
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.8, January 2012

1

Conversion of Finite Automata to Fuzzy Automata

for String Comparison

Dr. V. Ramaswamy

Principal
Bapuji Institute of Engineering & Technology

Davangere, Karnataka, India

H. A. Girijamma
Associate Professor, CSE

RNS Institute of Technology
Channasandra, Bangalore, Karnataka, India

ABSTRACT

In this paper, a method has been presented to convert finite

automaton to fuzzy automaton as fuzzy automaton is better

than finite automaton for strings comparison when individual

levels of similarity for particular pairs of symbols or

sequences of symbols are defined. A finite automaton is

useful in determining whether a given string is accepted or not

whereas fuzzy automaton determines the extent to which the

string is accepted.

1. INTRODUCTION
Approximate string matching is the technique of finding

approximate matches to a pattern in a given text. Approximate

string matching is very fundamental to text processing

because a spell check program must be able to identify the

closest match for a given text string which is not found in the

dictionary. Approximate string matching finds applications in

the areas like Computational Biology, Signal Processing, Text

Retrieval or Spell Checker, Correction systems for optical

character recognition and Software to assist natural language

translation.

Edit distance
The edit distance between two strings of characters is nothing

but the number of operations required to transform one string

into another. Edit distance can be defined in various ways.

Following two edit distances are the most commonly used

ones.

 Hamming distance

 Levenshtein distance

Hamming distance
The Hamming distance between two strings of equal length is

nothing but the number of positions in which the

corresponding symbols differ. i.e., it measures the minimum

number of substitutions (also called number of errors)

required to change one string into the other.

Example:

The Hamming distance between "road" and "ride" is 3,

between 11011 and 10011 is 1 and between 438765 and

428664 is 3.

Levenshtein distance
The levenshtein distance between two strings is defined as the

minimum number of edits required to transform one string

into the other with the allowable edit operations being

insertion, deletion and substitution of a single character.

For example, the levenshtein distance between "abcd" and

"afcde" is 2, because the following two edits change one to

the other. Also there is no way this can be done with fewer

than two edits:

1. abcd → afcd (substitution of 'f' for 'b')

2. afcd → afcde (insertion of 'e')

The distance d (x, y) between two strings x and y is the

minimal cost of a sequence of operations that transform x into

y. The cost of each of the operations allowed by levenshtein

distance namely insertion, deletion and replacement or

substitution is assumed to be 1. Note that Hamming distance

allows only substitution whose cost is 1 and is valid only for

two strings of equal length whereas Levenshtein distance

holds for two strings of different lengths. Hamming distance

is denoted by R whereas levenshtein distance is denoted by

DIR. In other words,

R (P, P0) is defined as the minimum number of symbol

replacement operations required for the conversion of string P

into string P0 or vice versa. DIR (P, P0) is defined as the

minimum number of operations of symbol deletion (D),

insertion (I) or replacement (R) required for the conversion of

string P into string P0 or vice versa.

In this paper, a technique has been presented which can be

used to search or match strings in special cases when some

pairs of symbols are more similar to each other when

compared to other pairs. This kind of similarity cannot be

handled by usual search algorithms. A spell checker based on

a dictionary of correct words and abbreviations is a common

way by which basic checking of a given text document can be

carried out by searching each of its words in our dictionary. A

word which is not found in the dictionary is highlighted and a

correction is suggested. The suggested words are those in the

dictionary which are closest to the unknown word in the sense

that those words can be obtained from the unknown word by

means of addition, deletion and replacement of symbols.

It is not too difficult to implement this common model. But it

does not take into consideration the fact that some pairs of

symbols are more similar than others. This is very specific to

the language. For example in Latin alphabet `a' and `e' or `i'

and `y' are somewhat related and hence more similar than for

example `w' and `b'. In many European languages we can find

some letters of extended Latin alphabet whose similarity

solely depends on the nature of the language. The primary

concern here is that it can't be simply implemented using

standard string search models.

A fuzzy automaton allows to define individual levels of

similarity for particular pairs of symbols or sequences of

symbols and hence can be used as a base for providing a

better string search operation. So conversion of the given

finite automaton to fuzzy automaton using the similarity

function is presented in the following section.

http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.8, January 2012

2

2. CONSTRUCTION OF FUZZY

AUTOMATON USING FINITE

AUTOMATON AND SIMILARITY

FUNCTION
Consider a finite automaton M = (Q, , q0, , F). gs is a

similarity function which defines similarity level between

each pair of input symbols. In other words,

 gs:  x   [0, 1] defined as follows

 1 if ai and aj are fully equal

 gs (ai, aj) = 0 if ai and aj are completely different

 a value between 0 and 1 depending on the

 similarity between ai and aj.

Assume gs is a symmetric function so that

gs (ai, aj) = gs (aj, ai). With M, associate a fuzzy automaton

M' = (Q', f, I, F') as given below. Q' is same as Q, I (q0) = 1

and I (q) = 0  q  Q, q  q0, F' (q) = 1 if q  F and 0

otherwise. The fuzzy transition function f is computed using

the formula

f (qi, a, qj) =  (gs (a, x)  x(qi, qj)) ……(*)

 x

 qi, qj  Q and a  .

Here a (qi, qj) = 1 means  (qi, a) = qj. Similarly b (qi, qj) = 1

means  (qi, b) = qj. Here i represent row number whereas j

represents column number

3. EXAMPLES
Illustration of the above construction by examples.

Example 1
Consider the finite automaton M = (Q, , q1, , F) where

 Q = {q1, q2, q3, q4, q5),  = {a, b, c}, Start state = q1 ,

F = {q3}and  is given by

In the above a matrix, a (q1, q1) = a (q1, q2) = a (q2, q5) = 1

i.e.  (q1, a) = q1,  (q1, a) = q2 and  (q2, a) = q5 respectively.

Similarly b and c are defined. Let w0 = {“ab”}, w1 = {“bb”}

and w2 = {“cb”}. First compare w1 and w2 to w0 using

Hamming distance R. R (w0, w1) = 1 and R (w0, w2) = 1. In

this case, w1 and w2 have got the same level of similarity to

w0. Next compare w1 and w2 to w0 using levenshtein distance

DIR. DIR (w0, w1) = 1 and DIR (w0, w2) = 1. In this case also

w1 and w2 have got the same level of similarity to w0.

Now construct the corresponding fuzzy automaton

M' = (Q', f, I, F') where Q' = {q1, q2, q3, q4, q5), I (q1) = 1 and I

(q2) = I (q3) = I (q4) = I (q5) = 0, F' (q3) = 1 and F' (q1) = F'

(q2) = F' (q4) = F' (q5) = 0. Suppose assume that the symbols

„a‟ and „c‟ are bit similar whereas the others are pairwise

different. Assume gs to be the matrix given below.

 1.0 0.0 0.3

 gs = 0.0 1.0 0.0

 0.3 0.0 1.0

Using (*), obtain the values for fa, fb and fc matrices as given

below.

f (q1, a, q1) = fa (q1, q1)

 fa (q1, q1) =  [(gs (a, a)  a (q1, q1)) , (gs (a, b) 

 b (q1, q1)), (gs (a, c)  c (q1, q1))]

 =  [(1  1), (0  1), (0.3  1))

 =  [1, 0, 0.3]

 = 1

fa (q1, q2) =  [(gs (a, a)  a (q1, q2)) , (gs (a, b) 

 b (q1, q2)), (gs (a, c)  c (q1, q2))]

 =  [(1  1), (0  0), (0.3  0))

 =  [1, 0, 0]

 = 1

fa (q1, q3) =  [(gs (a, a)  a (q1, q3)) , (gs (a, b) 

 b (q1, q3)), (gs (a, c)  c (q1, q3))]

 =  [(1  0), (0  0), (0.3  0))

 =  [0, 0, 0]

 = 0

fa (q1, q4) =  [(gs (a, a)  a (q1, q4)) , (gs (a, b) 

 b (q1, q4)), (gs (a, c)  c (q1, q4))]

 =  [(1  0), (0  1), (0.3  1))

 =  [0, 0, 0.3]

 = 0.3

fa (q1, q5) =  [(gs (a, a)  a (q1, q5)) , (gs (a, b) 

 b (q1, q5)), (gs (a, c)  c (q1, q5))]

 =  [(1  0), (0  0), (0.3  0))

 =  [0, 0, 0]

 = 0

Similarly all other values of fa, fb and fc are calculated.

 1.0 1.0 0.0 0.3 0.0
 0.0 0.0 0.0 0.0 1.0
 fa = 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0

 1.0 0.0 0.0 1.0 0.0
 0.0 0.0 1.0 0.0 0.0
 fb = 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 1.0
 0.0 0.0 0.0 0.0 0.0

 1.0 0.3 0.0 1.0 0.0
 0.0 0.0 0.0 0.0 1.0
 fc = 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0

Now L (M') (w0) = I o fab
* o F

 =  [(fab
* o F) (q1)  I (q1)]

 = (fab
* o F) (q1)  I (q1)

 = (fab
* o F) (q1)

 =  [fab
* (q1, q3)  F (q3)]

 = (1  1)

 = 1

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.8, January 2012

3

 L (M') (w1) = I o fbb
* o F

 =  [(fbb
* o F) (q1)  I (q1)]

 = (fbb
* o F) (q1)  I (q1)

 = (fbb
* o F) (q1)

 =  [fbb
* (q1, q3)  F (q3)]

 = (0  1)

 = 0

 L (M') (w2) = I o fcb
* o F

 =  [(fcb
* o F) (q1)  I (q1)]

 = (fcb
* o F) (q1)  I (q1)

 = (fcb
* o F) (q1)

 =  [fcb
* (q1, q3)  F (q3)]

 = (0.3  1)

 = 0.3

L (M') (w0) = 1, L (M') (w1) = 0, L (M') (w2) = 0.3.

First compare w0 and w1, the difference of L (M') (w0) and L

(M') (w1) is 1. Similarly, compare w0 and w2, the difference of

L (M') (w0) and L (M') (w2) is 0.7. So comparing these values

that w0 is more similar to w2 than to w1.

 Example 2
Consider another example. Consider the finite automaton M =

(Q, , q1, , F) where Q = {q1, q2, q3, q4, q5),  = {a, b, c, d},

Start state = q1 , F = {q4, q5}and  is given by

Let w0 = “abbcd”, w1 = “dabbc”, w2 = “ddbdd”

R (w0, w1) = 4, R (w0, w2) = 4. So decision cannot be made

whether w0 is closer to w1 or w2. Hence construct the fuzzy

automaton using the above given finite automaton and the

following given fuzzy transition matrix. gs matrix given below

.

 1.0 0.2 0.3 0.1

 gs = 0.2 1.0 0.2 0.1

 0.3 0.2 1.0 0.2

 0.1 0.1 0.2 1.0

Fuzzy automaton M' = (Q', f, I, F') where

Q' = {q1, q2, q3, q4, q5), I (q1) = 1 and I (q2) = I (q3) = I (q4) =

I (q5) = 0, F' (q4) = F' (q5) = 1 and F' (q1) = F' (q2) = F' (q3) =

0.

Using (*), we obtain the values for fa, fb, fc and fd matrices as

given below.

 0.0 1.0 0.0 0.0 0.0

 0.0 1.0 0.0 0.0 0.0

 fa = 0.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 0.0 1.0 0.0 0.0 0.0

 0.0 0.0 1.0 0.0 0.0

 fb = 0.0 0.0 1.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 fc = 0.0 0.0 0.0 1.0 0.0

 0.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 1.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 0.0

 fd = 0.0 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0 1.0

 0.0 0.0 0.0 0.0 0.0

L (M') (w0) = I o fs
* o F (s = w0)

 =  [(fs
* o F) (q1)  I (q1)]

 = (fs
* o F) (q1)  I (q1)

 = (fs
* o F) (q1)

 = [fs
* (q1, q4)  F (q4)]  [fs

* (q1, q5)  F (q5)]

 = (0.1  1)  (1  1)

 = 0.1  1

 = 1

 L (M') (w1) = I o fs
* o F (s = w1)

 =  [(fs
* o F) (q1)  I (q1)]

 = (fs
* o F) (q1)  I (q1)

 = (fs
* o F) (q1)

 = [fs
* (q1, q4)  F (q4)]  [fs

* (q1, q5)  F (q5)]

 = (1  1)  (0.2  1)

 = 1  0.2

 = 1

 L (M') (w2) = I o fs
* o F (s = w2)

 =  [(fs
* o F) (q1)  I (q1)]

 = (fs
* o F) (q1)  I (q1)

 = (fs
* o F) (q1)

 = [fs
* (q1, q4)  F (q4)]  [fs

* (q1, q5)  F (q5)]

 = (0.1  1)  (0.1  1)

 = 0.1  0.1

 = 0.1

As L (M') (w0) = L (M') (w1) = 1 and L (M') (w2) = 0.1.

Compare w0 and w1, the difference of L (M') (w0) and L (M')

(w1) is 0. Similarly, compare w0 and w2, the difference of L

(M') (w0) and L (M') (w2) is 0.9. So comparing these values

that w0 is more similar to w1 than to w2.

4. CONCLUSION
A fuzzy automaton allows to define individual levels of

similarity for particular pairs of symbols or sequences of

symbols and hence can be used as a base for providing a

better string search operation. Fuzzy automata are more useful

in performing comparison operations unlike finite automata

which cannot decide how close two given strings are. Finite

automata can help in determining whether a given string is

accepted or not whereas fuzzy automata can tell us the extent

to which the string is accepted. Hence fuzzy automaton is

very useful in comparison of strings as shown by above

examples.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.8, January 2012

4

5. REFERENCES
[1] John N. Mordeson, Davender S. Malik, Fuzzy Automata

and Languages: Theory and Applications, 2002-03-19.

[2] Jiri Mockor, Fuzzy and Non deterministic Automata,

Research Report No. 8, Institute for Research and

Applications of Fuzzy Modeling, University of Ostrava,

Chech Republic, 1999.

[3] Dr. V. Ramaswamy, Girijamma.H. A., Characterization

of Fuzzy Regular Languages International Journal of

Computer Science and Network Security, VOL 8, No.

12, December 2008.

[4] Dr. V. Ramaswamy, Girijamma.H. A., An extension of

Myhill Nerode theorem for fuzzy automata, Advances in

Fuzzy Mathematics, Research India Publications, ISSN

0973-533X Volume 4, Number 1 (2009).

[5] John E Hopcroft & Jefrey D. Ullman, Introduction to

Automata Theory, Languages and Computation. Narosa

publishing house, 1987.

[6] George J. Klir, Bo Yuan, Fuzzy sets and fuzzy logic

Theory and Applications, Prentice – Hall of India Pvt.

Ltd, 1997.

