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ABSTRACT 

Message Authentication Code is a function of the message 

and a secret key that produces a fixed-length value that serves 

as the authenticator. MAC provides authentication and 

confidentiality.  This authentication technique does not 

include measures to counter repudiation by the source i.e. it 

does not provide digital signature. We propose a new Message 

authentication Image (MAI) Algorithm that provides 

confidentiality, authentication and digital signature.  It uses 

Cryptographic and Steganographic ideas to conceal the data in 

the image. MAI is generated by using fractals. This approach 

explores the main feature of fractal image generated by 

Iterated Function System (IFS) techniques.  

Keywords - Fractals, Message Hiding, Message 

Authentication Image (MAI), Message Authentication Code 

(MAC). 

1. INTRODUCTION 
With the rapid development in the communications and 

information transmissions there is a growing demand for new 

approaches that increase the security of cryptographic 

systems. Therefore some emerging theories, such as fractals, 

can be adopted to provide a contribution towards this goal. 

Cryptography is the science concerned with the transfer of 

information. Some   of the basic goals of cryptography 

include Information security, information integrity, 

authentication, and non-repudiation, among others. This paper 

is concerned primarily with providing digital signature.  

Digital signature is an authentication technique that also 

includes measures to counter repudiation by the source. 

 Message authentication or digital signature mechanism can 

be viewed as having two levels. At lower level, there must be 

some sort of functions producing an authenticator – a value to 

be used to authenticate a message. This lower level functions 

is used as primitive in a higher level authentication protocol. 

In this paper we propose a new MAI algorithm using chaos.  

The paper is organized as follows - Section 2 deals with 

literature survey on fractals in Image encoding and chaotic 

cryptographic algorithm used to generate a fractal, Section 3 

deals with definitions and mathematical background, in 

Section 4, Chaotic Cryptographic algorithm is proposed, in 

Section 5, fractal generation using chaotic cryptographic 

algorithm is given, in Section 6 an overview of message 

authentication code, proposed message authentication image, 

in Section 7 we compare the existing algorithm with our 

proposed Digital Signature Algorithm and in section 8  we 

bring out the conclusion and future work. 

2. LITERATURE SURVEY 

2.1 Usage of fractals in image encoding 
Fractals are seen everywhere in nature and yet so very 

mysterious. First imagined by Julia and Mandelbrot, fractals 

have an element of chaos, but also have an essence based in 

mathematics. But these are not the only way to represent 

fractals. Here, Sierpinski Gasket is drawn using an Iterated 

Function System.  This fractal was originally thought up by 

W. Sierpinski and predates the Mandelbrot Set. It was 

originally produced by starting with a triangle, cutting out the 

middle, and repeating the process infinitely. In this way, you 

can see that at each iteration, one quarter of the original 

triangle is removed. That is, three quarters of the area of the 

original triangle is left after the first iteration. From this 

observation, it is not hard to infer that after n iterations, the 

area of the gasket would be (0.75)n times the area of the 

original triangle. So after an infinite number of iterations, you 

would find there was no area at all. 

El-Khamy, S.E.  Khedr et all [1] proposed a new 

steganography technique for hiding images. It adopts both 

fractal and wavelet image processing techniques. The idea of 

the  presented scheme was to hide the fractal codebook of   a 

 to-be-hidden image in the wavelet domain of a host or hiding 

image. 

 

Zolotavkin, Y.  Lukichov et all [2] suggested  the criterion for 

detecting hidden data in the fractal code of images . The 

approach for estimating steganographic threats of every 

record in the fractal code was used. The estimation was based 

on the special features of fractal compression. 

Thiyagarajan and G.Geetha [3] developed a chaotic 

cryptographic algorithm backed by stochastic approach to 

matrices, nonlinearity and randomness.  G.Geetha showed that 

non-linearity plays a vital role in cryptographic algorithms by 

appealing to chaos and quantum chaos [4, 5].  G.Geetha et al 

developed an Asymmetric key cipher using fractal dimension 

and Lyapunov Exponents. 

Chin-Chen Chang et al [6] proposed an approach for hiding a 

secret image in a cover image and used fractal image 

compression method to compress the secret image, encrypt 

this compressed data by DES.  Finally embedded the 

encrypted data into the middle-frequency domain of DCT.  

Hsien-Chu Wu et and Chin-Chen Chang [7], suggested a 

fractal-based watermarking scheme that efficiently protects 

the intellectual property rights of digital images. The main 

feature of fractal encoding is that it uses the self-similarity 

between the larger and smaller parts of an image to compress 

the image. 
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Hannes Hartenstein et all [8], presented a fractal coder that 

derives highly image-adaptive partitions and corresponding 

fractal codes in a time-efficient manner using a region 

merging approach. 

 “Fractal Image Compression: Theory and Application” [9] 

presents the theory and implementation of new methods of 

image compression based on self-transformations of an image. 

These transformations lead to a fractal structure as well as 

being very similar to some methods of generating fractals. 

2.2 Chaotic Cryptography 
The idea of using chaos in cryptography can be traced back to 

Shannon’s classic paper “Communication theory of secrecy 

systems” [10].  He had mentioned that the good mixing 

transformations used in a good secrecy systems can be 

constructed by the basic rolled-out and folded-over 

operations.  Some researchers have pointed out that there 

exists tight relationship between chaos and cryptography [11, 

12, 13, 14, 15 and 16]. The possibility for self-

synchronization of chaotic oscillations has sparkled an 

avalanche of works on application of chaos in cryptography.  

Many fundamental properties of chaos such as ergodicity, 

mixing and exactness property and the sensitivity to initial 

conditions can be considered with the confusion and diffusion 

property of cryptography.  So it is a natural idea to use chaos 

in cryptology.    

From 1989, many chaotic ciphers have been proposed and 

analyzed. Ljupco Kocarev et al demonstrated how to construct 

a DES like block cipher using chaotic maps in a general way.  

Very recently the idea of using chaos to generate S boxes and 

then to design new ciphers have been investigated by Ljupco 

Kocarev et al. in [17,18], Jesus Urias in [19] and S.Li et al. in 

[20].  The above works have shown that chaos can be used to 

design ciphers that are similar to traditional ciphers. 

Even though the usage of chaos in Cryptography dates back to 

1949, the notion in which Geetha et al. introduced chaos to 

develop a cryptosystem is novel.  Chaos is a complex type of 

behavior exhibited by non-linear systems.  Chaos is 

introduced through difference equations and the 

corresponding Markov process with embedded Markov chain 

with infinite transition probability matrix.  This concept is 

used in the development of a chaotic cryptosystem.   

3. DEFINITIONS AND 

MATHEMATICAL BACKGROUND 

3.1 Non linear dynamical system 
Any system that does not satisfy the principle of superposition 

or homogeneity can be called non linear dynamical system 

3.2 Difference Equation 
Difference equation is an equation involving differences.  We 

can see difference equation from three different views – as 

sequence of number, discrete dynamical system and Iterated 

function. 

Difference equation is a sequence of numbers that generated 

recursively using a rule to relate to each number in a sequence 

to previous numbers in the sequence. 

Difference equation is a discrete dynamical system.  It takes 

some discrete input signal and produces output signal. 

Difference equation is an iterated map 

y(k+1) = f(y(k)) if we see the sequence as iterated function. 

 

Example : 

y(k+1) = f(y(k)) = y(k)2 

y0=1 will produce the orbit {1,1,1…} 

y0=2 will produce the orbit {2,4,16,256,….} 

y0=.5 will produce the orbit {0.5,0.25,0.625,…} 

We see that knowing the rule only is not enough to know the 

behavior of the sequence.  Initial value is also important.  

Knowing the rule and the initial value, we can generate the 

whole sequence recursively.  The value of k is an integer and 

rule to generate the sequence is called difference equation or 

the dynamical system or iterated function. 

3.3 Stochastic interpretation of matrices  

We denote the algebra of n x n real, respectively complex, 

matrices by Mn(R), respectively Mn(C); the semi-group of n x 

n doubly stochastic matrices by n ; the semi-group of n x n 

real matrices with each row sum and column sum equal to 1 

by 



 n ; the multiplicative group of n x n nonsingular real 

matrices by GLn(R) and the multiplicative group of 



 n by 

GLn(R).  For A(aij)Mn(R) , we write A>=0 if each aij >= 

0, A>0 if each aij >0.  We denote the sum of the ith row of A 

by ri(A) and the sum of the jth column by cj(A).  The n x n 

identity matrix will be denoted by In. 

A stochastic interpretation of real matrices lies in the 

following two theorems. 

Theorem 1:Let A   Mn(R).  Define 

~

A   



  n+2 as 

follows: 
~

A  =    

11.....11

010.....0

01

::

::

011

nscnc

tn

A

r







 

 

 where ri =ri(A), cj=cj(A), s=r1+…..rn 

Then the mapping 


: Mn(R)  



  n+2  where 


(A) = 

~

A , 

is an injective semi-group homomorphism.  Moreover, the 

restriction 


* of 


 to GLn(R) is a group monomorphism 

from GLn(R)  is a group monomorphism from GLn(R) is a 

group monomorphism from GLn(R)  to 


GLn+2(R) 

Theorem 2:With the notation in theorem 1, write 

~

A = 

~

a ij 

and define for any real number t>=0, 

  t = t + max(-

~

a ij : 

~

a ij <=0 ), 

 At  =  

~

A  +  t E,   Pt =  t -1 At 

Where E is the (n+2) x (n+2) matrix with all entries equal to 

1, and  t = 1+(n+2)  t 

Theorem 3:There is an injective semi-group homomorphism 


: Mn(C)  



  n+2   
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given by 


(C)  = 
  (C),  

where   is the canonical embedding of Mn(C) in M2n(R) 

and 

: M2n(R)  



  2n+2 is the homomorphism  given by 

theorem 1.   

(C)  = 

~

C  = 

~

c ij and define for each real number t>=0, 


t = t + max(-

~

c ij : 

~

c ij <=0 ), 

Ct  =  

~

C  +  t E,   Pt =  t -1 Ct 

 

4. CHAOTIC CRYPTOGRAPHIC 

ALGORITHM 

4.1 Chaos as a non-linear dynamical 

system 
Chaos can be viewed as a non-linear dynamical system 

coupled with randomness.  Randomness can be introduced 

through the choice of random variables.  These random 

variables can take discrete or continuous values with discrete 

or continuous observations.  A sequence{X(t)} of random 

variables which are functions of time having discrete or 

continuous parameter space taking discrete or continuous 

values is defined as a stochastic process.  A function f(x) 

taking positive values for all x, with definite integral over the 

real line is 1, can be taken as the probability density function 

of a random variable X.  A random variable being a 

measurable function defined on Borel field of subsets of the 

sample space.  This function is the limit of sequence of simple 

measurable functions.   

To define a simple measurable function, 

Gn = a1e1 + a2e2 + ……… anen . 

Taking the sequence an  as a convergence sequence, we can 

give a convergent simple measurable function.  It is enough to 

prove the convergence of an. The non-linearity is introduced 

through difference equation or difference differential 

equation.   

4.2 Simulation of linear difference 

equation 
We can show that the solutions of a homogeneous linear 

difference equation with complex coefficients can be 

generated probabilistically with the help of above theorems. 

We denote a given positive integer by n and a variable 

nonnegative integer by k.   

Consider the homogeneous linear difference equation 

uk+1 = a0uk + a1uk-1 + …. an-1uk-n+1,    k>=n-1 

where a0 , a1 ,…… an-1    C  and an-1    0.   

A sequence { uk }k>=0 that satisfies the above equation is 

uniquely determined by the initial values u0 , u1 ,…… un-1  

and is called  a solution of the above equation.   

Denote the set of solutions of the above equation by U 

 

We associate to the above equation the n x n matrix 

A =        

01....000

::::::

00....010

00....001

12....210  ananaaa

 

 

and define n solutions { uk (i)} k>=0  , i =1,….n such that 

they satisfy the initial conditions given by  

A=    

0000

1111

:::

2....22

1....11

uuuu

uuuu

ununun

ununun





 

Theorem 4 

The solutions of the linear difference equation can be 

simulated by Markov chains on at most (2n+2) states 

4.3 Illustration 

The Fibonacci and Lucas numbers {Fk} , {Lk} satisfying the 

recurrence relation uk+1 = uk + uk-1,  k>=1, with initial 

conditions F0=0, F1=1, Lo=2 and L1=1, can be simulated by 

the Makov chain {Xk} k>=0  with state space {1,2,3,4} and 

transition probability matrix 

Pt = (1+4t) -1          

111

1

1

111









tttt

tttt

tttt

tttt

    , r>=0 

For k>=1, 

Fk = ¼ + (1+4t)k ( P
k

12
- ¼) 

Lk = (1+4t)k (4pk – 1)-1,  

Where pk = P(Xk-X0) with X0 uniformly distributed over 

{1,2,3,4}. 

There are different measures available to measure the chaotic 

behaviour namely fractal dimension, correlation dimension, 

Kolmogorov-Sinai entropy, approximate entropy etc.  We 

consider fractal dimension to quantify chaos.   

In our encoding, we employ Iterated function system to 

replace the text with the corresponding embedded Markov 

system.  Using the stochastic approach to matrix developed by 

Y.K.Leong [21] we give the infinite dimensional stochastic 

probability matrix corresponding to embedded Markov chain 

of a Markov process.  This leads to a difference equation 

which in turn explains a non-linear dynamical system.   

Combining these ideas, we develop a new variety of encoding 

system replacing the plaintext by the corresponding fractal set 

suggested by the combination of embedded Markov chain and 

difference equation.  As the scheme is slow in execution, the 

encoding process and key generation requires special type of 

computational techniques.  For this purpose, we appeal to 
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algebraic functional programming.  We employ fold and 

functors based on functional programming technique to speed 

up the process. 

4.4 Construction of fractal using 

probabilistic method 

Fractals provide a geometric framework for the modeling of 

self-similarity and have become widely used in recent years in 

broad range of applications.  We can construct fractals in 

many ways.  Here we suggest the probabilistic method. 

Let us consider the case of the plain self-affine set. Let 

{S1,..,Sm} will be some system of affine contractive maps. 

Maps Si can be represented as: Si(x)=Ai( x-oi )+oi, where Ai - 

some matrix of 2x2 size and oi - a vector.  

1. As the starting point we will take the fixed point of the 

first map S1: x:=o1;Here we use that all fixed points of 

contractions S1,..,Sm belong to the fractal. As the starting 

point we can choose any point, and the generated sequence of 

points will converge to the fractal anyway, but some wrong 

points will appear on the screen. 

2.    Draw the current point x=(x1,x2) on the screen: putpixel 

(x1,x2,15);  

Select in a random way a number j from 1 to m and 

recalculate coordinates of the x 

point:j:=Random(m)+1;x:=Sj(x);  

3.   Go to step 2, or stop if sufficiently many number of 

iterations are done 

Remark. If the contraction coefficients of maps Si are 

different, then the fractal will be filled with points irregularly. 

In a case, when maps Si are similarities, this can be avoided 

by small complication of algorithm. On the 3-rd step of 

algorithm, number j from 1 to m should be selected by 

probabilities p1=r1s,..,pm=rms, where ri denotes similarity 

coefficient of the map Si, and number s (known as similarity 

dimension) is found from the equation r1s+...+rms=1. This 

equation can be solved, by Newton method.  

4.5 Algorithmic steps 

Plaintext is converted into binary. 

 Mapping is done using difference equation. 

 Replacement is made by corresponding fractal 

constructed using the probabilistic method. 

 The position into which the replacement is done is 

identified by pseudo random number generator 

 If the same random number is generated by the 

PRNG, next iteration is done. 

 If the PRNG generates a value in the non-difference 

sequence, null is introduced. 

 This system is implemented using Fibonacci 

sequence (difference equation) and Sierpinski 

gasket (fractal set). 

 The non-linear dynamics explained by the 

difference equation can be viewed as the same non 

linearity generated by the fractals.   

5. FRACTAL GENERATION RESULTS 

In Figure 1, we hide the message in sierpinski triangle using 

the features of chaos. Let A, B, C be the vertices of the 

triangle.  Start with a random point in the plane, and move the 

point one-half of the distance to one of the vertices.  Choose 

to move with equal likelihood toward each of A, B and C.  

From the new point, randomly choose one of the vertices and 

repeat.  The attractor for this process is the sierpinski gasket, 

an example of iterated function system. In this triangle we 

represent 1, 0 and null.   

Example: Let the binary plaintext be 11011011 

Let us consider the Fibonacci sequence 5, 8, 13, 21, 34, 55, 

89, 144…..We can start with any number. The starting 

number corresponds to the initial condition. Let us generate 

the pseudo random number.  If we are going to encode eight 

bits and the starting value of the Fibonacci series is 5, then we 

give the range between 5 and 144. If the range of the seed is 

larger, we get more randomized result.  If we choose a bigger 

number as the starting value, then the range will be larger and 

hence the seed is highly randomized.   

          Position     Value 

5   1 

8 null 

13 null 

21 1 

34 null 

55 null 

89 null 

144  null 

Using the Pseudo random number, encryption is done.  For 

example, if the PRNG generates 7, then triangle representing 

null is created, if it generates 5, triangle representing 1 is 

created and so on. Conditional statements will be framed so as 

to form a fractal.  Key is generated based on the random 

number generation and the initial condition.  We have taken 

Fibonacci sequence and Sierpinski gasket as an example.   

 

Fig 1 : Sierpinski triangle with embedded message 

6. MESSAGE AUTHENTICATION 
The process of determining the identity of a user.  In effect, 

authentication validates that the user is who he or she claims 

to be.  Message authentication may also verify sequencing and 

timeliness. 
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6.1 Why is strong authentication needed? 

Single-factor authentication usually consists of "something 

you know". However, generally, these could be susceptible to 

attacks that could compromise the security of the application. 

Some of the more common attacks can occur at little or no 

cost to the perpetrator and without detection. 

Such programmers are readily available over the internet. If 

undetected, the perpetrator could access the information 

without alerting the legitimate user. This is the reason of using 

a strong user authentication process to protect the data and 

systems. 

 The need for strong user authentication has many benefits. 

1. Strong user authentication is amply demonstrated by  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the use of ATMs - access to an ATM is protected by a 

strong user authentication; a bankcard, and a PIN. 

2. Reducing the risk of unauthorized access, two-factor 

authentication also provides institutions with a 

foundation to enforce electronic transactions and 

agreements. 

6.2  Message Authentication Code (MAC) 

In cryptography, a message authentication code (often MAC) 

is a short piece of information used to authenticate a message. 

A MAC algorithm, sometimes called a keyed (cryptographic) 

hash function, accepts as input a secret key and an arbitrary 

length message to be authenticated, and outputs a MAC 

(sometimes known as a tag). The MAC value protects both a 

message's data integrity as well as its authenticity, by allowing 

verifiers (who also possess the secret key) to detect any 

changes to the message content. While MAC functions are 

similar to cryptographic hash functions, they possess different 

security requirements. To be considered secure, a MAC 

function must resist existential forgery under chosen-plaintext 

attacks.  

MAC algorithms can be constructed from other cryptographic 

primitives, such as cryptographic hash functions (as in the 

case of HMAC) or from block cipher algorithms (OMAC, 

CBC-MAC and PMAC). However many of the fastest MAC 

algorithms such as VMAC are constructed based on universal 

hashing. 

In Figure 3, the sender of a message runs it through a MAC 

algorithm to produce a MAC data tag. The message and the 

MAC tag are then sent to the receiver. The receiver in turn 

runs the message portion of the transmission through the same 

MAC algorithm using the same key, producing a second 

MAC data tag. The receiver then compares the first MAC tag 

received in the transmission to the second generated MAC 

tag. If they are identical, the receiver can safely assume that 

the integrity of the message was not compromised, and the 

message was not altered or tampered with during 

transmission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compare 

(a).Message authentication 

(b).Message authentication and confidentiality; authentication tied to plain text 

M 
C 

E (K2,,M) 

(c).Message authentication and confidentiality; authentication tied to cipher text 

K 

K 

M 

C 

| | M C 

Compare 

C (K,M) 

C (K1,M) 

M 

C 

| | 
K1 

D 

K2 

E 

K2 

E(K2[M || C( K1,M)] ) 
K1 

Compare 

M D 

K2 

C 

| | 
K1 

M 

C(K1 ,E (K2,M)) 

C 

K1 

E 

K2 

Fig 2 : Basic Uses Of MAC 

 

Fig 3 : Message Authentication Code 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.5, January 2012 

55 

In Figure 2.a, provides authentication. In Figure 2.b, 

authentication and confidentiality; authentication tied to the 

plain text. In Figure 2.c, authentication and confidentiality; 

authentication tied to the cipher text. 

6.3 Message Authentication Image (MAI) 

A Message Authentication Image (MAI) is generated by using 

fractal. This approach explored the main feature of fractal 

image generated by Iterated Function System (IFS) techniques 

as shown in section 5 of this paper. The application of chaos 

in generating the MAI makes it difficult for the steganalyst, to 

identify the hidden data, as the security is based on the initial 

condition. MAI finds its application to avoid phishing.  We 

propose to extend this as our future work. 

 

 

 

The basic operation of the MAI is as follows: 

Sender: 

 Generate a Fractal Image by using IFS techniques. 

 While generating the Image, apply the principle of 

Chaos i.e.  Non-linearity and randomness, as a tool 

to hide data. 

 Message Authentication Image is generated. 

 Send it to receiver. 

Receiver: 

 After receiving the Image the User compares the 

received Fractal Image with the Original Fractal 

Image. 

 Can verify the authenticity, confidentiality and 

digital signature. 

In MAC algorithm it provides authentication and 

confidentiality but in MAI algorithm it provides 

authentication, confidentiality and Digital signature. In Figure 

5.d, It encrypt a given message by using private key  PRa and 

K2. It uses the key K1 to hide the encrypted data into an 

image I (K1, E2 (K2 , E1 (PRa,M)))  to achieve the digital 

Signature. 

6.4 MAI is better than MAC 

 Non-Linearity and Randomness used while 

generating fractal makes it hard to break. 

 MAC uses cryptographic primitives like HMAC, 

OMAC, PMAC, VMAC etc. MAI uses both 

cryptographic primitives and steganographic ideas 

to conceal the data in the image. 

 MAC is used only for the message authentication 

whereas MAI can be used for Digital Signature. 

7. COMPARISION OF MAC AND MAI 

The following table describes the comparison between MAC 

and our proposed Digital Signature Algorithm. 

 

 

8. CONCLUSION 

We proposed a new Message authentication Image (MAI) 

Algorithm that provides confidentiality, authentication and 

digital signature.  We implemented and generated a sierpinski 

triangle exploring the properties of chaos and message hiding 

techniques and proposed a new MAI technique.  The hidden 

data is robust enough to withstand image processing 

technique.  This technique can be employed in online 

transactions like Banking, Shopping etc. to avoid phishing.  

We plan to implement the application of MAI as our future 

work.   

 

 

 

 

 

 

 

 

S. No Security 

Services 

MAC MAI 

1 Message 

Authentication 

Yes Yes 

2 Confidentiality Yes Yes 

3 Digital Signature No Yes 

4 Result Code Image 

 

5 

 

Mechanism 

Existing 

Cryptographic 

Algorithms 

Non-

Linearity & 

Randomness 

6 Strength Weak Strong 

Table 1. Comparison of MAC and MAI 

 

Fig 4 : Message Authentication Image 
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The following diagram illustrates how MAI can be used for message authentication, confidentiality and digital signature. 
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