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ABSTRACT 
This paper is intended to present the outcome of a study 

conducted on the cavitation data collected from accelerometer 

which is installed at the down stream of the cavitation test loop, 

to illustrate that the hidden neurons in an ANN modelling tool, 

indeed, do have roles to play in percentage of classification of 

cavitation signal. It sheds light on the role of the hidden 

neurons in an Elman Recurrent type ANN model which is used 

to classify the cavitation signals. The results confirmed that the 

hidden-output connection weights become small as the number 

of hidden neurons becomes large and also that the trade-off in 

the learning stability between input-hidden and hidden-output 

connections exists. The Elman recurrent network propagates 

data from later processing stage to earlier stage. A copy of the 

previous values of the hidden units are maintained which 

allows the network to perform sequence-prediction. In the 

present work, the optimum number of hidden neurons is 

evolved through an elaborate trial and error procedure. It is 

concluded that our approach has a significant improvement in 

learning and also in classification of cavitation signals.  

 General Terms 

Optimum ANN model development. 
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1.  INTRODUCTION 
Artificial Neural networks have been successfully applied to 

classification problems. Multilayer networks with back 

propagation learning algorithm is limited to searching for a 

appropriate network topology including number of hidden 

neurons and weights to solve the learning problems in hand. 

Too small networks are unable to adequately learn the problem 

while excessively large networks tend to over fit the training 

data and consequently results in poor performance [1]. A major 

problem lies in specifying the size of the neural network. Even 

for moderately size networks the number of parameters may 

become large compared to the number of data [2].  Most 

practical learning problems are known to be computationally 

complex and hard to optimize. In this study, network 

performance is examined as a function of number of hidden 

neurons, because the number of hidden neurons in a multi 

layered neural network is subject to debate. The accuracy of an 

ANN model varies with the number of hidden neurons. 

Often in an ANN application the number of hidden neurons 

is selected based on the particular application and then only 

after testing various numbers of hidden neurons. In our 

investigation, we observed the influence of the number of 

hidden neurons by comparing the relative performance of 

ANNs with increasing the hidden neurons in various 

patterns. This is carried out using a seven layered Elman 

recurrent network with resilient back propagation algorithm. 

The paper is organized as follows, Section II describe about 

signal acquisition and data sets analyzed, section III 

describes ANN modeling module for classification of 

various cavitation stages, section IV analyses the 

performance results and section V concludes with future 

work. 

2. SIGNAL ACQUISITION AND DATA 

SETS ANALYZED 

PFBR is a sodium cooled pool type reactor. PFBR core 

subassemblies are supported vertically inside the sleeves 

provided in the Grid plate. The Grid Plate acts as a coolant 

header through which flow is distributed among the 

Subassembly to remove fission heat. Since the power profile 

of the reactor core is not uniform, it is necessary to distribute 

the coolant flow to each subassembly according to their 

power levels. PFBR core is divided into 15 zones (Zone I to 

Zone XV) such as fuel, blanket, reflector, storage etc 

according to their respective power levels. To achieve the 

maximum temperature of sodium at core outlet, it is essential 

to feed the subassemblies with a flow proportional to the 

power generation. The flow zoning in the different 

Subassembly's of the reactor core is achieved by installing 

pressure dropping devices in the foot of the subassembly. 

Orifices having Honey-comb type geometry were developed 

to meet the flow zoning requirements of Fuel zone. 

Hydraulics of these orifices is important in achieving the 

required pressure drop without cavitation [3]. Cavitation free 

performance of these devices has to be ensured because 

cavitation leads to reactivity perturbations, positive sodium 

void coefficient, dimensional changes due to erosion etc.   

Cavitation test has been carried out to find the various 

cavitation stages. Vibration data has been collected from 

accelerometers which are placed downstream side of orifices 

of all zones for two different flow rates viz 110% and 100% 

[4].  
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Figure1. Few Example Signals from Zone II  

 

Four data sets have been analyzed viz zone II, Zone IV,      Zone 

VI and Zone VII with channel 1 & 2.  Where Channel 1 means 

110% flow rate and channel 2 means 100% flow rate. 

Each signal containing 2002 samples. Input data are provided in 

table 1. Figure 1 shows few example data sets from Zone II 

Table1. Input Data 

Zone Channel No. of Signals 

II 1 58 

IV 
1 78 

2 78 

VI 
1 28 

2 15 

VII 
1 68 

2 68 

 

3. ANN MODELLING MODULE 

3.1 Network 

 

 

Figure2. Architecture of Recurrent Network   

 

A recurrent neural network (RNN) is a class of neural network 

where connections between units form a directed cycle. This 

creates an internal state of the network. While a feed forward 

network propagates data linearly from input to output, recurrent 

networks propagate data from later processing stages to earlier 

stages.  

Figure 2 shows architecture of an Elman recurrent network, with 

the addition of a set of context units in the input layer. There are 

connections from the hidden layer to these context units fixed 

with a weight. At each time step, the input is propagated in a 

standard feed-forward fashion, and then a learning rule is 

applied. The fixed back connections result in the context units 

always maintaining a copy of the previous values of the hidden 

units (since they propagate over the connections before the 

learning rule is applied). Thus the network can maintain a sort 

of state, allowing it to perform the tasks as sequence-prediction.  

In this approach a seven layered Elman recurrent network is 

trained through resilient back propagation algorithm. Elman 

network needs more hidden neurons in its hidden layer than are 

actually required for a solution by another method. While a 

solution may be available with fewer neurons, the Elman 

network is less able to find the most appropriate weights for 

hidden neurons since the error gradient is approximated. 

Therefore, having a fair number of neurons to begin with 

makes it more likely that the hidden neurons will start out 

dividing up the input space in useful ways. Elman networks can 

be trained with either of two functions, train or adapt. When 

using the function train to train an Elman network at each 

epoch, the entire input sequence is presented to the network, 

and its outputs are calculated and compared with the target 

sequence to generate an error sequence. For each time step, the 

error is back propagated to find gradients of errors for each 

weight and bias. This gradient is actually an approximation 

since the contributions of weights and biases to errors via the 

delayed recurrent connection are ignored. This gradient is then 

used to update the weights with the back prop training function 

chosen by the user [5].  

3.2 Algorithm 

Resilient back Propagation algorithm is a local adaptive 

learning scheme performing supervised batch learning in feed 

forward neural networks. The basic principle of this algorithm 

is to eliminate the harmful influence of the size of the partial 

derivative on the weight step. RPROP modifies the size of the 

weight step taken adaptively, and the mechanism for adaptation 

in RPROP does not take into account the magnitude of the 

gradient as seen by a particular weight, but only the sign of the 

gradient (positive or negative). This allows the step size to be 
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adapted without having the size of the gradient interfere with the 

adaptation process [1]. Resilient Back propagation Algorithm is 

generally much faster than the standard steepest descent 

algorithm. It also has a very good feature that it requires only a 

modest increase in memory requirements.  It is a systematic 

method to train the neural network. The purpose of it is to 

eliminate the harmful effects of the magnitudes of the partial 

derivatives. Only the sign of the derivative is used to determine 

the direction of the weight update and the magnitude of the 

derivative has no effect on the weight update [6].  

4. PERFORMANCE ANALYSIS 

The magnitude of accelerometer signal increases with the 

development of cavitation. So, magnitude has been chosen as a 

feature inputs to neural network. The classification range has 

been obtained through vigorous analysis of various cavitation 

signals. The classification range for No cavitation is - 0.009 to 

0.09, incipient cavitation is 0.1 to 0.99 and Developed cavitation 

is 1 to 2.9.    

In the present work the optimum network architecture evolved 

out through an elaborate trial and error procedure. The network 

parameters such as Network structures, number of layers, and 

number of neurons in each layer, transfer function of layers, 

learning function and performance evaluation has been varied to 

find the best network parameters.   

The training function can be any of the back propagation training 

functions such as trainlm, trainbfg, trainrp, traingd, etc. Here, 

trainrp has been selected as training function.  

The learning function learngdm has been chosen for this 

application to dynamically treat all weights in similar manner and 

to avoid a situation of no learning. So that the network will not 

end in global minima which will adversely affect the system 

performance and will result in massive errors and 

misclassifications.  

Too small learning rate will cause the system to take a very long 

time to converge and too large will cause to oscillate indefinitely 

and diverge [7]. So, learning rate has been chosen as 0.01. 

For training data sets totally 15 signals, 5 signal on each category 

(5 no cavitation signals, 5 Incipient cavitation signals and 5 

developed cavitation signals) has been chosen from various zones 

as train data sets. The remaining signals are used as test data sets. 

For detecting various stages of cavitation, at first newelm 

structure has been studied with resilient back propagation 

algorithm. The effects of number of hidden neurons have been 

studied. The results are provided in the table 2.  

Number of neuron in each layer is important and if it is low, 

neural network cannot reflect nonlinear mapping between input 

and output. On the other hand, if they are more than required, the 

network produces nonlinear mapping with unsatisfactory 

performance. Number of hidden layer neurons of seven layer 

network has been studied by trial and error analysis method. It is 

clear that seven layer recurrent network with 50, 40, 30, 20, 15 

and 10 as hidden neurons has high percentage of cavitation 

detection. 

 

 

 

 

 

 

 

Table2. Effect of Hidden Neurons 

S.No Network % of   

Cavitation 

detection  

1 [12, 10, 8, 6, 4, 2, 1] 38.4 

2 [30, 25, 20, 15, 10, 5, 1] 45.8 

3 [30, 20, 15, 10, 5, 2, 1] 56.3 

4 [40, 30, 20, 15, 10, 5, 1] 53.2 

5 [50, 40, 30, 20, 15, 10, 1] 61.0 

6 [60, 50, 40, 30, 25, 20, 1] 59.1 

7 [100, 80, 60, 40, 20, 10, 1] 48.7 

8 [160, 80, 40, 20, 10, 5, 1] 40.1 

9 [320, 160, 80, 40, 20, 10, 1] 55.7 

 

Table 2 shows the effect of varying number of hidden 

neurons on the classification of cavitation signals.  

 

 
Figure3. Influence of Hidden Neurons on  

Performance of ANN model  

 

Fig.3 presents the results from the investigation into the 

influence of the number of hidden neurons on performance of 

ANN model. It shows the performance of the ANN model in 

terms of classification rate. The trend of the plot indicates that 

the performance of the ANN with [50, 40, 30, 20, 15, 10, 1] 

hidden neuron is the best. A sharp decrease in performance is 

observed for the [100, 80, 60, 40, 20, 10, 1] & [160, 80, 40, 20, 

10, 5, 1] ANNs. The parameter excitation function also has 

been considered in our research when hidden neurons are 

examined. Symmetric functions are chosen as excitation 

functions because these functions will cause the system to learn 

faster. Mostly nonlinear excitation function is introduced to 

maximize efficiency of multilayer networks [8, 9]. In this 

paper, combination of various excitation functions such as 

logsig, tansig, purelin have been studied. Results have been 

tabulated in table 3. Results suggest that the best excitation 

function for input layer is tansig, for all hidden layers it is 

logsig and purelin for output layer.  

Therefore by analysis, the proposed neural network suggested 

for classification of various cavitation stages is,  

Net = newelm(minmax(p), [50,40,30,20,15,10,1], 

{'tansig','logsig','logsig','logsig','logsig','logsig','purelin'}, 

'trainrp', 'learngdm', 'mse'); 
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Table3. Effect of Excitation function with MSE  

        Error function for Proposed Model 

S.No 
Excitation Function 

composition 

Mean 

Square 

Error (%) 

1 

Tansig–Tansig-Tansig-

Tansig-Tansig-Tansig–

Purelin 

-0.0687 

2 

Tansig–Logsig–Logsig–

Logsig–Logsig–Logsig-

Purelin 

-0.0008 

3 

Logsig–Tansig-Tansig-

Tansig-Tansig-Tansig–

Purelin 

0.7378 

4 

Logsig–Logsig-Logsig-

Logsig-Logsig-Logsig–

Purelin 

0.1981 

5 

Tansig–Tansig–Purelin–

Logsig–Logsig–Tansig-

Purelin 

0.0936 

 

Testing of network has been carried out zone wise. Untrained 

inputs have been tested by proposed network and their efficiency 

was determined for MSE error function. The excitation functions 

used for the layers are tansig (for input), logsig (for all hidden 

layers) and purelin (for output). The optimum number of neurons 

used in each hidden layer is 50, 40, 30, 20, 15 and 10 

respectively. trainrp was used with Learning rate = 0.01; 

Momentum constant = 0.9; Minimum performance gradient = 1e-

10 as training algorithm. Common goal (0.471601) was fixed 

irrespective of zones and network was trained with 15 signals 

which are chosen from all zones and contains various types of 

cavitation and the rest of the signals were given for testing.  
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Figure4. Performance goal of Zone VI Channel 1 D57 (No 

cavitation) 

 

Table4. Performance Goal with MSE error function  

EPOCH GOAL MSE 

0 0.471601 2.573619 

25 

 

0.592486 

50 0.564801 

75 0.540245 

100 0.509762 

125 0.467099 

137 Goal Met 0.471597 

Figure 3 shows the performance goal of training phase of zone 

VI channel 1 no cavitation signal (D57). The corresponding 

values are tabulated in Table 4. The network was trained and 

tested and the following results were obtained. 

Table 5 shows performance analysis, with amplitude as input 

and trained using resilient back propagation algorithm using 

data from all zones of various cavitation types. The efficiency 

of the network has been tested on all zones. The analysis is 

carried out irrespective of zones (generalized). 

5. CONCLUSION AND FUTURE WORK 

The lower numbers of hidden neurons were expected to 

perform the best because networks with lower numbers of 

hidden neurons usually have the advantage of generalized 

predictions, but this was not the case. Results are presented on 

the classification accuracy. Significant improvement in 

classification rate is achieved using 50, 40, 30, 20, 15, 10 

hidden neurons for seven layered Elman network model. 

Deciding how many hidden neurons to use is a complex task 

which this research tried to clarify. The above analysis 

concludes that the combination of seven layers with 50, 40, 30, 

20, 15, 10 as number of hidden neurons and the combination of 

activation function Tansig (input), Logsig (hidden layers), 

Purelin (output) with Mean Squared Error (MSE) as 

Performance Function has been determined as the best Elman 

recurrent network parameters for classifying the various stages 

of cavitation signals. The overall percentage of cavitation 

detection for train data is 64.93% and for test data was found to 

be 65.34%. The Percentage of Detection PoD can be improved 

by proper selection of training signals from various zones and 

network parameters. 

Future work can focus on role of activation function of the 

same network by fixing remaining other network parameter 

same.  

 

Table5. Performance Analysis 
Train Data Percentage of Detection: 64.93% 

(Totally 15 signals, 5 signals on each category from all zones) 

ZONE CHANNEL % OF DETECTION  

Test Data 

II 1 61.21 

IV 1 56.72 

2 59.13 

VI 1 68.97 

2 100 

VII 1 56.44 

2 54.85 

Over all % 65.34% 
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