f, I, F') as given below. Q' is same as Q, I (q0) = 1 

and I (q) = 0  q  Q, q  q0, F' (q) = 1 if q  F and 0 

otherwise. The fuzzy transition function f is computed using 

the formula 

                    

f (qi, a, qj) =      (gs (a, x)  x(qi, qj)) ……(*) 

                      x 

 qi, qj  Q and  a  . 

Here a (qi, qj) = 1 means  (qi, a) = qj. Similarly b (qi, qj) = 1 

means  (qi, b) = qj. Here i represent row number whereas j 

represents column number 

3. EXAMPLES 
Illustration of the above construction by examples.  

Example 1 
Consider the finite automaton M = (Q, , q1, , F) where 

 Q = {q1, q2, q3, q4, q5),  = {a, b, c}, Start state = q1 ,  

F = {q3}and  is given by 

 

In the above a matrix, a (q1, q1) = a (q1, q2) = a (q2, q5) = 1 

i.e.  (q1, a) = q1,  (q1, a) = q2 and  (q2, a) = q5 respectively. 

Similarly b and c are defined. Let w0 = {“ab”}, w1 = {“bb”} 

and w2 = {“cb”}. First compare w1 and w2 to w0 using 

Hamming distance R. R (w0, w1) = 1 and R (w0, w2) = 1. In 

this case, w1 and w2 have got the same level of similarity to 

w0.  Next compare w1 and w2 to w0 using levenshtein distance 

DIR. DIR (w0, w1) = 1 and DIR (w0, w2) = 1. In this case also 

w1 and w2 have got the same level of similarity to w0. 

Now construct the corresponding fuzzy automaton  

M' = (Q', f, I, F') where Q' = {q1, q2, q3, q4, q5), I (q1) = 1 and I 

(q2) = I (q3) = I (q4) =  I (q5) = 0, F' (q3) = 1 and F' (q1) = F' 

(q2) = F' (q4) = F' (q5) = 0. Suppose assume that the symbols 

„a‟ and „c‟ are bit similar whereas the others are pairwise 

different. Assume gs to be the matrix given below.  

 

 

                         1.0    0.0    0.3 

            gs =       0.0    1.0    0.0  

                         0.3    0.0    1.0   

 

Using (*), obtain the values for fa, fb and fc matrices as given 

below.  

f (q1, a, q1) = fa (q1, q1)  

 fa (q1, q1) =  [ ( gs (a, a)  a (q1, q1)) , (gs (a, b)   

                             b (q1,  q1)), (gs (a, c)  c (q1, q1))]    

                 =  [(1  1), (0  1), (0.3  1)) 

                 =  [1, 0, 0.3] 

                 = 1 

fa (q1, q2) =  [ ( gs (a, a)  a (q1, q2)) , (gs (a, b)  

                             b (q1, q2)), (gs (a, c)  c (q1, q2))]    

                 =  [(1  1), (0  0), (0.3  0)) 

                 =  [1, 0, 0] 

                 = 1 

fa (q1, q3) =  [ ( gs (a, a)  a (q1, q3)) , (gs (a, b)   

                            b (q1, q3)), (gs (a, c)  c (q1, q3))]    

                 =  [(1  0), (0  0), (0.3  0)) 

                 =  [0, 0, 0] 

                 = 0 

fa (q1, q4) =  [ ( gs (a, a)  a (q1, q4)) , (gs (a, b)   

                            b (q1, q4)), (gs (a, c)  c (q1, q4))]    

                 =  [(1  0), (0  1), (0.3  1)) 

                 =  [0, 0, 0.3] 

                 = 0.3 

fa (q1, q5) =  [ ( gs (a, a)  a (q1, q5)) , (gs (a, b)   

                           b (q1, q5)), (gs (a, c)  c (q1, q5))]    

                 =  [(1  0), (0  0), (0.3  0)) 

                 =  [0, 0, 0] 

                 = 0 

Similarly all other values of fa, fb and fc are calculated.   

 

                          1.0 1.0 0.0 0.3 0.0  
                          0.0 0.0 0.0 0.0 1.0 
              fa   =     0.0 0.0 0.0 0.0 0.0 
                          0.0 0.0 0.0 0.0 0.0 
                          0.0 0.0 0.0 0.0 0.0 
 

                          1.0 0.0 0.0 1.0 0.0  
                          0.0 0.0 1.0 0.0 0.0 
              fb   =     0.0 0.0 0.0 0.0 0.0 
                          0.0 0.0 0.0 0.0 1.0 
                          0.0 0.0 0.0 0.0 0.0 
 
                          1.0 0.3 0.0 1.0 0.0  
                          0.0 0.0 0.0 0.0 1.0 
              fc   =     0.0 0.0 0.0 0.0 0.0 
                          0.0 0.0 0.0 0.0 0.0 
                          0.0 0.0 0.0 0.0 0.0 
 

Now L (M') (w0) = I o fab
* o F 

                            =  [(fab
* o F) (q1)   I (q1)] 

                            =  (fab
* o F) (q1)   I (q1) 

                            =  (fab
* o F ) (q1) 

                            =   [fab
* (q1, q3)  F (q3)]  

                            = (1  1)  

                            = 1 
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         L (M') (w1) = I o fbb
* o F 

                            =  [(fbb
* o F) (q1)   I (q1)] 

                            =  (fbb
* o F) (q1)   I (q1) 

                            =  (fbb
* o F ) (q1) 

                            =   [fbb
* (q1, q3)  F (q3)]  

                            = (0  1)  

                            = 0 

 

         L (M') (w2) = I o fcb
* o F 

                            =  [(fcb
* o F) (q1)   I (q1)] 

                            =  (fcb
* o F) (q1)   I (q1) 

                            =  (fcb
* o F ) (q1) 

                            =   [fcb
* (q1, q3)  F (q3)]  

                            = (0.3  1)  

                            = 0.3 

L (M') (w0) = 1, L (M') (w1) = 0, L (M') (w2) = 0.3. 

First compare w0 and w1, the difference of L (M') (w0) and L 

(M') (w1) is 1. Similarly, compare w0 and w2, the difference of 

L (M') (w0) and L (M') (w2) is 0.7. So comparing these values 

that w0 is more similar to w2 than to w1. 

 Example 2 
Consider another example. Consider the finite automaton M = 

(Q, , q1, , F) where Q = {q1, q2, q3, q4, q5),  = {a, b, c, d}, 

Start state = q1 , F = {q4, q5}and  is given by 

 
Let w0 = “abbcd”, w1 = “dabbc”, w2 = “ddbdd” 

R (w0, w1) = 4,  R (w0, w2) = 4. So decision cannot be made 

whether w0 is closer to w1 or w2. Hence construct the fuzzy 

automaton using the above given finite automaton and the 

following given fuzzy transition matrix. gs matrix given below 

. 

 

                       1.0    0.2    0.3    0.1 

            gs =     0.2    1.0    0.2    0.1 

                       0.3    0.2    1.0    0.2 

                       0.1    0.1    0.2    1.0 

 

Fuzzy automaton M' = (Q', f, I, F') where  

Q' = {q1, q2, q3, q4, q5), I (q1) = 1 and I (q2) = I (q3) = I (q4) =  

I (q5) = 0, F' (q4) =  F' (q5) = 1 and F' (q1) = F' (q2) = F' (q3) = 

0. 

Using (*), we obtain the values for fa, fb, fc  and fd matrices as 

given below.  

 

                          0.0 1.0 0.0 0.0 0.0  

                          0.0 1.0 0.0 0.0 0.0 

              fa   =     0.0 0.0 0.0 0.0 0.0 

                          0.0 0.0 0.0 0.0 0.0 

                          0.0 0.0 0.0 0.0 0.0 

 

                         0.0 1.0 0.0 0.0 0.0  

                          0.0 0.0 1.0 0.0 0.0 

              fb   =     0.0 0.0 1.0 0.0 0.0 

                          0.0 0.0 0.0 0.0 0.0 

                          0.0 0.0 0.0 0.0 0.0 

 

                         

 

 

 

 

                         0.0 0.0 0.0 0.0 0.0  

                         0.0 0.0 0.0 0.0 0.0 

              fc   =    0.0 0.0 0.0 1.0 0.0 

                         0.0 0.0 0.0 0.0 0.0 

                         0.0 0.0 0.0 0.0 0.0 

  

 

                         1.0 0.0 0.0 0.0 0.0  

                         0.0 0.0 0.0 0.0 0.0 

              fd   =    0.0 0.0 0.0 0.0 0.0 

                         0.0 0.0 0.0 0.0 1.0 

                         0.0 0.0 0.0 0.0 0.0 

 

L (M') (w0) = I o fs
* o F      (s = w0) 

                    =  [(fs
* o F) (q1)   I (q1)] 

                     =  (fs
* o F) (q1)   I (q1) 

                     =  (fs
* o F ) (q1) 

                     =   [fs
* (q1, q4)  F (q4)]   [fs

* (q1, q5)  F (q5)] 

                     = (0.1  1)   (1  1) 

                     = 0.1  1 

                     = 1 

 

  L (M') (w1) = I o fs
* o F      (s = w1) 

                      =  [(fs
* o F) (q1)   I (q1)] 

                      =  (fs
* o F) (q1)   I (q1) 

                      =  (fs
* o F ) (q1) 

                      = [fs
* (q1, q4)  F (q4)]   [fs

* (q1, q5)  F (q5)] 

                      = (1  1)   (0.2  1) 

                      = 1  0.2 

                       = 1 

 

    L (M') (w2) = I o fs
* o F      (s = w2) 

                       =  [(fs
* o F) (q1)   I (q1)] 

                       =  (fs
* o F) (q1)   I (q1) 

                       =  (fs
* o F ) (q1) 

                       = [fs
* (q1, q4)  F (q4)]   [fs

* (q1, q5)  F (q5)] 

                       = (0.1  1)   (0.1  1) 

                       = 0.1  0.1 

                       = 0.1 

 

As L (M') (w0) = L (M') (w1) = 1 and L (M') (w2) = 0.1.  

Compare w0 and w1, the difference of L (M') (w0) and L (M') 

(w1) is 0. Similarly, compare w0 and w2, the difference of L 

(M') (w0) and L (M') (w2) is 0.9. So comparing these values 

that w0 is more similar to w1 than to w2. 

 

4. CONCLUSION 
A fuzzy automaton allows to define individual levels of 

similarity for particular pairs of symbols or sequences of 

symbols and hence can be used as a base for providing a 

better string search operation. Fuzzy automata are more useful 

in performing comparison operations unlike finite automata 

which cannot decide how close two given strings are. Finite 

automata can help in determining whether a given string is 

accepted or not whereas fuzzy automata can tell us the extent 

to which the string is accepted. Hence fuzzy automaton is 

very useful in comparison of strings as shown by above 

examples. 
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